# Experimental architecture; not used for paper results. # Convolutional with 6 conv layers + 1 dense layer per encoder and decoder. # Dropout, relu on hidden layers, tanh on output layer # Allows any number of latent features # More parameters than Autoencoder2 from torch import nn class Autoencoder(nn.Module): def __init__(self, dropout=0.1, latent_features=512): super(Autoencoder, self).__init__() self.encoder = nn.Sequential( nn.Dropout(dropout), nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.Flatten(), nn.Linear(1024, latent_features), nn.ReLU(True), ) self.decoder = nn.Sequential( nn.Linear(512, 1024), nn.ReLU(True), nn.Unflatten(1, (64, 4, 4)), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=6, stride=2, padding=2), nn.ReLU(True), nn.Dropout(dropout), nn.ConvTranspose2d(64, 64, kernel_size=8, stride=2, padding=3), nn.ReLU(True), nn.Dropout(dropout), nn.Conv2d(64, 3, kernel_size=3, stride=1, padding="same"), nn.Tanh(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x