123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- #!/usr/bin/env python
- """webcam_demo: A live webcam stream with overlayed information."""
- import sys
- import cv2
- import numpy as np
- import tensorflow as tf
- import collections
- import os
- import six.moves.urllib as urllib
- import tarfile
- import time
- from threading import Thread
- from queue import Queue
- from object_detection.utils import label_map_util
- from object_detection.utils import visualization_utils as vis_util
- # What model to download.
- #MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
- MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
- #MODEL_NAME = 'faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017'
- MODEL_FILE = MODEL_NAME + '.tar.gz'
- DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
- NUM_CLASSES = 90
- class FileVideoStream:
- def __init__(self, device=0, queue_size=2):
- self.stream = cv2.VideoCapture(device)
- ret, _ = self.stream.read()
- if not ret:
- print('Error: read() returned false. IsOpened: %r' % (self.stream.isOpened()))
- self.stopped = not ret
- self.Q = Queue(maxsize=queue_size)
- def start(self):
- t = Thread(target=self.update, args=())
- t.daemon = True
- t.start()
- self.running_thread = t
- return self
- def update(self):
- while True:
- if self.stopped:
- return
- else:
- ret, frame = self.stream.read()
- if not ret:
- self.stop()
- return
- if not self.Q.full():
- for i in range(1):
- self.Q.put(frame)
- else:
- self.Q.get()
- self.Q.put(frame)
- time.sleep(0)
- def read(self):
- return self.Q.get()
- def more(self):
- return self.Q.qsize() > 0
- def stop(self):
- self.stopped = True
- def close(self):
- self.stop()
- self.running_thread.join()
- self.stream.release()
- def main(cam_id):
- time.time()
- frames = 0
- if not os.path.exists(MODEL_FILE):
- print('Downloading model...')
- opener = urllib.request.URLopener()
- opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
- tar_file = tarfile.open(MODEL_FILE)
- for file in tar_file.getmembers():
- file_name = os.path.basename(file.name)
- if 'frozen_inference_graph.pb' in file_name:
- tar_file.extract(file, os.getcwd())
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
- use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
- def load_image_into_numpy_array(image):
- if isinstance(image.size, collections.Sequence):
- (im_width, im_height) = image.size
- return np.array(image.getdata(), dtype=np.uint8).reshape((im_height, im_width, 3))
- else:
- im_height = image.shape[0]
- im_width = image.shape[1]
- return np.array(image).reshape((im_height, im_width, 3))
- # For the sake of simplicity we will use only 2 images:
- # image1.jpg
- # image2.jpg
- # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
- PATH_TO_TEST_IMAGES_DIR = 'test_images'
- TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3)]
- # Size, in inches, of the output images.
- IMAGE_SIZE = (12, 8)
- with detection_graph.as_default():
- with tf.Session(graph=detection_graph) as sess:
- cap = FileVideoStream(cam_id).start()
- if cap.stopped:
- print('Error: Stream is not available')
- quit(-1)
- # Definite input and output Tensors for detection_graph
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- # Each box represents a part of the image where a particular object was detected.
- detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- # Each score represent how level of confidence for each of the objects.
- # Score is shown on the result image, together with the class label.
- detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
- detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- first = time.time()
- last = first
- cv2.namedWindow("Webcam Demo", cv2.WND_PROP_FULLSCREEN)
- cv2.setWindowProperty("Webcam Demo",cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN)
- print("Running...")
- while True:
- now = time.time()
- diff = now - last
- last = now
- fps_string = "FPS: %02.1f" % (1.0 / diff)
- frame = cap.read()
- rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- small = cv2.resize(rgb, (128, 128))
- # pilim = Image.fromarray(rgb)
- # pilim_small = pilim.resize((128, 128), resample=Image.LANCZOS)
- # image_np = load_image_into_numpy_array(pilim)
- image_np_small = load_image_into_numpy_array(rgb)
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
- image_np_small_expanded = np.expand_dims(image_np_small, axis=0)
- # Actual detection.
- if True:
- (boxes, scores, classes, num) = sess.run(
- [detection_boxes, detection_scores, detection_classes, num_detections],
- feed_dict={image_tensor: image_np_small_expanded})
- vis_util.visualize_boxes_and_labels_on_image_array(
- frame,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- use_normalized_coordinates=True,
- line_thickness=8)
- #bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
- cv2.putText(frame, fps_string, (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)
- cv2.putText(frame, "Elapsed time: %02.1fs" % (now - first), (0, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 255)
- cv2.imshow('Webcam Demo', frame)
- frames += 1
- if (cv2.waitKey(1) & 0xFF == ord('q')): # or (now - first) >= 20.0:
- print("Benchmark done. FPS avg: %02.1f" % (float(frames) / (now - first)))
- print("Time per frame: %.1f ms" % (1000.0 * (float(now - first) / float(frames))))
- print("Elapsed time: %02.1fs" % (now - first))
- break
- cap.close()
- cv2.destroyAllWindows()
- if __name__ == "__main__":
- cam_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0
- main(cam_id)
|