12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- from torch import nn
- class Autoencoder(nn.Module):
- def __init__(self, dropout=0.1, latent_features=512):
- super(Autoencoder, self).__init__()
- self.encoder = nn.Sequential(
- nn.Dropout(dropout),
- nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Flatten(),
- nn.Linear(1024, latent_features),
- nn.ReLU(True),
- )
- self.decoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.ReLU(True),
- nn.Unflatten(1, (64, 4, 4)),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=6, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=8, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 3, kernel_size=3, stride=1, padding="same"),
- nn.Tanh(),
- )
-
- def forward(self, x):
- x = self.encoder(x)
- x = self.decoder(x)
- return x
|