|
@@ -0,0 +1,206 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+
|
|
|
+"""webcam_demo: A live webcam stream with overlayed information."""
|
|
|
+
|
|
|
+import sys
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import tensorflow as tf
|
|
|
+import collections
|
|
|
+
|
|
|
+import os
|
|
|
+import six.moves.urllib as urllib
|
|
|
+import tarfile
|
|
|
+import time
|
|
|
+
|
|
|
+from threading import Thread
|
|
|
+from queue import Queue
|
|
|
+
|
|
|
+from object_detection.utils import label_map_util
|
|
|
+from object_detection.utils import visualization_utils as vis_util
|
|
|
+
|
|
|
+# What model to download.
|
|
|
+#MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
|
|
|
+MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
|
|
|
+#MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017'
|
|
|
+MODEL_FILE = MODEL_NAME + '.tar.gz'
|
|
|
+DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
|
|
|
+
|
|
|
+# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
|
+PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
|
|
|
+
|
|
|
+# List of the strings that is used to add correct label for each box.
|
|
|
+PATH_TO_LABELS = os.path.join('/home/brust/repos/models/research/object_detection', 'data', 'mscoco_label_map.pbtxt')
|
|
|
+
|
|
|
+NUM_CLASSES = 90
|
|
|
+
|
|
|
+
|
|
|
+class FileVideoStream:
|
|
|
+ def __init__(self, device=0, queue_size=2):
|
|
|
+ self.stream = cv2.VideoCapture(device)
|
|
|
+ ret, _ = self.stream.read()
|
|
|
+ if not ret:
|
|
|
+ print('Error: read() returned false. IsOpened: %r' % (self.stream.isOpened()))
|
|
|
+
|
|
|
+ self.stopped = not ret
|
|
|
+ self.Q = Queue(maxsize=queue_size)
|
|
|
+
|
|
|
+ def start(self):
|
|
|
+ t = Thread(target=self.update, args=())
|
|
|
+ t.daemon = True
|
|
|
+ t.start()
|
|
|
+ self.running_thread = t
|
|
|
+ return self
|
|
|
+
|
|
|
+ def update(self):
|
|
|
+ while True:
|
|
|
+ if self.stopped:
|
|
|
+ return
|
|
|
+ else:
|
|
|
+ ret, frame = self.stream.read()
|
|
|
+ if not ret:
|
|
|
+ self.stop()
|
|
|
+ return
|
|
|
+
|
|
|
+ if not self.Q.full():
|
|
|
+ for i in range(1):
|
|
|
+ self.Q.put(frame)
|
|
|
+
|
|
|
+ else:
|
|
|
+ self.Q.get()
|
|
|
+ self.Q.put(frame)
|
|
|
+ time.sleep(0)
|
|
|
+
|
|
|
+ def read(self):
|
|
|
+ return self.Q.get()
|
|
|
+
|
|
|
+ def more(self):
|
|
|
+ return self.Q.qsize() > 0
|
|
|
+
|
|
|
+ def stop(self):
|
|
|
+ self.stopped = True
|
|
|
+
|
|
|
+ def close(self):
|
|
|
+ self.stop()
|
|
|
+ self.running_thread.join()
|
|
|
+ self.stream.release()
|
|
|
+
|
|
|
+def main(cam_id):
|
|
|
+ time.time()
|
|
|
+ frames = 0
|
|
|
+ if not os.path.exists(MODEL_FILE):
|
|
|
+ print('Downloading model...')
|
|
|
+ opener = urllib.request.URLopener()
|
|
|
+ opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
|
|
|
+ tar_file = tarfile.open(MODEL_FILE)
|
|
|
+ for file in tar_file.getmembers():
|
|
|
+ file_name = os.path.basename(file.name)
|
|
|
+ if 'frozen_inference_graph.pb' in file_name:
|
|
|
+ tar_file.extract(file, os.getcwd())
|
|
|
+
|
|
|
+ detection_graph = tf.Graph()
|
|
|
+ with detection_graph.as_default():
|
|
|
+ od_graph_def = tf.GraphDef()
|
|
|
+ with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
|
+ serialized_graph = fid.read()
|
|
|
+ od_graph_def.ParseFromString(serialized_graph)
|
|
|
+ tf.import_graph_def(od_graph_def, name='')
|
|
|
+
|
|
|
+ label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
|
+ categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
|
+ use_display_name=True)
|
|
|
+ category_index = label_map_util.create_category_index(categories)
|
|
|
+
|
|
|
+ def load_image_into_numpy_array(image):
|
|
|
+ if isinstance(image.size, collections.Sequence):
|
|
|
+ (im_width, im_height) = image.size
|
|
|
+ return np.array(image.getdata(), dtype=np.uint8).reshape((im_height, im_width, 3))
|
|
|
+ else:
|
|
|
+ im_height = image.shape[0]
|
|
|
+ im_width = image.shape[1]
|
|
|
+ return np.array(image).reshape((im_height, im_width, 3))
|
|
|
+
|
|
|
+ # For the sake of simplicity we will use only 2 images:
|
|
|
+ # image1.jpg
|
|
|
+ # image2.jpg
|
|
|
+ # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
|
|
|
+ PATH_TO_TEST_IMAGES_DIR = 'test_images'
|
|
|
+ TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3)]
|
|
|
+
|
|
|
+ # Size, in inches, of the output images.
