#!/bin/bash export CUDA_VISIBLE_DEVICES=0 SCRIPT="cont_ava.py" echo $SCRIPT BATCH_SIZE=128 num_classes=11 LOG="../example_LOG/" data_root="../data/data_stream_files/BW_stream_files/" images_root="/home/AMMOD_data/camera_traps/BayerWald/G-Fallen/MDcrops/" label_dict="../data/label_dictionaries/BIRDS_11_Species.pkl" #nested loop to iterate over all cross validations splits # # for eps in 5 # epochs # do # for exp_size in 128 # do # for i in 0 1 2 3 4 # cross validation splits # do # FILE="cv${i}_expsize${exp_size}_crop" # for dr in 8 #data ratio # do # # cf => class inverse frequency rehearsal # python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm cf -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # (shuffled) # python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm cf -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # # rr => random rehearsal (nuiform samling) # python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm rr -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # (shuffled) # python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm rr -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # # mir => maximally intergfered retrieval based rehearsal # python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm mir -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # (shuffled) # python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm mir -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict # # ce => class error based rehearsal (with eval_after_n_exp, i.e. ne equal to 5) # python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm ce -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 -tne 100 -temp $temp --label_dict $label_dict # (shuffled) # python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm ce -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 -tne 100 -temp $temp --label_dict $label_dict # # weighted moving average of class error based method with 18 past evaluations on the validation data influencing weights and weights drawn from a gaussian bell curve with sigma 9 # python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm wce -nexp_avg 18 -sig 9 -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 -tne 100 --label_dict $label_dict # (shuffled) # python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm wce -nexp_avg 18 -sig 9 -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 -tne 100 --label_dict $label_dict # # done # done # done # done # # nested loop to perform experiments with limited memory and different memory filling strategies: for eps in 5 # epochs do for exp_size in 128 do for i in 0 1 2 3 4 # cross validation split do FILE="cv${i}_expsize${exp_size}_crop" for dr in 2 8 # data ratio do for mem in 0.1 0.25 # memory size one tenth and one quatre of total stream data. do for memf_strategy in cbrs stdrs do python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm ce -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 -tne 100 --label_dict $label_dict python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm cf -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict python $SCRIPT --file $FILE --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm rr -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm ce -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 5 --label_dict $label_dict python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root -cnum_classes $num_classes -log $LOG -rm cf -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict python $SCRIPT --file $FILE --shuffle_stream --strategy naive --data_root $data_root --images_root $images_root --num_classes $num_classes -log $LOG -rm rr -memf $memf_strategy -mems $mem -dr $dr --batch_size $BATCH_SIZE --epochs $eps -ne 100 --label_dict $label_dict done done done done done done