################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 24-05-2020 # # Author(s): Lorenzo Pellegrini # # E-mail: contact@continualai.org # # Website: avalanche.continualai.org # ################################################################################ """ This is a simple example on how to use the Evaluation Plugin. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from os.path import expanduser import argparse import torch from torch.nn import CrossEntropyLoss from torch.optim import SGD from torchvision import transforms from torchvision.datasets import MNIST from torchvision.transforms import ToTensor, RandomCrop from avalanche.benchmarks import nc_benchmark from avalanche.evaluation.metrics import forgetting_metrics, \ accuracy_metrics, loss_metrics, cpu_usage_metrics, timing_metrics, \ gpu_usage_metrics, ram_usage_metrics, disk_usage_metrics, MAC_metrics, \ bwt_metrics, forward_transfer_metrics from avalanche.models import SimpleMLP from avalanche.logging import InteractiveLogger, TextLogger, CSVLogger from avalanche.training.plugins import EvaluationPlugin from avalanche.training.strategies import Naive def main(args): # --- CONFIG device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ RandomCrop(28, padding=4), ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) test_transform = transforms.Compose([ ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # --------- # --- SCENARIO CREATION mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=True, download=True, transform=train_transform) mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=False, download=True, transform=test_transform) scenario = nc_benchmark( mnist_train, mnist_test, 5, task_labels=False, seed=1234) # --------- # MODEL CREATION model = SimpleMLP(num_classes=scenario.n_classes) # DEFINE THE EVALUATION PLUGIN AND LOGGER # The evaluation plugin manages the metrics computation. # It takes as argument a list of metrics and a list of loggers. # The evaluation plugin calls the loggers to serialize the metrics # and save them in persistent memory or print them in the standard output. # log to text file text_logger = TextLogger(open('log.txt', 'a')) # print to stdout interactive_logger = InteractiveLogger() csv_logger = CSVLogger() eval_plugin = EvaluationPlugin( accuracy_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), forgetting_metrics(experience=True, stream=True), bwt_metrics(experience=True, stream=True), forward_transfer_metrics(experience=True, stream=True), cpu_usage_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), timing_metrics( minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), ram_usage_metrics( every=0.5, minibatch=True, epoch=True, experience=True, stream=True), gpu_usage_metrics( args.cuda, every=0.5, minibatch=True, epoch=True, experience=True, stream=True), disk_usage_metrics( minibatch=True, epoch=True, experience=True, stream=True), MAC_metrics( minibatch=True, epoch=True, experience=True), loggers=[interactive_logger, text_logger, csv_logger], collect_all=True) # collect all metrics (set to True by default) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive( model, SGD(model.parameters(), lr=0.001, momentum=0.9), CrossEntropyLoss(), train_mb_size=500, train_epochs=1, eval_mb_size=100, device=device, evaluator=eval_plugin, eval_every=1) # TRAINING LOOP print('Starting experiment...') results = [] for i, experience in enumerate(scenario.train_stream): print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) # train returns a dictionary containing last recorded value # for each metric. res = cl_strategy.train(experience, eval_streams=[scenario.test_stream]) print('Training completed') print('Computing accuracy on the whole test set') # test returns a dictionary with the last metric collected during # evaluation on that stream results.append(cl_strategy.eval(scenario.test_stream)) print(f"Test metrics:\n{results}") # Dict with all the metric curves, # only available when `collect_all` is True. # Each entry is a (x, metric value) tuple. # You can use this dictionary to manipulate the # metrics without avalanche. all_metrics = cl_strategy.evaluator.get_all_metrics() print(f"Stored metrics: {list(all_metrics.keys())}") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cuda', type=int, default=0, help='Select zero-indexed cuda device. -1 to use CPU.') args = parser.parse_args() main(args)