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1 Requirements of CL Literature

Avoid forgetting (*)

Fixed memory and compute
Enable forward transfer

Enable backward transfer (*)

Do not store examples

2 Survey Papers / Meta Papers

GDumb: A Simple Approachthat Questions Our Progressin Con-
tinual Learning [13]

e GDumb = Greedy Smapler and Dumb Learner (class balanced fixed
memory buffer, retrained from scratch using samples in buffer)

e Simplifying Assumptions in CL

1. Disjoint Task Formulation: at a particular duration in time data-
stream will provide samples specific to one task. Sometimes this
assumption also entails that there is only one specific time, where
data for a specific task is streamed. This means there is no back-
ward transfer.

2. Task-Incremental(TI_CL) : along with the disjoint task assump-
tion, the task information (or id) is also passed during training
and inference (multi-head). In Class-incremental continual learn-
ing (CI-CL) no such task information is given.
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3. Online CL: restricting the learner to use each sampel only once to
update parameters (unless stored in buffer). In offline CL there is
unrestricted access to entire current dataset for training multiple
epochs.

e Online CL preferable in situations with fast spitting data stream.
e Found GDumb outperforms most methods by large margin

e Table 1 gives a great overview/categorization of methods and assump-
tions

e non of the reviewd papers seem to match our assumptions/requirements
exactly: not dijoint, class-incremental, offline.

CVPR 2020 Continual Learning in Computer Vision Competition:
Approaches, Results, Current Challenges and Future Directions
3]

e CVPR Continula Learning challenge on CORe50 dataset including
three different tasks: New Instances (8 batches of all classes, i.e., focus
on backward transfer); Multi-Task New Classes (multi-head); New In-
stances and Classes (batches containing examples of single class may
contain previously seen or new classes, i.e., disjoint setting focused on
improving on seed classes with single-head classification)

e evaluate on a weighted sum of scores on accuracy, Disk usage, RAM,
time
e baseline include naive fine-tuning, rehersal with growing memory (20

images of each batch stored), and ARI* with latent replay [11] (de-
scribed below)

e winning team uses replay method for NIC and devided network outputs
by prior probability for each class to handle class imbalance (Buda et
al. 2018)

e top-4 solutions employ rehersal-based technique

e on NI challenge, UT_LG Team rehersal training with batch instead of
mini-batch level (for every epoch one memory batch and current new
batch is concatenated) and introduce review step (with lower learning
rate) before testing, where only memory data is used.

e code available for all submissions
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3.1

Papers

Rehersal Based Mehthods

Rehersal Methods allow at least some data to be stored and used to reherse
previously learned knowledge. This is also known as Expereience Replay
(ER). When no storage of data is possible, rehersal is often perforemed using
generated images ([15]), where previousy learned knowledge is stored indi-
rectly.

Online Continual Learning with Maximally Interfered Retrieval
(MIR) [1]

CI-CL, online, disjoint, rehersal based approach.

Sample criterion for controlled selection (from rehersal) of samples from
buffer where predictions will be most negatively impacted by forseen
parameter update. Their Research question: what samples should be
replayed from the previous history when new samples are received

most negatively impacted = loss changes most, when updating on new
data (estimated for subset of buffer data).

also applicable to generative replay approaches

in a reltivel small number of total classes/task case (MNIST SPLIT)
their approach (ER+MIR) is significantly better (87,6%) than random
sampling ER (82.1%). In other scenarios, their approach outperforms
with a smaller margin.

(I dont really understand, why they restrict themselves to a disjoint
setting, thos should work in non-disjoint situation.)

Gradient based sample selection for online continuallearning [2]

CI-CL, online, non-disjoint expand GEM approach to situation where
task boundries are not available

formulate replay buffer population problem as constrained minimiza-
tion of the solid angle. Use a surrogate objective, which maximizes
diversity of samples using the parameter gradients of samples instead
of feature representations



e indirectly adress the issue of class imbalance
e reevaluate replay buffer once a so called recent buffer is full

e also propose cheap alternative greedy sample selection for large buffers
(removes overhead of gradient computation for all samples solving con-
strained optimization). Idea: compute score based on max. coisne
simitlarity of current sample gradients with randomly selected subset
of buffer gradients. When new sample arrives, compute its score and
randomly select candidate for replecement (probability of normalized
scores) and compare scores to decide. Replace constrained optimization
when buffer is large with soft regularization equivalent to rehersal.

