{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plots of activation functions" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import norm\n", "\n", "plt.rcParams['text.usetex'] = True\n", "plt.rcParams.update({\"font.size\": 18})" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAD+CAYAAAB1LnEQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb80lEQVR4nO3deXxU9b3G8eewhC2BEAJhX4LIIms2cQeXaqvWfUExhKhRueqt2kq1td6qtcUutuotF9SExC0Xca9eW1xSrVqzse8QZJF9CRBCyPa7f2TQlAYymJk52+f9evmSZMLk+TEz55lz5sx3LGOMAACwWyu7AwAAIFFIAACHoJAAAI5AIQEAHIFCAgA4QptwXXF8fLwZOHBgi6/n4MGD6tSpU8sDuYCf1ir5a72s1ZtY64krKSnZZYzp3tRlYSukgQMHqri4uMXXU1BQoAkTJrQ8kAv4aa2Sv9bLWr2JtZ44y7I2HOsyDtkBAByBQgIAOAKFBABwhKBeQ7IsK0tSbODLwZJmGGPKwhUKAOA/zRaSZVn3G2OeaPT11ZLmq6GYAAAIiWAO2d0WKKEjSiUlWpYVG55IAAA/CuaQ3QVHHZ5LlFRujCkPTyQAgB81u4fUxGtF0yVdE544AACn2bSnUu+tr1a4P67ICvYXBA7bXSDpVWPMB8f4mSxJWZKUkJCQnJ+f3+KAFRUVio6ObvH1uIGf1ir5a72s1Zv8sNYD1Ua/+vKQ9lXV61dndVRc+5adnD1x4sQSY0xKU5cFXUjf/AXLul9SN2PM9OP9XEpKimFSw4nx01olf62XtXqT19daWV2rG579Uiu27td9yVHKuuK8Fl+nZVnHLKQTrrrAGXdZlmWd3+JkAABHqq2r150vL9DizeV6atI4ndy1ddh/53ELybKsJMuy9jZxUZkaDt8BADzGGKMH31iij1bu0COXjdSFp/SMyO9tbg8pTtLsJr6fKGld6OMAAOz2h/mrNbd4s+4+b4gmjx8Qsd973EIKnLywu/H3LMtKCvxxbrhCAQDs8cI/N+jpj9bq+tR+uuf8IRH93cG8D2l24ESGIwZLSuZ9SADgLe8v3apfvLVU5w3roccuHynLsiL6+5stpEDxPNHczwEA3Ktw/R7dnb9QY/vF6pkbktSmdeRnbzPtGwB8btW2A7olt0h9u3ZQ9pRUdYgK/xl1TaGQAMDHtpQf0pTsQrVv21p5mWnq2inKtiwUEgD4VHlltdKzC3XwcK1yM9PUt2tHW/ME9XlIAABvqaqp0y25xdq4u1K5mWka3quz3ZEoJADwm9q6et31ygKVbNyrZyYl6bTB3eyOJIlDdgDgK8YYPfTWMs1fvl0PXzJCF4/uZXekb1BIAOAjT324Vq8UbtS0CYOVccYgu+P8CwoJAHzilcKNevKD1boqqa9+cuFQu+P8GwoJAHxg/vLt+tkbSzRhaHf95qpREZ/CEAwKCQA8rmTDHt35cqlG9emiP9+YpLY2TGEIhjNTAQBCYu2OA8qcU6zesR2UnZGqjlHOPbmaQgIAj9q2r0rpzxcqqk0r5WWmqVt0O7sjHReFBAAetO9QjaZkF2p/Va1yMlLVL87eKQzBoJAAwGOqauqUlVessl0V+p/JyRrZp4vdkYLi3IOJAIATVldvdO/chfpy/R796fqxOnNIvN2RgsYeEgB4hDFGv3xnmd5bsk0/v3i4Lhvbx+5IJ4RCAgCP+HPBOuV9sUFZZyfqlrMS7Y5zwigkAPCAV4s36bd/XaXLx/bWTy8aZnec74RCAgCX+3jlDv309SU6a0i8nrh6jFq1ct4UhmBQSADgYgs27tW0l0o1vFeMZk5OVlQb927W3ZscAHyubGeFMucUqXtMO+VkpCm6nbtPnKaQAMCFduyvUnp2oVpZlvIy09Q9xtlTGILh7joFAB/aX1WjKTlF2nOwWvlZ4zUwvpPdkUKCPSQAcJHDtXW6/YUSrdl+QDMnJ2t031i7I4UMe0gA4BL19Ub3zV2kz9ft1h+uHaNzTu5ud6SQYg8JAFzAGKNH312uvyzeqge+P0xXJvW1O1LIUUgA4AKzPylTzmdfaeoZA5V1tvumMASDQgIAh3u9dLN+/X8rdfHoXnro4hGO/PjxUKCQAMDB/r56p+6ft1inJXbTH6517xSGYFBIAOBQizeX644XSzQkIUaz0pPVrk1ruyOFFYUEAA701a6DmppTpK4do5Q7NVWd27e1O1LYUUgA4DA7DxzWlJxC1RujvJvT1KNze7sjRQTvQwIAB6k4XKvMOUXasf+wXr71VA3uHm13pIihkADAIapr63XHiyVavnW/nk1P1rj+Xe2OFFEcsgMAB6ivN7p/3iJ9umaXfn3lKJ07LMHuSBFHIQGAA8x4f6XeXLhFP7lwqK5N6Wd3HFtQSABgs+c+LdOsT8qUftoATZsw2O44tqGQAMBGby/aosfeXaHvj+yphy89xbNTGIJBIQGATT5bu0v3zV2otEFxevK6sWrt4SkMwaCQAMAGS7/ep9teKFFifLSeTU9R+7bensIQDAoJACJs055KZeQUqXP7NsrNTFOXDt6fwhAMCgkAImh3xWGlZxeqpq5euZlp6tnFH1MYgkEhAUCEHAxMYdhSfkjPT0nRkIQYuyM5CoUEABFQU1ev/3i5VEu+3qenJ41TysA4uyM5DqODACDMjDH66WtLVLBqpx6/YpS+d0pPuyM5EntIABBmv/vbKr1Wulk/On+Ibji1v91xHItCAoAwyv38K/33x+s0Ka2//vO8IXbHcTQKCQDC5L0lW/Vf7yzTBSMS9Ohl/p7CEAwKCQDC4It1u/Wj/IVK6t9VT08apzat2dw2h38hAAixFVv3KyuvWP27ddTzU5jCECwKCQBCaPPeSmXkFKpTu4YpDLEdo+yO5Bqc9g0AIbL3YLWmZBeqsrpO824/XX1iO9gdyVUoJAAIgUPVdbo5t0ib9h7SC5lpGtqTKQwnKqhCsiwrK/DH5MD/pxtjysOSCABcprauXne9UqoFm8o188YknZrYze5IrtRsIVmWlWWMmd34a0kf6ttyAgDfMsbo528u1QcrdujRy0fqopG97I7kWsc9qcGyrNijvxcop0TLss4PVygAcIsnP1ij/KJNunPiSbpp/AC747hac2fZJUqa1UQxlQUuAwDf+mhjjZ76cI2uTemr+753st1xXO+4hWSMKZWU3MTrRYmSisMVCgCc7v2l2/TC8mqdO6yHHr9iFFMYQsAyxpzYX7CsqyU9YIz5t9eQAq8vZUlSQkJCcn5+fosDVlRUKDo6usXX4wZ+Wqvkr/WyVm9ZvbdOTxRVqW8nowdO7aR2bbxfRqG6XSdOnFhijElp6rITKqTAobsPJZ3X3Fl2KSkppri45TtRBQUFmjBhQouvxw38tFbJX+tlrd6xevsBXT3zc8VHt9M9o40u/d5EuyNFRKhuV8uyjllIJzqpYYakazjlG4AfbSk/pCnZhWrXtrVyM9MUE+X9PaNICrqQLMu6X9IMY0xZGPMAgCPtq6xRRk6hKqpqlTs1Tf3iOtodyXOCKqTAa0PzGpcRp30D8Iuqmjrdmlesr3ZValZ6skb07mx3JE8K5o2x50sqPlJGgdeRmjz+BwBeU1dv9J/5C1S0YY+enjROpw+OtzuSZx23kCzLSpQ0P/Dnoy/uGqZMAOAIxhj94q2l+uuy7Xr40hG6ZHRvuyN52nELKbBXxKt2AHzpmY/W6qUvN+r2cwZr6hmD7I7jeXweEgA0Ib9wo34/f7WuTOqj6RcNtTuOL1BIAHCUD5Zv14NvLNHZJ3fXjKtGM4UhQigkAGikZMNe3flKqUb26aKZNyapbWs2k5HCvzQABKzdUaGbc4vUs3N7ZWekqlM7PsM0kigkAJC0fX+VpmQXqk0rS7mZaYqPbmd3JN+hkAD43r5DNZqSXajyymrlZKRpQLdOdkfyJfZHAfhaVU2dsvKKtXZHhXKmpmpU3y52R/ItCgmAb9XVG907d6G+XL9Hf7xurM4a0t3uSL7GITsAvmSM0SPvLNN7S7bpZz8YrsvH9bE7ku9RSAB8aebf1yn3iw265cxBuvXsRLvjQBQSAB+aV7JZT7y/Sj8c01sP/mC43XEQQCEB8JWPV+3Q9NcW68yT4vW7a8aoVSumMDgFhQTANxZuKte0F0s1rGeMZk5OUlQbNoFOwq0BwBfW7zqozDlFio+JUs7UVMW0b2t3JByFQgLgeTsOVCk9+0tJUl7mqeoR097mRGgKhQTA0w5U1WhqTpF2HahWTkaqBsUzhcGpKCQAnlVdW6/bXyzRqm0HNHNyksb0i7U7Eo6DSQ0APKm+3ujHry7SZ2t363fXjNGEoT3sjoRmsIcEwJMef2+F3l60RfdfNFRXJ/e1Ow6CQCEB8JxnPynTc/9Yr4zTB+qOcwbbHQdBopAAeMqbC77Wr95boYtH9dJDl4zg48ddhEIC4BmfrN6pH7+6SOMT4/T7a8eoNVMYXIVCAuAJSzbv0x0vluikHtGanZ6i9m1b2x0JJ4hCAuB6G3Yf1NQ5hYrtGKXczDR1ZgqDK3HaNwBX21VxWOnZhaqtN8rPTFNCZ6YwuBV7SABc6+DhWk3NKdL2/VV6fkqqTuoRbXcktAB7SABcqaauXne8VKrlW/dr9k3JSh7Q1e5IaCH2kAC4jjFG0+ct1ierd+rxK0bqvOEJdkdCCFBIAFxnxvur9PqCr3XfBSfrutT+dsdBiFBIAFwl+x/r9T9/X6fJ4/vrznNPsjsOQohCAuAa7yzaokffXa6LTumpX/5wJFMYPIZCAuAKn6/dpfvmLlLKgK764/VjmcLgQRQSAMdbtmWfsl4o0cD4jnouPZUpDB5FIQFwtE17KpWRU6SY9m00Z2qaunRkCoNXUUgAHGvPwWpNyS7U4Zo65WamqXdsB7sjIYx4YywAR6qsrlXmnCJ9XX5IL95yqk5OiLE7EsKMPSQAjlNTV6//eKlUizeX66lJ45Q6MM7uSIgA9pAAOIoxRg++vkQfr9qpxy4fqQtP6Wl3JEQIe0gAHOX3f1utV0s26+7zhmjy+AF2x0EEUUgAHCPvi6/0zMdrdX1qP91z/hC74yDCKCQAjvDekq16+O1lOn94Dz12OVMY/IhCAmC7f5bt1o/yF2pcv1g9PSlJbVqzafIjbnUAtlq5bb9uzStWv7gOen5KqjpEMYXBrygkALb5uvyQMrKL1DGqtXIz09S1U5TdkWAjTvsGYIvyyoYpDAera/Xq7aepb9eOdkeCzdhDAhBxVTV1ujm3WBt3V+rZ9BQN69nZ7khwAPaQAERUbV297nx5gUo37tV/35Ck8Ynd7I4Eh2APCUDEGGP00FvL9MGK7Xr4khH6wahedkeCg1BIACLmTx+u0SuFGzVtwmBlnDHI7jhwGAoJQES8/OVG/fGDNboqqa9+cuFQu+PAgSgkAGH3t2Xb9PM3l2jC0O76zVWjmMKAJlFIAMKq+Ks9uuuVBRrVp4v+fGOS2jKFAcfAPQNA2KzZfkA35xard2wHZWekqmMUJ/bi2IIqJMuykizLejXcYQB4x9Z9hzQlu1BRbVopLzNN3aLb2R0JDnfcpyuWZSVJuk7SbkmJEUkEwPX2VdYoI7tI+6tqlZ81Xv3imMKA5h13D8kYU2qMmS7pgwjlAeBy1XVGt+YVq2xXhWbdlKyRfbrYHQkuwQFdACFTV280a/FhlWyv1FOTxumMk+LtjgQX4aQGACFhjNF/vb1MJdvr9NAlI/TDMb3tjgSXsYwxzf9Qw2tJzxpjkpv5uSxJWZKUkJCQnJ+f3+KAFRUVio6ObvH1uIGf1ir5a71+WOvb66r1+poand/HaPIob6/1CD/crkeEaq0TJ04sMcakNHVZSA/ZGWNmS5otSSkpKWbChAktvs6CggKF4nrcwE9rlfy1Xq+vdW7xJr2+ZrGuGNdHl/bY6+m1Nub127WxSKyVQ3YAWuSjldv1wOtLdNaQeM24arRaMYUB3xGFBOA7W7Bxr6a9VKrhvWI0c3KyotqwScF3x70HwHeybmeFMucUqUdMe+VkpCm6HSftomWCLaS4sKYA4Crb91cp/flCtbIs5WWmqXsMUxjQcs1NakiUdLUapjUkWZY1S1JJ4OQFAD60v6pGGTlF2ltZrfys8RoY38nuSPCI4xaSMaZM0hOB/wD43OHaOt2WV6I12w/o+YxUje4ba3ckeAgHfQEEpb7e6N65i/RF2W794doxOufk7nZHgsdwUgOAZhlj9MhfluvdxVv1wPeH6cqkvnZHggdRSACaNeuTMs35/CtlnjFIWWcz+B/hQSEBOK7XSjbrN/+3UpeM7qWfXzycjx9H2FBIAI6pYNUOTX9tsU4f3E2/v3aMWrWijBA+FBKAJi3aVK5pL5VqSEKMZt2UrHZtWtsdCR5HIQH4N+t3HVTmnCLFdYpS7tRUxbRva3ck+ACFBOBf7DhQpfTsL2Uk5WWmqUfn9nZHgk9QSAC+UXG4VplzirTrQLWen5KixO7++KwfOANvjAUgSaqurdcdL5ZoxdYDejY9WeP6d7U7EnyGPSQAqq83un/eIn26Zpd+feUonTsswe5I8CEKCYB+8/5Kvblwi35y4VBdm9LP7jjwKQoJ8LnnPi3T7E/KlH7aAE2bMNjuOPAxCgnwsbcWfq3H3l2h74/sqYcvPYUpDLAVhQT41D/W7NKPX12ktEFxevK6sWrNFAbYjEICfGjp1/t02wvFSoyP1rPpKWrflikMsB+FBPjMxt2VysgpUpcObZWbmaYuHZjCAGegkAAf2VVxWOnZX6qmrl55N6epZxemMMA5KCTAJw4ertXNc4q0dV+VsjNSdFKPGLsjAf+CQgJ8oKauXtNeKtWSr/fpmRuSlDwgzu5IwL9hdBDgccYYTX9tsf6+eqd+feUoXTCCKQxwJvaQAI974q+r9Hrp17rn/JM1Ka2/3XGAY6KQAA/L+Wy9Zhas0w2n9tfd551kdxzguCgkwKP+sniLHvnLcl0wIkGPXjaSKQxwPAoJ8KDP1+3Svf+7SEn9u+rpSeOYwgBXoJAAj1m+Zb9uyytR/24d9fwUpjDAPSgkwEM2761URk6hOrVro9zMNMV2jLI7EhA0TvsGPGLvwWqlZxfqUE2d5t1+uvrEdrA7EnBCKCTAAw5V1ykzt0ib9x7SC5lpGtqTKQxwHw7ZAS5XW1evO18u1cJN5Xrq+rE6NbGb3ZGA74RCAlzMGKOfvbFUH67coUcuG6mLRvayOxLwnVFIgIs9OX+1/rd4k+469yTdNH6A3XGAFqGQAJd64Z8b9NRHa3VtSl/de8HJdscBWoxCAlzo/aVb9Yu3luq8YT30+BWjmMIAT6CQAJcpXL9Hd+cv1Nh+sXrmhiS1ac3DGN7APRlwkVXbDuiW3CL17dpBz09JVYcopjDAOygkwCW2lB/SlOxCtW/bWrlT0xTXiSkM8BYKCXCB8sqGKQwHD9dqztQ09YvraHckIOSY1AA4XFVNnW7JLdbG3ZWak5mqEb072x0JCAsKCXCw2rp63fXKApVs3KunJ43T6YPj7Y4EhA2H7ACHMsboobeWaf7y7frFJSN0yejedkcCwopCAhzqqQ/X6pXCjbr9nMGaesYgu+MAYUchAQ6UX7hRT36wWlcm9dH0i4baHQeICAoJcJj5y7frwTeW6OyTu2vGVaOZwgDfoJAABynZsEd3vlyqkX26aOaNSWrLFAb4CPd2wCHW7jigm3OL1atLe2VnpKpTO06Chb9QSIADbNtXpSnZRWrTylJe5qmKj25ndyQg4igkwGb7DtUoI6dQ5ZXVmjM1Tf27MYUB/sQxAcBGVTV1ysor1rqdFcrOSNXIPl3sjgTYhkICbFJXb3Tv3IX6cv0e/en6sTprSHe7IwG24pAdYANjjH75zjK9t2Sbfn7xcF02to/dkQDbUUiADf5csE55X2zQLWcO0i1nJdodB3AECgmIsFeLN+m3f12lH47prQd/MNzuOIBjBPUakmVZWZL2BL5MNMY8Eb5IgHd9vHKHfvr6Ep15Urx+d80YtWrFFAbgiGYLKVBGMsbMC3ydaFnWLGPMbeEOB3jJgo17Ne2lUg3rGaOZk5MU1YYDFEBjwewh3WaMST7yhTGmzLKs88OYCfCcbQfrdc+cIsXHRClnaqpi2re1OxLgOMd9imZZVqykpCYuKqeUgOB8vnaXfltUJctqmMLQI6a93ZEAR2puDylRUnkT39+jhqL6INSBGnvu0zLl//OQnlr+WTh/jWPs3++ftUr+WO+hmnqt2Lpf3dpbmjM1VYPiO9kdCXCs5gopTt+ezNBYuaRuR38z8HpTliQlJCSooKCgReG+2lCjNqrT4YP7W3Q9buGntUr+WG9rWbpuaJTGdzusPWsXqmCt3YnCr6KiosWPfbdgraEV0kkNxpjZkmZLUkpKipkwYUKLrm+CpIKCArX0etzCT2uV/LVe1upNrDW0gjnNJ66J78VK2h3aKAAAP2uukIrVUD5Hi5NUGvI0AADfOm4hGWPKJZUFzrZrLNYYE9YTGgAA/hLMIbsZkh448oVlWWE/uw4A4D/NntRgjJltWVZW4H1HsWoYHcSUBgBASAV1ll3g7DkAAMKGYVoAAEegkAAAjmAZY8JzxZa1U9KGEFxVvKRdIbgeN/DTWiV/rZe1ehNrPXEDjDHdm7ogbIUUKpZlFRtjUuzOEQl+Wqvkr/WyVm9iraHFITsAgCNQSAAAR3BDIfnplHM/rVXy13pZqzex1hBy/GtIAAB/cMMeEgDABygkAIAjhPQD+iIh8Km0sYEvB0uaYYwpsy9R+ATWKknJgf9PD0xg96TA4N4HjDHX2J0lVAK34ZFPXU40xjxhZ55w8uLtdyx+emxGcpvrqkKyLOv+xg9oy7KuljRfDf9InmJZVlbjGYKBO8WH+vYB4BmBDdl1avjQx0Sb44TMkY2WMWZe4OtEy7JmeW04sVdvv2Px2WMzottctx2yuy3wD3JEqaTEJj6vydWaWk/gAZAYmLruKcaYUmPMdHnvY01ua7zhCjyr5PZzMb89NhXhba7bCumCI882AxIllXtwVzlR0qwmbvQy+eAZqBcEbrukJi4q9+iGyy/89tiM6DbXVYXUxHHL6ZI8d7zaGFMqKbmJGz1RDR8rD+dLlFTexPf3qOmiggv47bEZ6W2uq15DOiKwC3mBGl5c8+RhgsAd/xuBNZcd/X04Vpy+PZmhsXJJ3SIbBaHkx8dmpLa5rtpDOsIYMy/wwnCSZVkz7M4TboHDAw9IOs/mKAAa8ctjM1LbXFv2kAJtG+yZRtcc63ilMeYJy7L2WpY136l7SiFa64zjXOYYobpdPSSuie/FquFsNHiDKx6boRLuba4thRR4kWxesz/YSODU0g+NMV2PuqhMDbuSjiyk77LWxizLul8uea9VS9fqMcX69r0bjcWp4UwluJybHpvfhR3bXDcdsotT08P9EiWti3CWiAi8v2Fe4zs8Z2i5Q+AZc1kTZ2PFOnVvHsHzyWMz4ttc1xRS4EH8L4c6Ag0uSXMjnyi8Anfu4iN3eMuyYj14hz9aU4e43GyGGl5fkPTN/dXLZeS1269Jfnls2rHNddW078CzzaxG3/Lk6CDLso73DKSr145XB9Z7tRre7Z+khmdlJY3fVOpWgWfSZWo4fOfJ0UFevv2O5sPHZqwiuM11VSEBALzLNYfsAADeRiEBAByBQgIAOAKFBABwBAoJAOAIFBIAwBEoJACAI1BIAABHoJAAAI7w/zkYQbi69MRVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(7, 4))\n", "x = np.linspace(-3, 3, 200)\n", "plt.plot(x, np.maximum(x, 0))\n", "plt.grid()\n", "plt.savefig(f\"relu.png\", bbox_inches=\"tight\")\n", "plt.savefig(f\"relu.pdf\", bbox_inches=\"tight\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tanh" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAD+CAYAAACqYAsPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAi60lEQVR4nO3deXxU5b0/8M8zk5nsYUhCEvYwbGEVQgDRnzb+RLSoV1tRb7FWcQnt7e/2trZC0du6tf4u9HaxSpVoK+6KaK/oT6siRq0KGiKLAQLJQFizM1kmmcz2/P6YExziBBMyZ87MOZ/36zWv5MzMGb4PkzOfOc95znOElBJERERGYtK6ACIiomhj+BERkeEw/IiIyHAYfkREZDgMPyIiMpwErQuIhOzsbJmfnz/o13G5XEhNTR18QXHASG0FjNVetlWf2NaB2759e5OUcli4x3QRfvn5+SgvLx/065SVlaG4uHjwBcUBI7UVMFZ72VZ9YlsHTghR29dj7PYkIiLDYfgREZHhMPyIiMhwVD3mJ4QoBLBKSnltP59fAqBFWbRLKdeoVhwRERmWKuGnhN71AJoB2Pu5TgkASCk3Kst2IcQ6KeVyNWokIiLjUiX8pJQVACpCQrA/lksp54S8hkMIsVCN+oiIyNhi4pifEMIGoDDMQ04GIBERRVqsnOdnB+AMc38LgqG4OarVEBHRgEgp4fEH4PEFb16/DP7u96M7dNkXgNcfQLcvAI8/AJ8/AJ9fwheQ8AWCz9t/0IsF/8uPxASzavXGSvhl4quBLqGcALLCraAcIywBgNzcXJSVlQ26iI6Ojoi8TjwwUlsBY7WXbdWnSLVVSglPAOj0SnT6en5KdHqBLp9Etx/o9gd/evynL3f7gut2+yW6fcHHvQHAGwD8Eb407AVbPkSaVUT2RUPESvgNmJSyFEApABQVFclIzAbAGRT0y0jtZVv1qa+2dnp8aO7woKmjG80dHrS4PGhyBX9v7uhGs8uD1i4v2rq8aHP70NblhS/wzUllTTAhxWpGisWMZGvwNiQ1AclWM1KU5WSLGUkWM6wJJljMJiQmmGA1m04tWxOUm9kEa4KA1dzzXAFrQvD5FrMJZpP46qfJhE8/+ScuvbgYQhgj/DLD3GdDcMQoEZHhdHn8ONzSieOtXfjgiBcV71ThRKtbuXWhrtUNl8cfdt1UqxlZaYnITLUiM9WK/KxUZCQnID3JgowkCzKSE5SfFmQk9dyfcCrUEszaDQlJShCqBh8QO+FXjmDQ9ZYJoCK6pRARRY/b60d1QwdqmztxqNmF2mYXDjV3orbZhfq27tOea9pTjZz0JOQNScLkvHRcOGkYctKTkJVmRXaaFVmpichSfiZb1TtepgcxEX5SSqcQwiGEsEkpnSEP2aSUHOxCRHEvEJA43NKJfXXtqKprx766NlTVteNQswuhvZDD0hORn5WCCyYOQ35WCsZkpWKkLRmH9nyBqxYVa7pHpidqh1+4rkwIIewAVgO4PSTsVgNYBWCl8hyO8iSiuCSlxPFWN3YcdmLHkZPYccSJL4+1ocsb7KIUAhibmYLJeem44pwRmJybDvuwVIzJTEFqYviP5faDJgZfBKk1w4sdwBIET3AvFEKsA7BdGaQCBLs4FyIYjk4gOIBFCFGinNdnQ3B6M87uQkQxT0qJAw0d+LSmGZ/WNKO89iSaOoJdltYEE6aNyMD1c0djyvB0FORlYGJuGlKsMdHxZlhqzfDiALBGuYV7vALA0DD3l4Z5OhFRzDnu7ML7VQ34pKYZ2xzNaOrwAABG2pJx4cRszBpjw6zRNhTkZcCawD22WMOvHkRE/RAISOw61oote+uxeW8D9pxoAwDkZSThgonDsMCehQXjszA6M0XjSqk/GH5ERH2QUqLi8Em8tuM43vqyDo3t3TAJoGhsJn757QJcXJCDCTlpqg/Lp8hj+BER9bK/vh3/88UxbNp5HEdPdiExwYSLp+Tgkqm5KJ6Ug6GpVq1LpEFi+BERIThTyqYdx/Hstlp8eawNZpPA+ROyccclk7BoWh7S+hiFSfGJ7yYRGVp1Qwee3VqLVyqOot3tQ0FeOu69ciounzkCw9ITtS6PVMLwIyLDkVLig/2NKP3QgU9qmmExCyyeMRzfP3csisYO5TE8A2D4EZFh+PwBvPllHR4tq8HeE23Iy0jCnZdOxvVzRyM7jXt5RsLwIyLdCwQk3th9An96dz8cTS7Yh6VizZKZuHrWSJ6DZ1AMPyLSLSkl3tvbgP9+pwr76toxOTcdj95QiEun5cFkYtemkTH8iEiXKo+34v7X92DbwRbkZ6XgoX+dhStmjoCZoUdg+BGRzjS2d+P371ThpfIjsCVb8MDV0/Gvc0fDwkmhKQTDj4h0IRCQeKn8CB58cy+6PH7ccv44/OTiiRiSbNG6NIpBDD8iinvVDe2469Uv8dmhFpxrz8Rvrp6BCTlpWpdFMYzhR0RxKyAl1r5fjYc2H0Cy1Yw1S2bi2jmjeJ4efSOGHxHFpdpmFx7c5ka1swqLZ+Thvn+ZzhlZqN8YfkQUV6SU2FB+BPe9vgcyEMCfrp+Fq2aN4N4eDQjDj4jihqvbh7v+vhuv7TiOBfYsLBndiatnj9S6LIpDHPtLRHHhQH07rlr7MV7feRw/v2QSnrttPrKS+RFGZ4d7fkQU8zbtPI6VG3chNdGMZ2+dj/MmZGtdEsU5hh8RxaxAQOKPm/fj4S3VmJs/FI8sLURuRpLWZZEOMPyIKCa5un24Y8MOvF1Zj+uLRuOBq6dzEmqKGIYfEcWculY3lq3/HFV1bfjVFVNxy/n5HM1JEcXwI6KYUt3QgZv+9hmcnR789ea5uGhyjtYlkQ4x/IgoZlQcPolb138Os0ngxZIFmDFqiNYlkU4x/IgoJrxf1YAfPbsduRlJePqWeRiblap1SaRjDD8i0tw7lXX48fMVmJSbjvXL5nGaMlIdw4+INPXm7hP4yQtfYPrIIXjqlnm8BBFFBcOPiDTz2o5juGPDTswebcOTy+YiPYnBR9HB8CMiTWzaeRw/e2kHivIz8eTNc5GayI8jih7+tRFR1G3eU487XtqBorGZWL9sLlKs/Cii6OJ0CUQUVR9XN+Hfnq/AtBEZ+OvNRQw+0gTDj4iiZnttC257qhzjslKxftk8HuMjzTD8iCgqDtS3Y9mTnyM3IxHP3DYPQ1OtWpdEBsbwIyLV1be5cfOTn8OaYMYzt85HTjqvzEDaYvgRkao6un1Y9uTnONnpwfplczE6M0XrkohiK/yEEHYhxEKt6yCiyPD6A/jRs9tRVd+Ov9xQiOkjOVcnxQZVw08IUSKEWKLcVvRjlUIALwshpBDipBDiXSFEoZo1EpE6pJT49WuV+OhAE/7vd2egmFdnoBii2hhjIUQJAEgpNyrLdiHEOinl8jOtJ6UcKoSwSSmdatVGROp7+tNavPDZYfxb8XhcVzRa63KITqPmCTbLpZRzehaklI7+dmky+Iji20cHGnH/G3twydRc/GLRZK3LIfoaVbo9hRA2BLswe3PymB6RvjkaO/Dj5yowYVga/nj9LJhMvAI7xR619vzsAJxh7m9BMBQ397Vir3AslFKuiWxpRKSWdrcXtz1djgSzCU/cVIQ0ztdJMUpIKSP/osEAWyelHN/r/pcBOKSUK/tYzw4Eu0hDltdJKS8J89wSACUAkJubO+fFF18cdN0dHR1IS0sb9OvEAyO1FTBWe7Vqq5QSj+zoxhcNfqyYm4SCTLPq/ybfV32KVFsvuuii7VLKonCPxdTXsp7QC11WBsoUSikrej1WCqAUAIqKimRxcfGg//2ysjJE4nXigZHaChirvVq1dd0HNdhevw93L56C2y+0R+Xf5PuqT9Foq5qnOmSGuc8GoHmAr+MAEDa5iSg2fFrTjNX/2IfFM/Jw2wXjtC6H6BupFX7lCAZdb5kAKsLc33MqRF99sC0RqouIIqyu1Y1/f6EC47JTsWbJORCCA1wo9qkSfsqpCg5l1Gcom5Syr8EuLQDCnQNYhD4Ck4i05fMH8JMXvkCnx4/Hvj+HA1wobqjZ7bkawKqeBWWmls0hy3YhxMs9ARnu3D5lUMuG3scCiSg2/HlLNT471ILffmc6Juama10OUb+p9jVNSlmqTG+2EMEuUHuv2V1sABYi2BXqDFlnhbJsU+4744wwRKSNT2qa8PCWA7imcBS+M3uU1uUQDYiqfRTKiMy+HqsAMDTM/TyvjyjGNXd046cv7sC47FTcf9U0rcshGrCYuqoDEcU+KSV+8fJOOLu8ePh7s5HK43wUhxh+RDQgz2ytxftVjbh78RRMG8FLFFF8YvgRUb/VNHbgwTf34luThuEHC8ZqXQ7RWWP4EVG/eP0B3PHSDiRZzPjdkpk8n4/iGjvriahf1r5fjZ1HW7F2aSFyMpK0LodoULjnR0TfaOcRJx7eUo2rZ43A5TOHa10O0aAx/IjojLo8fvxsww7kpCfivquma10OUUSw25OIzmj1P/bB0ejCc7fNx5Bki9blEEUE9/yIqE//PNCE9Z8cwrLz83H+hGytyyGKGIYfEYXl6vZh5Su7YB+WipWXFWhdDlFEsduTiML63dtVON7ahZeXL0CSRf2rshNFE/f8iOhryg+14KlPD+GmBfkoyg93XWqi+MbwI6LTuL1+rHhlF0baknHnpZO1LodIFez2JKLTPPTeATgaXXjm1nmctJp0i3t+RHTKl8daUfqhA9cVjcIFE4dpXQ6Rahh+RAQgOHfnnRt3ISvVirsvn6p1OUSqYp8GEQEAHiurwd4TbSi9cQ5PZifd454fEcHR2IGHt1Tj8pnDsWhantblEKmO4UdkcFJK/Of/fIlEiwn3XMnuTjIGhh+Rwf39i2P4pKYZKy8rQE46L1VExsDwIzKwky4PfvP/9mL2GBuWzhujdTlEUcPwIzKw/3prH1q7vHjwOzNgMvHK7GQcDD8ig/rsYAteKj+C2y4YhynDM7QuhyiqGH5EBuTxBXDX33djpC0Z/3HxRK3LIYo6nudHZECPf+RAdUMHnrx5LlKs/Bgg4+GeH5HBHG7uxJ/fO4DFM/JwUUGO1uUQaYLhR2Qw971eiQSTwK+vmKZ1KUSaYfgRGcjmPfV4b18DfrpwEvKG8Jw+Mi6GH5FBuL1+3Pt6JSbmpOHm8/O1LodIUzzSTWQQj5bV4OjJLrxw+7mwmPm9l4yNWwCRAdQ2u/DoBzW4atYILBifpXU5RJpj+BHpnJQS926qhMUkcNfiKVqXQxQTGH5EOrd5bwPer2rEzy6ZhNwMDnIhAhh+RLrW5fHj3k2VmJSbhpvOy9e6HKKYwQEvRDr2aFk1jjm78GIJB7kQheLWQKRTh5pceOxDB66eNQLn2jnIhSgUw49Ih6SUuPf1SljNJg5yIQpD1W5PIUQJgBZl0S6lXKPGOkR0unf31KOsqhH/efkU5HCQC9HXqBZ+SohBSrlRWbYLIdZJKZdHch0iOl23X+L+1/dgcm46B7kQ9UHNPb/lUso5PQtSSocQYqEK6xBRiDccXhxzevESB7kQ9UmVLUMIYQNQGOYhZ19hdjbrENHpDja58JbDi+/MHon5HORC1Ce1vhbaATjD3N+C8AF3tusQkUJKqVyuCFj17QKtyyGKaWp1e2biq0EroZwA+vo6OqB1lOODJQCQm5uLsrKysyjzdB0dHRF5nXhgpLYCxmjv9nofyqq6cc04iT0VW7FH64KiwAjvaw+2NbLi9iR3KWUpgFIAKCoqksXFxYN+zbKyMkTideKBkdoK6L+9XR4/7v7DByjIS8fiiX5dtzWU3t/XUGxrZKl5NDwzzH02AM0RXofI8Na+H5zJ5b5/mQazSWhdDlHMUyv8yhEMrd4yAVREcB0iw3M0dqD0Qwe+y0EuRP2mSvhJKZ0AHMoIzlA2KeXmSK1DZHRSStyzqRKJCSb8cjEHuRD1l5rdnqsBrOpZEEIUAtgcsmwXQrzcK+zOuA4Rne7tyjp8dKAJdyyahJx0zuRC1F+qDXiRUpYKIUqUc/RsCE5VFjpTiw3AQgS7NZ39XIeIFJ0eH+5/fQ8K8tJx47ljtS6HKK6oOtpTGZHZ12MVAIYOZB0i+sojW6pxvNWNh743GwmcyYVoQLjFEMWhmsYOPP6RA9cUjsLc/HCDpInoTBh+RHFGSol7N1UiyWLGKg5yITorDD+iOPPWl8FBLndeOhnZaYlal0MUlxh+RHHE1e3DA2/swbQRGbhhPge5EJ2tuJ3ejMiI/rzlAE60uvHI0kLO5EI0CNzzI4oT1Q3t+OtHB3Fd0SjMGfu1gdJENAAMP6I4IKXEr1+rRIrVjJWXcZAL0WAx/IjiwBu7TuCTmmbceVkBsjjIhWjQGH5EMa7N7cUDb+zB9JEZWDpvjNblEOkCB7wQxbjfv12Fpo5uPHFTEQe5EEUI9/yIYtjOI048vbUWP1iQj5mjbFqXQ6QbDD+iGOXzB7Dq1d3ISU/EzxdN0rocIl1htydRjFr/ySHsOdGGR28oRHqSRetyiHSFe35EMeiYswt/eHc/Li7IwWXT87Quh0h3GH5EMeie1yohJXDfVdMgBAe5EEUaw48oxrxdWYfNe+vxs0smYtTQFK3LIdIlhh9RDOno9uGe1ypRkJeOZeeP07ocIt3igBeiGPJfb+1Ffbsbj36/EBZenZ1INdy6iGLEVkcznt16GLecPw6zx3DiaiI1MfyIYkCXx49fvrILYzJT8ItFk7Uuh0j32O1JFAP+tHk/DjV34vnb5yPZata6HCLd454fkcZ2HnHi8Y8c+N680ThvfLbW5RAZAsOPSEMeXwArX9mFnPQkrFo8RetyiAyD3Z5EGvpLWTX21bXjrzcVIYNTmBFFDff8iDRSVdeOte9X46pZI3DxlFytyyEyFIYfkQY8vgDu2LADGUkW3HPlNK3LITIcdnsSaeCh9/aj8ngbSm+cg8xUq9blEBkO9/yIomx7bQseLavBdUWjsGgar9hApAWGH1EUubp9uGPDToywJeNXV0zVuhwiw2K3J1EU/fbNvTjc0omXShbwArVEGuKeH1GUbNlXj+e3HUbJBXbMG5epdTlEhsbwI4qCFpcHKzbuRkFeOu5YNEnrcogMj92eRCqTUuKuV3ejtcuDp2+Zh8QEzt1JpDXu+RGp7Llth/GPyjr8YtFkTB2RoXU5RASGH5Gq9p5ow/1v7MGFk4bh9gvsWpdDRAqGH5FKOj0+/J/nKzAk2YI/XHcOTCahdUlEpIiZ8BNC2IUQC7WugyhS7t1UCUeTC3+6fhay0xK1LoeIQqgWfkKIEiHEEuW2oh+rFAJ4WQghhRAnhRDvCiEK1aqPSE1//+IoNpQfxY+LJ+D8CbxGH1GsUWW0pxCiBACklBuVZbsQYp2UcvmZ1pNSDhVC2KSUTjXqIoqGfXVtWPXqbszLz8RPF07UuhwiCkOtUx2WSynn9CxIKR397dJk8FE8a3N78cNntiMjyYJHbpiNBHPMHFkgohAR3zKFEDYEuzB7c/KYHulZICDx8w07cfRkF9beUIic9CStSyKiPqix52cH4AxzfwuCobi5rxV7hWOhlHJNZEsjUs9jH9bg3T31+NUVUzE3n9OXEcUyIaWM7AsGA2ydlHJ8r/tfBuCQUq7sYz07EOwiDVleJ6W8pI/nlwAoAYDc3Nw5L7744qBr7+joQFpa2qBfJx4Yqa2A+u3d1ejDH7d3Y26eGT86JxFCaHdag5HeW7ZVnyLV1osuumi7lLIo3GMxM71ZT+iFLisDZQqllBVhnl8KoBQAioqKZHFx8aBrKCsrQyReJx4Yqa2Auu2tbmjHv6/9BAXDM7D+RwuQYtV2szLSe8u26lM02nrGrVQIsQTAGUdohrg2ZLBKuD4fG4DmflcW5ABQBOBr4UcUC5ydHtz2VDkSLSY8cVOR5sFHRP1zxi1VOVVh4wBfsxzBoOstE32EmNLFWSOlDNdX1DLAf58oKrz+AH78fAWOO914oWQ+RtqStS6JiPop4qM9lb0/hzLqM5RNStnXYJcWhN/D5F4fxSQpJe7dVImPq5vx2+9Mx5yxHOBCFE/UOglpNYBVPQvKTC2bQ5btQoiXewIy3Ll9yoCWDb2PBRLFgr+U1eC5bYfxw2+Nx7VFo7Uuh4gGSJUDFFLKUmV6s4UIdoHae83uYgOwEMGuUGfIOiuUZZtyX3+PNxJFzasVR/G7t6tw1awRWHHpZK3LIaKzoNrReWU0Zl+PVQAYGuZ+ntdHMe2fB5qwYuMuLLBnYc2SmbxSA1Gc4txLRP20+2grfvjsdowflobHbpzDK7ITxTGGH1E/7K9vxw/+tg1Dki1Yf8tcDEm2aF0SEQ0Cw4/oGxxqcuGGJ7YhwWzCc7fNx/AhPKWBKN4x/IjO4LizCzc8sQ0+fwDP3TYf+dmpWpdERBHA8CPqw3FnF5Y+vhVtXV48fct8TMpN17okIooQzsVEFMaRlk4sfWIrnC4vnrp1HmaMGqJ1SUQUQQw/ol5qm11Y+vg2tLu9eO72+Zg5yqZ1SUQUYQw/ohDVDe34/hOfodvnx/O3n4vpI7nHR6RHDD8ixfbak7j1qc+RYDLhhZJzUZCXoXVJRKQShh8RgPf21uPHz1cgLyMJT98yH2OyUrQuiYhUxPAjw9vw+RGs+vtuTB2egSeXzUV2WqLWJRGRyhh+ZFj+gMTqf+xD6YcOXDAxG49+fw7SErlJEBkBt3QypHa3F//x4g5s2deAG88di19fORUWM097JTIKhh8ZzqEmF0qeKUdNowsPXDUNNy7I17okIooyhh8Zylu7T2DFxl0wmQSeuWUezpuQrXVJRKQBhh8Zgi8gcf/re/C3jw/inNE2rF06G6OGckQnkVEx/Ej3DjW58OA2NxytB3Hzefm4a/EUWBN4fI/IyBh+pFtSSjz/2WH85o29EDKAtUsLcfnM4VqXRUQxgOFHutTQ5sbKV3bh/apGnD8hC9eM6mTwEdEpDD/SlUBA4qXyI3jwzb3w+AK458qpuGlBPj788AOtSyOiGMLwI92obujAXa/uxmeHWjB/XCYe/O4MjB+WpnVZRBSDGH4U99rcXjyypRpPfnwQKdYErLlmJq4tGgUhhNalEVGMYvhR3PIHJDaUH8F/v12Flk4PlhSOworLCjAsnXNzEtGZMfwo7kgp8c6eevzhnf2oqm/H3PyhWH8Fr7ZORP3H8KO4IaXERwea8Pt3qrDzaCvs2alYu7QQi2fksYuTiAaE4UcxLxAI7uk9+kENdh5xYqQtGWuWzMR3Z49EAiejJqKzwPCjmNXl8WPTzmMo/dCBmkYXxmSm4DdXT8e1RaOQmGDWujwiimMMP4o5NY0deG7rYWzcfgRtbh+mDs/Aw9+bjW9Pz+OeHhFFBMOPYkK3z48texvw7LZafFzdDItZ4LLpw3HjuWMxN38oj+kRUUQx/EgzgYDEtoMteG3HMby5+wTa3D6MGJKEOy+djOuKRvOUBSJSDcOPosofkNh51Im3dp/A6ztPoK7NjVSrGZdOy8OVs0bgwonDYDZxL4+I1MXwI9V1dPvw0f5GvLevAe/va0CzywOLWeBbk3Jw9+VTsHBKLpKtHMBCRNHD8KOI8/oD2HW0FVsdzfikpgmfHzwJjz+AIckWFE8ehv9dkIPiSTkYkmLRulQiMiiGHw1ap8eH3UdbUXHYia2OZnx+qAWdHj8AoCAvHTedNxYXT8lF0dihHK1JRDGB4UcD4vb6Ud3QgcrjrdhxxIkvDjuxv74dARl8fEJOGq4pHIUF47Mwf1wmstI4aIWIYg/Dj8IKBCSOnuzCvro27KtrR1VdO/bVteFQcyf8StJlJCXgnNE2LJqai1ljbDhnlI1hR0RxQdXwE0IUAlglpby2n88vAdCiLNqllGtUK47g8wdw3OlGbYsLh5o7Uduk/Gx24XBLJ7p9gVPPHZOZgsl56Vg8Yzgm56VjyvAMjMtKhYkjM4koDqkSfkroXQ+gGYC9n+uUAICUcqOybBdCrJNSLlejRr3r8vjR0O7GiVY36tuCP+uU24k2N2obOtH29lunuisBIMliwtjMVIzLTsVFBTmwZ6dicl46JuWmIzWRnQREpB+qfKJJKSsAVISEYH8sl1LOCXkNhxBioRr1xQspJdzeANrdXrS5fWh3e9Hu9qGj2wdnpxctrm60uJSfyvJJlxfNrm64vYGvvV56YgLyhiQhb0gSZmSbMWtyPkYPTcHYrBTkZ6ciJz2RM6kQkSHExNd5IYQNQGGYh5xCiIVSys1RLumM/AEJrz+g3IK/e3zBZV9AotsbQJfXH7x5/HB7g7ee+9wef8jjgVOPdXp8aHf33IJB5wvdNQsj1WrG0FQrslKtGJaWiEm56chKtSIzNRHZaVYMH5J8KvDSQvbeysrKUFw8We3/KiKimBQT4Ydg16gzzP0tCIai6uH3zNZaPPlpF36366NToRYaaF5fAB4l8L4hj/ol2WJGstWMZIsZSRbTqd9zM5IwIScB6UkJSEu0ID0pARlJCUhPCv7e83NIsgWZqVYkWXhyOBHRQMVK+GXiq4EuoZwAssKtoBwjLAGA3NxclJWVDaqAQ0e9SBR+WLwuJJuABAtgtgqYTUCCCUgQQILJDLMwI8GE4P1CBB8zAWYBmE3BZYsJsJoErGbAagYSzcrvyn0WE8J0L/qVm+frxXUrt1agE8Fb/aBaC3R0dAz6/yyeGKm9bKs+sa2RFSvhN2BSylIApQBQVFQki4uLB/V6xejpChzc68QLI7UVMFZ72VZ9Ylsj64zhJ4RYAqC/oy2vlVI6B1FLZpj7bAiOGCUiIoqYM4afctrBxijUUY5g0PWWCaAiCv8+EREZSExMtKjsMTqUUZ+hbLE20pOIiOKf2uEXriuz5wT2l3uF3WoAq0KeE5VRnkREZDxqzfBiB7AEwRPcC4UQ6wBsVwapAMEuzoUIhqMTCA5gEUKUKCe22xCc3oyzuxARUcSpNcOLA8Aa5Rbu8QoAQ8PcXxrm6URERBEVE8f8iIiIoonhR0REhiOkjMBcXRoTQjQCqI3AS2UDaIrA68QDI7UVMFZ72VZ9YlsHbqyUcli4B3QRfpEihCiXUhZpXUc0GKmtgLHay7bqE9saWez2JCIiw2H4ERGR4TD8TmekUy2M1FbAWO1lW/WJbY0gHvMjIiLD4Z4fEREZDsOPiIgMJ24vZhsNytXibcrieACrlanbdEdpKwDMUX6uHOT1GWOeMnn6KinltVrXEgnKe9iiLNqllGGnF9QDvb13Z2KkbTOan7kMvz4IIVaEfngoF/Z9F8E3RFeEECWh86oqf4Dv4auNTVeUD87rEbxQsl3jciKi5wNSuQZnz5VT1ultcng9vndnYqRtM9qfuez27Nty5T+/RwUAe5hrDsa1cO1RNja7coUN3ZFSVkgpV0Jfl8xaHvohqXxb1t37p9P3LiwDbptR/cxl+PXtkp5v0Qo7AKcOuxvsANaF+QNzwADfrPVAee8Kwzzk1OmHpFEYbduM6mcuw68PYfqZVwLQ3fEF5fJSc8L8gdkBlEe/IjoLdijXxeylBeFDkeKA0bbNaH/m8pjfN1B2wy9B8MCrLrtalI3sFKXNjt73U8zKxFcDXUI5AWRFtxSKJCNum9H6zOWe3zeQUm5UBg0UCiFWa12P2pQullUALta4FCIKYZRtM1qfubrf81O+RfR3xNu1ffUvSynXCCFOCiHejdU9wAi1dfUZHospkXpvdSIzzH02BEdFkj7EzbYZCWp/5uo+/JQDqBu/8YkhlOHU70kph/Z6yIHg7nhMht/ZtDWUEGIF4uhcxsG2V0fK8dW5UaEyERwxR3Eu3rbNgdLiM5fdnuFlIvzEqnYANVGuJSqU84c2hm5cHCkYH5Q9AUeYUYG2WO2loP4zyLYZ9c9chl8YygfGad1FyjcTANgQ/YrUpWxI5T0blxDCpsONK5xwXYXxajWCx4MAnPp71XPw6em965NRtk0tPnN5VYc+KN+iS0Lu0uX0ZkKIM32zGqrH4wtKm5cgOFNIIYLfOLeHniQej5Q9BAeCXaC6nN5Mr+9dOEbbNqP9mcvwIyIiw2G3JxERGQ7Dj4iIDIfhR0REhsPwIyIiw2H4ERGR4TD8iIjIcBh+RERkOAw/IiIyHIYfEREZzv8HtIf4HHirPJMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(7, 4))\n", "x = np.linspace(-3, 3, 200)\n", "plt.plot(x, np.tanh(x))\n", "plt.grid()\n", "plt.savefig(f\"tanh.png\", bbox_inches=\"tight\")\n", "plt.savefig(f\"tanh.pdf\", bbox_inches=\"tight\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright © 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.4 ('pytorch-gpu')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "17cd5c528a3345b75540c61f907eece919c031d57a2ca1e5653325af249173c9" } } }, "nbformat": 4, "nbformat_minor": 2 }