import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc def plot_roc_curve(test_labels: list, test_df: list, title: str, figsize=(8, 8), savefile = None, show: bool = True): fpr, tpr, thresholds = roc_curve(test_labels, test_df) auc_score = auc(fpr, tpr) if not show: plt.ioff() plt.figure(figsize=figsize) plt.plot(fpr, tpr, lw=1) plt.fill_between(fpr, tpr, label=f"AUC = {auc_score:.4f}", alpha=0.5) plt.plot([0, 1], [0, 1], color="gray", linestyle="dotted") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel("FPR") plt.ylabel("TPR") plt.title(f"{title}") plt.legend(loc="lower right") if savefile is not None: plt.savefig(f"{savefile}.png", bbox_inches="tight") plt.savefig(f"{savefile}.pdf", bbox_inches="tight") if show: plt.show() return fpr, tpr, thresholds, auc_score def get_percentiles(fpr, tpr, thresholds, percentiles=[0.9, 0.95, 0.98, 0.99], verbose = True): assert percentiles == sorted(percentiles) tnrs = [] for percentile in percentiles: for i, tp in enumerate(tpr): if tp >= percentile: tnrs.append(1 - fpr[i]) # append tnr if verbose: print(f"{percentile} percentile : TPR = {tp:.4f}, FPR = {fpr[i]:.4f} <-> TNR = {(1 - fpr[i]):.4f} @ thresh {thresholds[i]}") break return tnrs