e Experiments performed on low resolution datasets such as MNIST and
CIFARI10

e compared with random or clustering-based, buffer population meth-
ods and reservoir population methods, their approached show merit,
especially the greedy approach using rehersal instead of constrained
optimization.

e code availble

Random Sampling with a Reservoir

e 1985 algorithm designed to uniformly sample from a stream of data
where the total number of elements the stream will entail is unknown.

e This algorithm could be used to continuously update a fixed size buffer
with samples from a stream while ensuring, that at the end, when the
stream is done, that every sample has a probability of 1/(totel stream)
of being in the buffer.

More Is Better: An Analysis of InstanceQuantity/Quality Trade-
off in Rehearsal-basedContinual Learning [12]

e cvaluated for class-incremental setting, CI-CL, disjoint

e state that rehersal based methods are ’emerging as the most effective
methodology to tackle CL’ and refer to [5] for theoretical justification
(optimal CL would require perfect memory)



e investigate several dimensionality reductions (deep encoders, variational
autoencoders, random projections). They compare their methods to
GDumb, Greedy sampler and Dumb learner, which does not use any
clever selection strategy for buffer or training approach.

e evaluated on final accuracy with several datasets(MNIST, CIFAR, Im-
ageNet, Core50). Given a fixed memory size different numbers of sam-
ples can be stored when using different parameters for reduction. (peak
performance achieved when storing 8x8 pixel images to fill memory)

e only performed experiemtns for disjoint setting, i.e., where datastream
shows one task once during training.

e code available

Latent Replay for Real-Time Continual Learning [11]

e store representations from some intermediate layer in the network in-
stead of images in inputspace to reduce memory requirement. To keep
representations valid, they propose slowed-down learning for the layers
below the latent replay layer.

e ‘a robot should be able to incrementally improve its object recognition
capabilities while being exposed to newinstances of both known and
completely new classes (de-noted as NIC setting - New Instances and
Classes)’

e this paper aims at imporving overall accuracy for the non-rehersal based

methods such as AR1 and CWR [10] (described below)

3.2 Kowledge Distillation

This category is based on the disitllation loss. Basically, the output of old
samples of the model becomes the new desired output when new data is
available for updating. Especially in a multi-task/ multi-head scenario, the
logits on heads for previously seen data shoul not change much when a new
head is learned. The most famous, original introduction of distillation loss
in continual learning was made by [6], which does not enable any backward
transfer of knowledge and required task knowledge at inference.



iCaRL: Incremental Classifier and Representation Learning [14]

e CI-CL, offline, disjoint and assumes that samples from each task (a
batch of classes) are only present at one point in time of the data
stream.

e agsumes, there is a fixed size memory available to store examples from
previous classes

e use nearest-mean-of-examples classifier (using representatiosn) for in-
ference. At training time, the sample memory buffer and model param-
eters are updated. When samples for a new class is available, a new
training batch is constructed from the new and stored data. The out-
put of the current network for all stored images of previous classes are
stored since they are needed for the distillation loss. The model is up-
dated with the cross-entropy loss for samples from the new class while
the model is encouraged to reproduce the previously stored outputs
(disitllation loss) for the old samples.

e when new classes are introduced and weights are added to the network,
some sampels in buffer are dropped to make room for samples from new
class. The set of examples for each class is selected based on the current
class mean of the feature vectors.

e Evalutaed using CIFAR100 and ImageNet datastes showing impressive
results compared to previous methods for the disjoint task formulation

e (Whil I think the idea of using the distillation loss for previously stored
samples could be applicable in a non-disjoint task set formulation. The
distillation loss is designed to preserve previosly infered knowledge in a
model and allow forward transfer. In our situation backward transfer
is one of the most important requirements, which the distillation loss
is not designed for. I dont think it would be wise in our scenario to
penelize model outputs changing for previously seen data since that
might be necessary to improve the classification boundries.)

