--- description: 'Supported Benchmarks, Strategies & Metrics' --- # Current Release _Avalanche_ is a framework in constant development. Thanks to the support of the [ContinualAI](https://www.continualai.org/) community and its active members we plan to **extend its features** and **improve its usability** based on the demands of our research community! A the moment, _Avalanche_ is in **Alpha \(v0.0.1\)**, but we already support a number of _Benchmarks_, _Strategies_ and _Metrics_, that makes it, we believe, **the best tool out there for your continual learning research!** πŸ’ͺ {% hint style="info" %} Check out below what we support in details, and please let us know if you think [we are missing out something important](../questions-and-issues/request-a-feature.md)! We deeply value [your feedback](../questions-and-issues/give-feedback.md)! {% endhint %} ## πŸ–ΌοΈ Supported Datasets In the Table below, we list all the Pytorch datasets used in _Continual Learning_ \(along with some references\) and indicating if we **support** them in _Avalanche_ or not. Some of them were already available in [_Torchvision_](https://pytorch.org/docs/stable/torchvision/index.html), while other have been integrated by us. | Name | Dataset Support | From Torch Vision | Automatic Download | References | | :--- | :--- | :--- | :--- | :--- | | **CORe50** | βœ”οΈ | βœ”οΈ | βœ”οΈ | [\[1\]](http://proceedings.mlr.press/v78/lomonaco17a.html) | | **MNIST** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **CIFAR-10** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **CIFAR-100** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **FashionMNIST** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **TinyImagenet** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **MiniImagenet** | βœ”οΈ | ❌ | ❌ | n.a. | | **Imagenet** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **CUB200** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **CRIB** | ❌ | ❌ | ❌ | n.a. | | **OpenLORIS** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **Stream-51** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **KMNIST** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **EMNIST** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **QMNIST** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **FakeData** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **CocoCaption** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **CocoDetection** | βœ”οΈ | ❌ | ❌ | n.a. | | **LSUN** | βœ”οΈ | ❌ | ❌ | n.a. | | **STL10** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **SVHN** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **PhotoTour** | βœ”οΈ | ❌ | βœ”οΈ | n.a. | | **SBU** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **Flickr8k** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **Flickr30k** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **VOCDetection** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **VOCSegmentation** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **Cityscapes** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **SBDataset** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **USPS** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **Kinetics400** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **HMDB51** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **UCF101** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **CelebA** | βœ”οΈ | βœ”οΈ | βœ”οΈ | n.a. | | **Caltech101** | ❌ | ❌ | ❌ | n.a. | | **Caltech256** | ❌ | ❌ | ❌ | n.a. | ## πŸ“š Supported Benchmarks In the Table below, we list all the major benchmarks used in _Continual Learning_ \(along with some references\) and indicating if we **support** them in _Avalanche_ or not. _""Benchmark Support"_ is checked if the actual _continual learning benchmark_ \(with the actual stream of data\) is also provided. | Name | Benchmark Support | References | | :--- | :--- | :--- | | **CORe50** | βœ”οΈ | [\[1\]](http://proceedings.mlr.press/v78/lomonaco17a.html) | | **RotatedMNIST** | βœ”οΈ | n.a. | | **PermutedMNIST** | βœ”οΈ | n.a. | | **SplitMNIST** | βœ”οΈ | n.a. | | **FashionMNIST** | βœ”οΈ | n.a. | | **CIFAR-10** | βœ”οΈ | n.a. | | **CIFAR-100** | βœ”οΈ | n.a. | | **CIFAR-110** | βœ”οΈ | n.a. | | **TinyImagenet** | βœ”οΈ | n.a. | | **CUB200** | βœ”οΈ | n.a. | | **SplitImagenet** | βœ”οΈ | n.a. | | **CRIB** | ❌ | n.a. | | **OpenLORIS** | βœ”οΈ | n.a. | | **MiniImagenet** | ❌ | n.a. | | **Stream-51** | βœ”οΈ | n.a. | ## πŸ“ˆ Supported Strategies In the Table below, we list all the _Continual Learning_ algorithms \(also known as _strategies_\) we currently support in _Avalanche_. _"Strategy Support"_ is checked if the algorithm is already available in _Avalanche_, whereas _"Plugin Support"_ is checked if the **corresponding plugin** of the strategy \(that can be used in conjunction with other strategies\) is is also provided. | Name | Strategy Support | Plugin Support | References | | :--- | :--- | :--- | :--- | | **Naive \(a.k.a. "Finetuning"\)** | βœ”οΈ | ❌ | n.a. | | **Naive Multi-Head** | βœ”οΈ | βœ”οΈ | n.a. | | **Joint Training \(a.k.a. "Multi-Task"\)** | βœ”οΈ | ❌ | n.a. | | **Cumulative** | βœ”οΈ | ❌ | n.a. | | **GDumb** | βœ”οΈ | βœ”οΈ | n.a. | | **Experience Replay \(a.k.a. "Rehearsal"\)** | βœ”οΈ | βœ”οΈ | n.a. | | **EWC** | βœ”οΈ | βœ”οΈ | n.a. | | **LWF** | βœ”οΈ | βœ”οΈ | n.a. | | **GEM** | βœ”οΈ | βœ”οΈ | n.a. | | **AGEM** | βœ”οΈ | βœ”οΈ | n.a. | | **CWR** | βœ”οΈ | βœ”οΈ | n.a. | | **SI** | βœ”οΈ | βœ”οΈ | n.a. | | **iCaRL** | ❌ | ❌ | n.a. | | **AR1** | βœ”οΈ | ❌ | n.a. | ## πŸ“Š Supported Metrics In the Table below, we list all the _Continual Learning_ **Metrics** we currently support in _Avalanche_. All the metrics by default can be **collected** during runtime, **logged on stdout** or on **log file**. With _"Tensorboard"_ is checked if the metrics can be also visualized in **Tensorboard** is already available in _Avalanche_, whereas _"Wandb"_ is checked if the metrics can be visualized in **Wandb**. | Name | Support | Tensorboard | Wandb | References | | :--- | :--- | :--- | :--- | :--- | | **Accuracy** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **Loss** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **ACC** | ❌ | ❌ | ❌ | [\(Lopez-Paz, 2017\)](https://arxiv.org/pdf/1706.08840.pdf) | | **BWT** | ❌ | ❌ | ❌ | [\(Lopez-Paz, 2017\)](https://arxiv.org/pdf/1706.08840.pdf) | | **FWT** | ❌ | ❌ | ❌ | [\(Lopez-Paz, 2017\)](https://arxiv.org/pdf/1706.08840.pdf) | | **Catastrophic Forgetting** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **Remembering** | ❌ | ❌ | ❌ | n.a. | | **A** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) | | **MS** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) | | **SSS** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) | | **CE** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) | | **Confusion Matrix** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **MAC** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **CPU Usage** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **Disk Usage** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **GPU Usage** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **RAM Usage** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **Running Time** | βœ”οΈ | βœ”οΈ | ❌ | n.a. | | **CLScore** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) | | **CLStability** | ❌ | ❌ | ❌ | [\(DΓ­az-RodrΓ­guez, 2018\)](https://arxiv.org/pdf/1810.13166.pdf) |