|
@@ -35,9 +35,6 @@ class ClassifierPrototype:
|
|
|
if not numpy.all(numpy.isfinite(self.yUni)):
|
|
|
raise Exception('not numpy.all(numpy.isfinite(self.yUni))')
|
|
|
|
|
|
- if len(numpy.unique(self.y)) > 2:
|
|
|
- raise Exception('len(numpy.unique(self.y)) > 2')
|
|
|
-
|
|
|
|
|
|
def train2(self, X, y, sigmaN=None):
|
|
|
|
|
@@ -159,13 +156,13 @@ class ClassifierPrototype:
|
|
|
return probs/float(nmb)
|
|
|
|
|
|
|
|
|
- # x.shape = (feat dim, number of samples)
|
|
|
+ # x.shape = (number of samples, feat dim)
|
|
|
def calcAlScores(self, x):
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
- # x.shape = (feat dim, number of samples)
|
|
|
+ # x.shape = (number of samples, feat dim)
|
|
|
def getAlScores(self, x):
|
|
|
|
|
|
alScores = self.calcAlScores(x)
|
|
@@ -179,7 +176,7 @@ class ClassifierPrototype:
|
|
|
return alScores
|
|
|
|
|
|
|
|
|
- # x.shape = (feat dim, number of samples)
|
|
|
+ # x.shape = (number of samples, feat dim)
|
|
|
def chooseSample(self, x):
|
|
|
|
|
|
return numpy.argmax(self.getAlScores(x), axis=0).item(0)
|