12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- from imageio import imread
- import numpy as np
- class Dataset(object):
- def __init__(self, uuids, annotations):
- super(Dataset, self).__init__()
- self.uuids = uuids
- self._annot = annotations
- def __len__(self):
- return len(self.uuids)
- def _get(self, method, i):
- return getattr(self._annot, method)(self.uuids[i])
- def get_example(self, i, mode="RGB"):
- methods = ["image", "parts", "label"]
- im_path, parts, label = [self._get(m, i) for m in methods]
- return imread(im_path, pilmode=mode), parts, label
- __getitem__ = get_example
- # some convention functions
- DEFAULT_RATIO = np.sqrt(49 / 400)
- def __expand_parts(p):
- return p[:, 0], p[:, 1:3], p[:, 3].astype(bool)
- def uniform_part_locs(im, ratio=DEFAULT_RATIO, round_op=np.floor):
- h, w, c = im.shape
- part_w = round_op(w * ratio).astype(np.int32)
- part_h = round_op(h * ratio).astype(np.int32)
- n, m = w // part_w, h // part_h
- idxs = np.arange(n*m)
- locs = np.zeros((2, n*m), dtype=np.int32)
- for x in range(n):
- for y in range(m):
- i = y * n + x
- x0, y0 = x * part_w, y * part_h
- locs[:, i] = [x0 + part_w // 2, y0 + part_h // 2]
- return idxs, locs
- def visible_part_locs(p):
- idxs, locs, vis = __expand_parts(p)
- return idxs[vis], locs[vis].T
- def crops(im, xy, ratio=DEFAULT_RATIO, padding_mode="edge"):
- assert im.ndim == 3, "Only RGB images are currently supported!"
- h, w, c = im.shape
- crop_h, crop_w = int(h * ratio), int(w * ratio)
- crops = np.zeros((xy.shape[1], crop_h, crop_w, c), dtype=im.dtype)
- pad_h, pad_w = crop_h // 2, crop_w // 2
- padded_im = np.pad(im, [(pad_h, pad_h), (pad_w, pad_w), [0,0]], mode=padding_mode)
- for i, (x, y) in enumerate(xy.T):
- x0, y0 = x - crop_w // 2 + pad_w, y - crop_h // 2 + pad_h
- crops[i] = padded_im[y0:y0+crop_h, x0:x0+crop_w]
- return crops
- def visible_crops(im, p, *args, **kw):
- idxs, locs, vis = __expand_parts(p)
- parts = crops(im, locs[vis].T, *args, **kw)
- res = np.zeros((len(idxs),) + parts.shape[1:], dtype=parts.dtype)
- res[vis] = parts
- return res
- def reveal_parts(im, xy, ratio=DEFAULT_RATIO):
- h, w, c = im.shape
- crop_h, crop_w = int(h * ratio), int(w * ratio)
- res = np.zeros_like(im)
- for x, y in xy.T:
- x0, y0 = max(x - crop_w // 2, 0), max(y - crop_h // 2, 0)
- res[y0:y0+crop_h, x0:x0+crop_w] = im[y0:y0+crop_h, x0:x0+crop_w]
- return res
|