|
|
|
+ IMAGE_SIZE = (12, 8)
|
|
|
+
|
|
|
+
|
|
|
+ with detection_graph.as_default():
|
|
|
+ with tf.Session(graph=detection_graph) as sess:
|
|
|
+
|
|
|
+ cap = FileVideoStream(cam_id).start()
|
|
|
+
|
|
|
+ if cap.stopped:
|
|
|
+ print('Error: Stream is not available')
|
|
|
+ quit(-1)
|
|
|
+
|
|
|
+ # Definite input and output Tensors for detection_graph
|
|
|
+ image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
+ # Each box represents a part of the image where a particular object was detected.
|
|
|
+ detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
|
+ # Each score represent how level of confidence for each of the objects.
|
|
|
+ # Score is shown on the result image, together with the class label.
|
|
|
+ detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
|
+ detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
|
+ num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
|
+
|
|
|
+ first = time.time()
|
|
|
+ last = first
|
|
|
+
|
|
|
+ print("Running...")
|
|
|
+ while True:
|
|
|
+ now = time.time()
|
|
|
+ diff = now - last
|
|
|
+ last = now
|
|
|
+ fps_string = "FPS: %02.1f" % (1.0 / diff)
|
|
|
+
|
|
|
+ frame = cap.read()
|
|
|
+
|
|
|
+ rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ small = cv2.resize(rgb, (128, 128))
|
|
|
+ # pilim = Image.fromarray(rgb)
|
|
|
+ # pilim_small = pilim.resize((128, 128), resample=Image.LANCZOS)
|
|
|
+
|
|
|
+ # image_np = load_image_into_numpy_array(pilim)
|
|
|
+ image_np_small = load_image_into_numpy_array(rgb)
|
|
|
+ # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
|
+ image_np_small_expanded = np.expand_dims(image_np_small, axis=0)
|
|
|
+ # Actual detection.
|
|
|
+ if True:
|
|
|
+ (boxes, scores, classes, num) = sess.run(
|
|
|
+ [detection_boxes, detection_scores, detection_classes, num_detections],
|
|
|
+ feed_dict={image_tensor: image_np_small_expanded})
|
|
|
+
|
|
|
+ vis_util.visualize_boxes_and_labels_on_image_array(
|
|
|
+ frame,
|
|
|
+ np.squeeze(boxes),
|
|
|
+ np.squeeze(classes).astype(np.int32),
|
|
|
+ np.squeeze(scores),
|
|
|
+ category_index,
|
|
|
+ use_normalized_coordinates=True,
|
|
|
+ line_thickness=8)
|
|
|
+
|
|
|
+ #bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
|
|
|
+ cv2.putText(frame, fps_string, (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)
|
|
|
+ cv2.putText(frame, "Elapsed time: %02.1fs" % (now - first), (0, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)
|
|
|
+ cv2.imshow('Webcam Demo', frame)
|
|
|
+ frames += 1
|
|
|
+
|
|
|
+ if (cv2.waitKey(1) & 0xFF == ord('q')): # or (now - first) >= 20.0:
|
|
|
+ print("Benchmark done. FPS avg: %02.1f" % (float(frames) / (now - first)))
|
|
|
+ print("Time per frame: %.1f ms" % (1000.0 * (float(now - first) / float(frames))))
|
|
|
+ print("Elapsed time: %02.1fs" % (now - first))
|
|
|
+ break
|
|
|
+
|
|
|
+ cap.close()
|
|
|
+ cv2.destroyAllWindows()
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ cam_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0
|
|
|
+ main(cam_id)
|