\begin{thebibliography}{10} \bibitem{Aljundi2019OnlineCL} R.~Aljundi, L.~Caccia, E.~Belilovsky, M.~Caccia, M.~Lin, L.~Charlin, and T.~Tuytelaars. \newblock Online continual learning with maximally interfered retrieval. \newblock {\em ArXiv}, abs/1908.04742, 2019. \bibitem{Aljundi2019GradientBS} R.~Aljundi, M.~Lin, B.~Goujaud, and Y.~Bengio. \newblock Gradient based sample selection for online continual learning. \newblock In {\em NeurIPS}, 2019. \bibitem{chaudhry2018riemannian} A.~Chaudhry, P.~K. Dokania, T.~Ajanthan, and P.~H. Torr. \newblock Riemannian walk for incremental learning: Understanding forgetting and intransigence. \newblock In {\em Proceedings of the European Conference on Computer Vision (ECCV)}, pages 532--547, 2018. \bibitem{kirkpatrick2017overcoming} J.~Kirkpatrick, R.~Pascanu, N.~Rabinowitz, J.~Veness, G.~Desjardins, A.~A. Rusu, K.~Milan, J.~Quan, T.~Ramalho, A.~Grabska-Barwinska, et~al. \newblock Overcoming catastrophic forgetting in neural networks. \newblock {\em Proceedings of the national academy of sciences}, 114(13):3521--3526, 2017. \bibitem{Knoblauch2020OptimalCL} J.~Knoblauch, H.~Husain, and T.~Diethe. \newblock Optimal continual learning has perfect memory and is np-hard. \newblock In {\em ICML}, 2020. \bibitem{li2017learning} Z.~Li and D.~Hoiem. \newblock Learning without forgetting. \newblock {\em IEEE transactions on pattern analysis and machine intelligence}, 40(12):2935--2947, 2017. \bibitem{Lomonaco2020RehearsalFreeCL} V.~Lomonaco, D.~Maltoni, and L.~Pellegrini. \newblock Rehearsal-free continual learning over small non-i.i.d. batches. \newblock {\em 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)}, pages 989--998, 2020. \bibitem{Lomonaco2020CVPR2C} V.~Lomonaco, L.~Pellegrini, P.~Rodr{\'i}guez, M.~Caccia, Q.~She, Y.~Chen, Q.~Jodelet, R.~Wang, Z.~Mai, D.~V{\'a}zquez, G.~I. Parisi, N.~Churamani, M.~Pickett, I.~H. Laradji, and D.~Maltoni. \newblock Cvpr 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions. \newblock {\em ArXiv}, abs/2009.09929, 2020. \bibitem{lopez2017gradient} D.~Lopez-Paz and M.~Ranzato. \newblock Gradient episodic memory for continual learning. \newblock volume~30, pages 6467--6476, 2017. \bibitem{Maltoni2019ContinuousLI} D.~Maltoni and V.~Lomonaco. \newblock Continuous learning in single-incremental-task scenarios. \newblock {\em Neural networks : the official journal of the International Neural Network Society}, 116:56--73, 2019. \bibitem{Pellegrini2020LatentRF} L.~Pellegrini, G.~Graffieti, V.~Lomonaco, and D.~Maltoni. \newblock Latent replay for real-time continual learning. \newblock {\em 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages 10203--10209, 2020. \bibitem{Pelosin2021MoreIB} F.~Pelosin and A.~Torsello. \newblock More is better: An analysis of instance quantity/quality trade-off in rehearsal-based continual learning. \newblock {\em ArXiv}, abs/2105.14106, 2021. \bibitem{Prabhu2020GDumbAS} A.~Prabhu, P.~H.~S. Torr, and P.~Dokania. \newblock Gdumb: A simple approach that questions our progress in continual learning. \newblock In {\em ECCV}, 2020. \bibitem{rebuffi2017icarl} S.-A. Rebuffi, A.~Kolesnikov, G.~Sperl, and C.~H. Lampert. \newblock icarl: Incremental classifier and representation learning. \newblock In {\em Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, pages 2001--2010, 2017. \bibitem{shin2017continual} H.~Shin, J.~K. Lee, J.~Kim, and J.~Kim. \newblock Continual learning with deep generative replay. \newblock {\em arXiv preprint arXiv:1705.08690}, 2017. \bibitem{zenke2017continual} F.~Zenke, B.~Poole, and S.~Ganguli. \newblock Continual learning through synaptic intelligence. \newblock In {\em International Conference on Machine Learning}, pages 3987--3995. PMLR, 2017. \end{thebibliography}