{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Anomaly Detection in Camera Trap Images - Implementation\n", "This is an index file for the implementation part of my bachelor thesis 'Anomaly Detection in Camera Trap Images'." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Approach 1: Lapse Frame Differencing\n", " - *approach1a_basic_frame_differencing.ipynb*: Implementation.\n", " - *approach1b_histograms.ipynb*: Discarded similar approach using histogram distribution to compare Lapse and Motion images.\n", "\n", "## Approach 2: Median Frame Differencing\n", " - *approach2_background_estimation.ipynb*: Implementation.\n", "\n", "## Approach 3: Bag of Visual Words\n", "### Notebooks\n", " - *approach3_local_features.ipynb*: Visualizations and evaluation of single trainings.\n", " - *approach3_boxplot.ipynb*: Boxplot to compare multiple vocabularies generated using random prototypes.\n", "\n", "### Scripts\n", " - *train_bow.py*: Training of BOW model\n", " - *eval_bow.py*: Evaluation of BOW model\n", "\n", "## Approach 4: Autoencoder\n", "### Notebooks\n", " - *approach4_autoencoder.ipynb*: Visualizations and evaluation of single trainings.\n", " - *approach4_boxplot.ipynb*: Boxplot to compare different trainings.\n", "\n", "### Scripts\n", " - *train_autoencoder.py*: Training of autoencoder\n", " - *eval_autoencoder.py*: Evaluation of trained autoencoder\n", "\n", "## Helpers\n", " - *analyze_dataset.ipynb*: Dataset statistics, check for duplicates\n", " - *analyze_labels.ipynb*: Annotation statistics (number of normal/anomalous motion samples)\n", " - *check_csv.ipynb*: Loads annotations from *Kadaverbilder_leer.csv*\n", "\n", "## Early experiments\n", " - *deprecated/experiments.ipynb*: Early experiments with lapse images and frame differencing" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.4 ('pytorch-gpu')", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.10.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "17cd5c528a3345b75540c61f907eece919c031d57a2ca1e5653325af249173c9" } } }, "nbformat": 4, "nbformat_minor": 2 }