3.3 Regularization Approaches

The basic idea behind regularization based approaches is to penelize a model
for changing too much with newly seen and finding a sensible trade-off be-
tween plasticity and stability of the network over time. Most influential in



this category is the Elasitc Weight Consolidation Approach proposed by [4].
Each parameters importance for classification of previous task is estimated
using the Fisher Information (related to curvature of loss function). Updates
to important parameters are penelized proportionaly in the loss function
when new tasks are learned. This approach is designed for task-incremental
learning and does not allow backward transfer of knowledge.

Riemannian Walk for Incremental Learning:Understanding Forget-
ting and Intransigence [3]

CI-CL, offline, disjoint

RWalk is a generalization of EWC to ClI setting. They use KL-divergence
based regularization over conditional likelihood p(y—x) and a parame-
ter importance score based on the sensitivity of the loss over the move-
ment on the Riemannian manifold (induced by Fischer information) to
mitigate catastrophic forgetting. By accumaulating parameter impor-
tance over the entire training trajectory, their approach allows class
incremental learning.

define task-wise measures for Forgetting(: diff between maximum knowl-
edge and current knowledge) and Intransigence, the inability of a ne-
towrk to learn new tasks (:diff btw model trained on entire data and
incrementally learned model trainied up to specific task).

they show that for small number of samples their approach has much
greater impact than when large datasets are availbale

suggest entropy-based sampling for creating the buffer dataset of old
examples. Samples where the output of the neural network has a larger
cross-entropy are more likely picked.

(while this approach allows for single-head classification, it still heavily
relies on the disjoint dataset assumption. The basic idea is still that
specific parameters have more importance for specific tasks and updat-
ing them when training new tasks should be avoided /reduced. For our
application goals, this regularized loss could be used for a brief duration
of the training when a new class is introduced. The first task would
be defined as all previously known classes and the second task would
consist of one new class only. This could be used in a strategy to focus
learning of the new class while mitigating forgetting of the previous
classes)



Gradient Episodic Memory for Continual Learning (GEM) [9]

TI-CL, online, rehersal (+regularization) based approach

They introduce metrics for evaluting backward and forward transfer
No assumptions on the number of tasks are made.

Use Memory buffer to constraint updates when training new tasks

Constraint: gradient direction of past task (estimated with memory)
has positive dot product with gradient from batch (of new task).

Disadvantage: slow optimization with constraint and TASK INCE-
MENTAL

Continuous Learning in Single-Incremental-Task Scenarios [10]

CI-CL, disjoint, introduce CWR and AR1 for NC (new class) learning,
where each batch can contains new classes, but argue this could be
adapted for NIC (new instance or new class) learning.

main idea: for the final layer have one set of consolidated weights used
for inference and tempory weights reset to 0 for each batch used to up-
dated the subset of weichts in the consolidated weights matrix relevant
to the class seen in the current batch (CWR)

while CWR uses fixed represenations extracted from a model, AR1 al-
lows end-to-end CL by allowing model used for extracting to be trained
simultaneously using regularized loss in a controlled manner. They use
Synaptic Inteligence (a variant of EWC [16])

[7] expanded on this approach for the NIC task by updating weights for
a class already seen using a weighted sum of past and current weights
for the consolidation step

the results of this approach was further imporved on using laten replay
method [11]

[7] also provides a benchmark protocol for Core50 dataset on github
for a NIC task



3.4 Parameter Isolation

Generally, this approach to continual learning is again originaly designed for
task-incremental learning. The main idea is to generate binary masks for
parameters for each task indicating the their importance for specific tasks.
Susequently learned tasks are learned only using the leftover parmeters in a
network. This approach generally relies on task-incremental learning.

Conditional Channel Gated Networks for Task-Aware Continual
Learning

e CI-CL, offline, disjoint (assumes stream produced samples for one task
for a duration in time, but during inference, no task information is
provided.)

e Original parameter isolation methods are not designed for class-incremental
learning. This paper tries to generalize the formulation to class-incremental
learning scenarios using some rehersal.

e main idea: jointly predict task and class label.

e use gating module for each convolutional layer which decides which
kernel in the layer should be applied (binary decision) based on the
input feature. The gating module consists of a very shallow neural
network tained with a sparsity objective such that the smallest possible
number of kernels are applied. after the training of a task, the most
important parameters are frozen, i.e., their gradients are zeroed out
during updates for subsequent task learning.

e (I dont see the advantage of parameter isoltion methods for class in-
cremental learning. This approach practically splits the network into
subsets for each task.)
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