# Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena # Approach 4: Autoencoder # This script is used for evaluating an autoencoder on Motion and Lapse images. # See train_autoencoder.py for training. import argparse import os from glob import glob from tqdm import tqdm import numpy as np import torch from torch import nn from torch.autograd import Variable from torch.utils.data import DataLoader from py.FileUtils import dump from py.Dataset import Dataset from py.PyTorchData import create_dataloader from py.Autoencoder2 import Autoencoder from py.Labels import LABELS TRAIN_FOLDER = "./ae_train_NoBackup" def load_autoencoder(train_name: str, device: str = "cpu", model_number: int = -1, latent_features: int = 32): if model_number < 0: model_path = sorted(glob(f"./ae_train_NoBackup/{train_name}/model_*.pth"))[-1] else: model_path = f"./ae_train_NoBackup/{train_name}/model_{model_number:03d}.pth" print(f"Loading model from {model_path}... ", end="") model = Autoencoder(latent_features=latent_features) model.load_state_dict(torch.load(model_path, map_location=torch.device(device))) model.eval() print("Loaded!") return model def eval_autoencoder(model: Autoencoder, data_loader: DataLoader, device: str = "cpu", include_images: bool = False): losses = [] # reconstruction errors encodings = [] # latent representations for KDE labels = [] imgs = [] # input images (optional) with torch.no_grad(): model = model.to(device) criterion = nn.MSELoss() for features, batch_labels in tqdm(data_loader): features = Variable(features).to(device) labels += batch_labels # forward encoded = model.encoder(features) output_batch = model.decoder(encoded) # Calculate and save encoded representation and loss encoded_flat = encoded.detach().cpu().numpy().reshape(encoded.size()[0], -1) for input, enc, output in zip(features, encoded_flat, output_batch): encodings.append(enc) losses.append(criterion(input, output).cpu().numpy()) if include_images: imgs.append(input.cpu().numpy()) return np.array(losses), np.array(encodings), np.array(labels), np.array(imgs) def main(): parser = argparse.ArgumentParser(description="Autoencoder eval script - evaluates Motion and Lapse images of session") parser.add_argument("name", type=str, help="Name of the training session (name of the save folder)") parser.add_argument("dataset_folder", type=str, help="Path to dataset folder containing sessions") parser.add_argument("session", type=str, help="Session name") parser.add_argument("--device", type=str, help="PyTorch device to train on (cpu or cuda)", default="cpu") parser.add_argument("--batch_size", type=int, help="Batch size (>=1)", default=32) parser.add_argument("--latent", type=int, help="Number of latent features", default=512) parser.add_argument("--model_number", type=int, help="Load model save of specific epoch (default: use latest)", default=-1) parser.add_argument("--image_transforms", action="store_true", help="Truncate and resize images (only enable if the input images have not been truncated resized to the target size already)") parser.add_argument("--include_images", action="store_true", help="Include input images in Motion eval file") args = parser.parse_args() if args.image_transforms: print("Image transforms enabled: Images will be truncated and resized.") else: print("Image transforms disabled: Images are expected to be of the right size.") ds = Dataset(args.dataset_folder) session = ds.create_session(args.session) # Target file names train_dir = os.path.join(TRAIN_FOLDER, args.name) save_dir = os.path.join(train_dir, "eval") os.makedirs(save_dir, exist_ok=True) suffix = "_withimgs" if args.include_images else "" lapse_eval_file = os.path.join(save_dir, f"{session.name}_lapse.pickle") motion_eval_file = os.path.join(save_dir, f"{session.name}_motion{suffix}.pickle") # Load model model = load_autoencoder(args.name, args.device, args.model_number, latent_features=args.latent) # Check CUDA print("Is CUDA available:", torch.cuda.is_available()) if torch.cuda.is_available() and args.device != "cuda": print("WARNING: CUDA is available but not activated! Use '--device cuda'.") print(f"Devices: ({torch.cuda.device_count()})") for i in range(torch.cuda.device_count()): print(torch.cuda.get_device_name(i)) # Lapse eval if os.path.isfile(lapse_eval_file): print(f"Eval file for Lapse already exists ({lapse_eval_file}) Skipping Lapse evaluation...") else: print("Creating lapse data loader... ", end="") lapse_loader = create_dataloader(session.get_lapse_folder(), batch_size=args.batch_size, skip_transforms=not args.image_transforms, shuffle=False) results = eval_autoencoder(model, lapse_loader, args.device) dump(lapse_eval_file, results) print(f"Results saved to {lapse_eval_file}!") # Motion eval def is_labeled(filename: str) -> bool: img_nr = int(filename[-9:-4]) return (img_nr <= LABELS[session.name]["max"]) and (img_nr not in LABELS[session.name]["not_annotated"]) def labeler(filename: str) -> int: is_normal = (int(filename[-9:-4]) in LABELS[session.name]["normal"]) return 0 if is_normal else 1 if os.path.isfile(motion_eval_file): print(f"Eval file for Motion already exists ({motion_eval_file}) Skipping Motion evaluation...") else: print("Creating motion data loader... ", end="") motion_loader = create_dataloader(session.get_motion_folder(), batch_size=args.batch_size, skip_transforms=not args.image_transforms, shuffle=False, labeler=labeler, filter=is_labeled) results = eval_autoencoder(model, motion_loader, args.device, include_images=args.include_images) dump(motion_eval_file, results) print(f"Results saved to {motion_eval_file}!") print("Done.") if __name__ == "__main__": main()