1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena
- # This file defines helper functions for plotting.
- import matplotlib.pyplot as plt
- from sklearn.metrics import roc_curve, auc
- def plot_roc_curve(test_labels: list, test_df: list, title: str, figsize=(8, 8), savefile = None, show: bool = True):
- """Plots the roc curve of a classifier.
- Args:
- test_labels (list): Labels for the test examples.
- test_df (list): Decision function values for the test examples.
- title (str): Title of the plot.
- figsize (tuple, optional): Size of the plot. Defaults to (8, 8).
- savefile (_type_, optional): Output file without ending. Will be saved as pdf and png. If None, the plot is not saved. Defaults to None.
- show (bool, optional): If False, do not show the plot. Defaults to True.
- Returns:
- fpr (list of float), tpr (list of float), thresholds (list of float), auc_score (float): Points on roc curves, their thresholds, and the area under ROC curve.
- """
- fpr, tpr, thresholds = roc_curve(test_labels, test_df)
- auc_score = auc(fpr, tpr)
- if not show:
- plt.ioff()
- plt.figure(figsize=figsize)
- plt.plot(fpr, tpr, lw=1)
- plt.fill_between(fpr, tpr, label=f"AUC = {auc_score:.4f}", alpha=0.5)
- plt.plot([0, 1], [0, 1], color="gray", linestyle="dotted")
- plt.xlim([0.0, 1.0])
- plt.ylim([0.0, 1.0])
- plt.xlabel("FPR")
- plt.ylabel("TPR")
- plt.title(f"{title}")
- plt.legend(loc="lower right")
- if savefile is not None:
- plt.savefig(f"{savefile}.png", bbox_inches="tight")
- plt.savefig(f"{savefile}.pdf", bbox_inches="tight")
- if show:
- plt.show()
- return fpr, tpr, thresholds, auc_score
- def get_percentiles(fpr, tpr, thresholds, percentiles=[0.9, 0.95, 0.98, 0.99], verbose = True):
- """Returns the maximum possible TNR (elimination rate) for given minimum TPR.
- Args:
- fpr (list of float): FPR values from ROC curve.
- tpr (list of float): TPR values from ROC curve.
- thresholds (list of float): Thresholds from ROC curve.
- percentiles (list of float, optional): List of minimum TPR values to use as input. Defaults to [0.9, 0.95, 0.98, 0.99].
- verbose (bool, optional): If True, print the results. Defaults to True.
- Returns:
- list of float: TNR values aka elimination rates.
- """
- assert percentiles == sorted(percentiles)
- tnrs = []
- for percentile in percentiles:
- for i, tp in enumerate(tpr):
- if tp >= percentile:
- tnrs.append(1 - fpr[i]) # append tnr
- if verbose:
- print(f"{percentile} percentile : TPR = {tp:.4f}, FPR = {fpr[i]:.4f} <-> TNR = {(1 - fpr[i]):.4f} @ thresh {thresholds[i]}")
- break
- return tnrs
|