# Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena # Approach 3: Local features # This script is used for calculating BOW features of Motion images # using a BOW vocabulary. # See train_bow.py for training. import argparse import os import numpy as np from sklearn import svm from tqdm import tqdm from py.Dataset import Dataset from py.LocalFeatures import generate_bow_features def main(): parser = argparse.ArgumentParser(description="BOW train script") parser.add_argument("dataset_dir", type=str, help="Directory of the dataset containing all session folders") parser.add_argument("session_name", type=str, help="Name of the session to use for Lapse images (e.g. marten_01)") parser.add_argument("--clusters", type=int, help="Number of clusters / BOW vocabulary size", default=1024) parser.add_argument("--step_size", type=int, help="DSIFT keypoint step size. Smaller step size = more keypoints.", default=30) parser.add_argument("--keypoint_size", type=int, help="DSIFT keypoint size. Defaults to step_size.", default=-1) parser.add_argument("--include_motion", action="store_true", help="Include motion images for training.") parser.add_argument("--random_prototypes", action="store_true", help="Pick random prototype vectors instead of doing kmeans.") args = parser.parse_args() if args.keypoint_size <= 0: args.keypoint_size = args.step_size print(f"Using keypoint size {args.keypoint_size} with step size {args.step_size}.") ds = Dataset(args.dataset_dir) session = ds.create_session(args.session_name) save_dir = f"./bow_train_NoBackup/{session.name}" suffix = "" if args.include_motion: suffix += "_motion" print("Including motion data for prototype selection!") if args.random_prototypes: suffix += "_random" print("Picking random prototypes instead of using kmeans!") dictionary_file = os.path.join(save_dir, f"bow_dict_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy") train_feat_file = os.path.join(save_dir, f"bow_train_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy") eval_file = os.path.join(save_dir, f"bow_eval_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.csv") if not os.path.isfile(dictionary_file): print(f"ERROR: BOW dictionary missing! ({dictionary_file})") elif not os.path.isfile(train_feat_file): print(f"ERROR: Train data file missing! ({train_feat_file})") elif os.path.isfile(eval_file): print(f"ERROR: Eval file already exists! ({eval_file})") else: print(f"Loading dictionary from {dictionary_file}...") dictionaries = np.load(dictionary_file) print(f"Shape of dictionaries: {dictionaries.shape}") # (num_dicts, dict_size, 128) assert len(dictionaries.shape) == 3 and dictionaries.shape[2] == 128 print(f"Loading training data from {train_feat_file}...") train_data = np.load(train_feat_file) print(f"Shape of training data: {train_data.shape}") # (num_train_images, num_dicts, 1, dict_size) assert len(train_data.shape) == 4 assert train_data.shape[1] == dictionaries.shape[0] assert train_data.shape[2] == 1 assert train_data.shape[3] == dictionaries.shape[1] print(f"Fitting {dictionaries.shape[0]} one-class SVMs...") clfs = [svm.OneClassSVM().fit(train_data[:,i,0,:].squeeze()) for i in tqdm(range(dictionaries.shape[0]))] print("Evaluating...") with open(eval_file, "a+") as f: for filename, feats in generate_bow_features(list(session.generate_motion_images()), dictionaries, kp_step=args.step_size, kp_size=args.keypoint_size): ys = [clf.decision_function(feat)[0] for clf, feat in zip(clfs, feats)] ys_out = ",".join([str(y) for y in ys]) f.write(f"{filename},{ys_out}\n") f.flush() print("Complete!") if __name__ == "__main__": main()