123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- ################################################################################
- # Copyright (c) 2021 ContinualAI. #
- # Copyrights licensed under the MIT License. #
- # See the accompanying LICENSE file for terms. #
- # #
- # Date: 24-05-2020 #
- # Author(s): Andrea Cossu #
- # E-mail: contact@continualai.org #
- # Website: avalanche.continualai.org #
- ################################################################################
- """
- This is a simple example that shows how to use the
- Tensorboard Logger
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from os.path import expanduser
- import argparse
- import torch
- from torch.nn import CrossEntropyLoss
- from torch.optim import SGD
- from torchvision import transforms
- from torchvision.datasets import MNIST
- from torchvision.transforms import ToTensor, RandomCrop
- from avalanche.benchmarks import nc_benchmark
- from avalanche.logging import InteractiveLogger, TensorboardLogger
- from avalanche.training.plugins import EvaluationPlugin
- from avalanche.evaluation.metrics import forgetting_metrics, \
- confusion_matrix_metrics, accuracy_metrics, loss_metrics, \
- cpu_usage_metrics, \
- timing_metrics, gpu_usage_metrics, ram_usage_metrics, disk_usage_metrics, \
- MAC_metrics
- from avalanche.models import SimpleMLP
- from avalanche.training.strategies import Naive
- def main(args):
- # --- CONFIG
- device = torch.device(f"cuda:{args.cuda}"
- if torch.cuda.is_available() and
- args.cuda >= 0 else "cpu")
- # ---------
- # --- TRANSFORMATIONS
- train_transform = transforms.Compose([
- RandomCrop(28, padding=4),
- ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])
- test_transform = transforms.Compose([
- ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])
- # ---------
- # --- SCENARIO CREATION
- mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
- train=True, download=True, transform=train_transform)
- mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
- train=False, download=True, transform=test_transform)
- scenario = nc_benchmark(
- mnist_train, mnist_test, 5, task_labels=False, seed=1234)
- # ---------
- # MODEL CREATION
- model = SimpleMLP(num_classes=scenario.n_classes)
- interactive_logger = InteractiveLogger()
- tensorboard_logger = TensorboardLogger()
- eval_plugin = EvaluationPlugin(
- accuracy_metrics(
- minibatch=True, epoch=True, epoch_running=True,
- experience=True, stream=True),
- loss_metrics(
- minibatch=True, epoch=True, epoch_running=True,
- experience=True, stream=True),
- forgetting_metrics(experience=True, stream=True),
- confusion_matrix_metrics(stream=True),
- cpu_usage_metrics(
- minibatch=True, epoch=True, experience=True, stream=True),
- timing_metrics(
- minibatch=True, epoch=True, experience=True, stream=True),
- ram_usage_metrics(
- every=0.5, minibatch=True, epoch=True, experience=True,
- stream=True),
- gpu_usage_metrics(
- args.cuda, every=0.5, minibatch=True, epoch=True,
- experience=True, stream=True),
- disk_usage_metrics(
- minibatch=True, epoch=True, experience=True, stream=True),
- MAC_metrics(
- minibatch=True, epoch=True, experience=True),
- loggers=[interactive_logger, tensorboard_logger]
- )
- # CREATE THE STRATEGY INSTANCE (NAIVE)
- cl_strategy = Naive(
- model, SGD(model.parameters(), lr=0.001, momentum=0.9),
- CrossEntropyLoss(), train_mb_size=100, train_epochs=4, eval_mb_size=100,
- device=device, evaluator=eval_plugin)
- # TRAINING LOOP
- print('Starting experiment...')
- results = []
- for experience in scenario.train_stream:
- print("Start of experience: ", experience.current_experience)
- print("Current Classes: ", experience.classes_in_this_experience)
- cl_strategy.train(experience)
- print('Training completed')
- print('Computing accuracy on the whole test set')
- results.append(cl_strategy.eval(scenario.test_stream))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--cuda', type=int, default=0,
- help='Select zero-indexed cuda device. -1 to use CPU.')
- args = parser.parse_args()
- main(args)
|