123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- from torch import nn
- class Autoencoder(nn.Module):
- def __init__(self, dropout=0.1, latent_channels=32):
- super(Autoencoder, self).__init__()
- self.encoder = nn.Sequential(
- nn.Dropout(dropout),
- nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(32, 64, kernel_size=5, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(128, latent_channels, kernel_size=3, padding="same"),
- nn.ReLU(True),
- )
- self.decoder = nn.Sequential(
- nn.Dropout(dropout),
- nn.Conv2d(latent_channels, 128, kernel_size=3, padding="same"),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 32, kernel_size=6, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(32, 16, kernel_size=8, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(16, 3, kernel_size=3, stride=1, padding="same"),
- nn.Tanh(),
- )
-
- def forward(self, x):
- x = self.encoder(x)
- x = self.decoder(x)
- return x
|