# Approach 3: Local features # This script is used for calculating BOW features of Motion images # using a BOW vocabulary. # See train_bow.py for training. import argparse import os import numpy as np from sklearn import svm from py.Dataset import Dataset from py.LocalFeatures import generate_bow_features def main(): parser = argparse.ArgumentParser(description="BOW train script") parser.add_argument("dataset_dir", type=str, help="Directory of the dataset containing all session folders") parser.add_argument("session_name", type=str, help="Name of the session to use for Lapse images (e.g. marten_01)") parser.add_argument("--clusters", type=int, help="Number of clusters / BOW vocabulary size", default=1024) parser.add_argument("--step_size", type=int, help="DSIFT keypoint step size. Smaller step size = more keypoints.", default=30) parser.add_argument("--keypoint_size", type=int, help="DSIFT keypoint size. Defaults to step_size.", default=-1) parser.add_argument("--include_motion", action="store_true", help="Include motion images for training.") parser.add_argument("--random_prototypes", action="store_true", help="Pick random prototype vectors instead of doing kmeans.") args = parser.parse_args() if args.keypoint_size <= 0: args.keypoint_size = args.step_size print(f"Using keypoint size {args.keypoint_size} with step size {args.step_size}.") ds = Dataset(args.dataset_dir) session = ds.create_session(args.session_name) save_dir = f"./bow_train_NoBackup/{session.name}" suffix = "" if args.include_motion: suffix += "_motion" print("Including motion data for prototype selection!") if args.random_prototypes: suffix += "_random" print("Picking random prototypes instead of using kmeans!") dictionary_file = os.path.join(save_dir, f"bow_dict_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy") train_feat_file = os.path.join(save_dir, f"bow_train_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy") eval_file = os.path.join(save_dir, f"bow_eval_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.csv") if not os.path.isfile(dictionary_file): print(f"ERROR: BOW dictionary missing! ({dictionary_file})") elif not os.path.isfile(train_feat_file): print(f"ERROR: Train data file missing! ({train_feat_file})") elif os.path.isfile(eval_file): print(f"ERROR: Eval file already exists! ({eval_file})") else: print(f"Loading dictionary from {dictionary_file}...") dictionary = np.load(dictionary_file) print(f"Loading training data from {train_feat_file}...") train_data = np.load(train_feat_file).squeeze() print(f"Fitting one-class SVM...") clf = svm.OneClassSVM().fit(train_data) print("Evaluating...") with open(eval_file, "a+") as f: for filename, feat in generate_bow_features(list(session.generate_motion_images()), dictionary, kp_step=args.step_size, kp_size=args.keypoint_size): y = clf.decision_function(feat)[0] f.write(f"{filename},{y}\n") f.flush() print("Complete!") if __name__ == "__main__": main()