Autoencoder2.py 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. # This is the preferred autoencoder architecture.
  2. # Fully convolutional with 7 layer encoder and decoder.
  3. # Dropout, relu on hidden layers, tanh on output layer
  4. # Allows multiples of 16 as number of latent features
  5. from torch import nn
  6. class Autoencoder(nn.Module):
  7. def __init__(self, dropout=0.1, latent_features=512):
  8. super(Autoencoder, self).__init__()
  9. if latent_features % 16 != 0:
  10. raise ValueError("latent_features must be a multiple of 16 in this architecture.")
  11. latent_channels = latent_features // 16
  12. self.encoder = nn.Sequential(
  13. nn.Dropout(dropout),
  14. nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3),
  15. nn.ReLU(True),
  16. nn.Dropout(dropout),
  17. nn.Conv2d(32, 64, kernel_size=5, stride=2, padding=2),
  18. nn.ReLU(True),
  19. nn.Dropout(dropout),
  20. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  21. nn.ReLU(True),
  22. nn.Dropout(dropout),
  23. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  24. nn.ReLU(True),
  25. nn.Dropout(dropout),
  26. nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
  27. nn.ReLU(True),
  28. nn.Dropout(dropout),
  29. nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
  30. nn.ReLU(True),
  31. nn.Dropout(dropout),
  32. nn.Conv2d(128, latent_channels, kernel_size=3, padding="same"),
  33. nn.ReLU(True),
  34. )
  35. self.decoder = nn.Sequential(
  36. nn.Dropout(dropout),
  37. nn.Conv2d(latent_channels, 128, kernel_size=3, padding="same"),
  38. nn.ReLU(True),
  39. nn.Dropout(dropout),
  40. nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1),
  41. nn.ReLU(True),
  42. nn.Dropout(dropout),
  43. nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
  44. nn.ReLU(True),
  45. nn.Dropout(dropout),
  46. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  47. nn.ReLU(True),
  48. nn.Dropout(dropout),
  49. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  50. nn.ReLU(True),
  51. nn.Dropout(dropout),
  52. nn.ConvTranspose2d(64, 32, kernel_size=6, stride=2, padding=2),
  53. nn.ReLU(True),
  54. nn.Dropout(dropout),
  55. nn.ConvTranspose2d(32, 16, kernel_size=8, stride=2, padding=3),
  56. nn.ReLU(True),
  57. nn.Dropout(dropout),
  58. nn.Conv2d(16, 3, kernel_size=3, stride=1, padding="same"),
  59. nn.Tanh(),
  60. )
  61. def forward(self, x):
  62. x = self.encoder(x)
  63. x = self.decoder(x)
  64. return x