from torch import nn class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 128, kernel_size=7, stride=4, padding=2), nn.ReLU(True), nn.Conv2d(128, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Conv2d(64, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), nn.ReLU(True), nn.Flatten(), nn.Linear(2048, 512), nn.ReLU(True), # see https://stackoverflow.com/questions/50187127/is-it-necessary-to-use-a-linear-bottleneck-layer-for-autoencoder ) self.decoder = nn.Sequential( nn.Linear(512, 2048), nn.ReLU(True), nn.Unflatten(1, (128, 4, 4)), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(True), nn.ConvTranspose2d(32, 3, kernel_size=8, stride=4, padding=2), nn.Tanh(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x