# Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena # Approach 4: Autoencoder # This script is used for training an autoencoder on Lapse images. # See eval_autoencoder.py for evaluation. import argparse import os from tqdm import tqdm import torch import numpy as np import random from torch import nn from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision.utils import save_image from torchinfo import summary from py.PyTorchData import create_dataloader, model_output_to_image from py.Dataset import Dataset from py.Autoencoder2 import Autoencoder def train_autoencoder(model: Autoencoder, train_dataloader: DataLoader, name: str, device: str = "cpu", num_epochs=100, criterion = nn.MSELoss(), lr: float = 1e-3, weight_decay: float = 1e-5, noise: bool = False, sparse: bool = False, reg_rate: float = 1e-4, noise_var: float = 0.015): model = model.to(device) print(f"Using {device} device") optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) print(f"Saving models to ./ae_train_NoBackup/{name}") os.makedirs(f"./ae_train_NoBackup/{name}", exist_ok=True) print(f"Training for {num_epochs} epochs.") for epoch in range(num_epochs): total_loss = 0 total_reg_loss = 0 for img, _ in tqdm(train_dataloader): optimizer.zero_grad() img = Variable(img).to(device) input = img if noise: input = input + (noise_var ** 0.5) * torch.randn(img.size(), device=device) # ===================forward===================== latent = model.encoder(input) output = model.decoder(latent) loss = criterion(output, img) total_loss += loss.item() if sparse: reg_loss = reg_rate * torch.mean(torch.abs(latent)) total_reg_loss += reg_loss.item() loss += reg_loss # ===================backward==================== loss.backward() optimizer.step() # ===================log======================== dsp_epoch = epoch + 1 if sparse: print('epoch [{}/{}], loss: {:.4f} + reg loss: {:.4f}'.format(dsp_epoch, num_epochs, total_loss, total_reg_loss)) else: print('epoch [{}/{}], loss: {:.4f}'.format(dsp_epoch, num_epochs, total_loss)) # log file with open(f"./ae_train_NoBackup/{name}/log.csv", "a+") as f: f.write(f"{dsp_epoch},{total_loss},{total_reg_loss}\n") # output image if epoch % 10 == 0: pic = model_output_to_image(output.cpu().data) save_image(pic, f"./ae_train_NoBackup/{name}/image_{dsp_epoch:03d}.png") # model checkpoint if epoch % 10 == 0: torch.save(model.state_dict(), f"./ae_train_NoBackup/{name}/model_{dsp_epoch:03d}.pth") torch.save(model.state_dict(), f"./ae_train_NoBackup/{name}/model_{num_epochs:03d}.pth") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Autoencoder train script") parser.add_argument("name", type=str, help="Name of the training session (name of the save folder)") parser.add_argument("dataset_folder", type=str, help="Path to dataset folder containing sessions") parser.add_argument("session", type=str, help="Session name") parser.add_argument("--device", type=str, help="PyTorch device to train on (cpu or cuda)", default="cpu") parser.add_argument("--epochs", type=int, help="Number of epochs", default=100) parser.add_argument("--batch_size", type=int, help="Batch size (>=1)", default=32) parser.add_argument("--lr", type=float, help="Learning rate", default=1e-3) parser.add_argument("--reg_rate", type=float, help="Sparse regularization rate", default=1e-4) parser.add_argument("--dropout", type=float, help="Dropout rate on all layers", default=0.05) parser.add_argument("--latent", type=int, help="Number of latent features", default=512) parser.add_argument("--image_transforms", action="store_true", help="Truncate and resize images (only enable if the input images have not been truncated resized to the target size already)") parser.add_argument("--noise", action="store_true", help="Add Gaussian noise to model input") parser.add_argument("--noise_var", type=float, help="Noise variance", default=0.015) parser.add_argument("--sparse", action="store_true", help="Add L1 penalty to latent features") args = parser.parse_args() ds = Dataset(args.dataset_folder) session = ds.create_session(args.session) if args.image_transforms: print("Image transforms enabled: Images will be truncated and resized.") else: print("Image transforms disabled: Images are expected to be of the right size.") # torch.manual_seed(10810) # np.random.seed(10810) # random.seed(10810) data_loader = create_dataloader(session.get_lapse_folder(), batch_size=args.batch_size, skip_transforms=not args.image_transforms) model = Autoencoder(dropout=args.dropout, latent_features=args.latent) print("Model:") summary(model, (args.batch_size, 3, 256, 256)) print("Is CUDA available:", torch.cuda.is_available()) print(f"Devices: ({torch.cuda.device_count()})") for i in range(torch.cuda.device_count()): print(torch.cuda.get_device_name(i)) if args.noise: print("Adding Gaussian noise to model input") if args.sparse: print("Adding L1 penalty to latent features (sparse)") train_autoencoder(model, data_loader, args.name, device=args.device, num_epochs=args.epochs, lr=args.lr, noise=args.noise, sparse=args.sparse, reg_rate=args.reg_rate, noise_var=args.noise_var)