# Approach 3: Local features # This script is used for generating a BOW vocabulary using # densely sampeled SIFT features on Lapse images. # See eval_bow.py for evaluation. import argparse import os import numpy as np from py.Dataset import Dataset from py.LocalFeatures import extract_descriptors, generate_dictionary_from_descriptors, generate_bow_features def main(): parser = argparse.ArgumentParser(description="BOW train script") parser.add_argument("dataset_dir", type=str, help="Directory of the dataset containing all session folders") parser.add_argument("session_name", type=str, help="Name of the session to use for Lapse images (e.g. marten_01)") parser.add_argument("--clusters", type=int, help="Number of clusters / BOW vocabulary size", default=1024) args = parser.parse_args() ds = Dataset(args.dataset_dir) session = ds.create_session(args.session_name) save_dir = f"./bow_train_NoBackup/{session.name}" # Lapse DSIFT descriptors lapse_dscs_file = os.path.join(save_dir, "lapse_dscs.npy") dictionary_file = os.path.join(save_dir, f"bow_dict_{args.clusters}.npy") train_feat_file = os.path.join(save_dir, f"bow_train_{args.clusters}.npy") if os.path.isfile(lapse_dscs_file): if os.path.isfile(dictionary_file): # if dictionary file already exists, we don't need the lapse descriptors print(f"{lapse_dscs_file} already exists, skipping lapse descriptor extraction...") else: print(f"{lapse_dscs_file} already exists, loading lapse descriptor from file...") lapse_dscs = np.load(lapse_dscs_file) else: # Step 1 - extract dense SIFT descriptors print("Extracting lapse descriptors...") lapse_dscs = extract_descriptors(list(session.generate_lapse_images())) os.makedirs(save_dir, exist_ok=True) np.save(lapse_dscs_file, lapse_dscs) # BOW dictionary if os.path.isfile(dictionary_file): print(f"{dictionary_file} already exists, loading BOW dictionary from file...") dictionary = np.load(dictionary_file) else: # Step 2 - create BOW dictionary from Lapse SIFT descriptors print(f"Creating BOW vocabulary with {args.clusters} clusters...") dictionary = generate_dictionary_from_descriptors(lapse_dscs, args.clusters) np.save(dictionary_file, dictionary) # Extract Lapse BOW features using vocabulary (train data) if os.path.isfile(train_feat_file): print(f"{train_feat_file} already exists, skipping lapse BOW feature extraction...") else: # Step 3 - calculate training data (BOW features of Lapse images) print(f"Extracting BOW features from Lapse images...") features = list(generate_bow_features(list(session.generate_lapse_images()), dictionary)) np.save(train_feat_file, features) print("Complete!") if __name__ == "__main__": main()