1
0

train_autoencoder.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. # Approach 4: Autoencoder
  2. # This script is used for training an autoencoder on Lapse images.
  3. # See eval_autoencoder.py for evaluation.
  4. import argparse
  5. import os
  6. from tqdm import tqdm
  7. import torch
  8. from torch import nn
  9. from torch.autograd import Variable
  10. from torch.utils.data import DataLoader
  11. from torchvision.utils import save_image
  12. from torchinfo import summary
  13. from py.PyTorchData import create_dataloader, model_output_to_image
  14. from py.Autoencoder3 import Autoencoder
  15. def train_autoencoder(model: Autoencoder, train_dataloader: DataLoader, name: str, device: str = "cpu", num_epochs=100, criterion = nn.MSELoss(), lr: float = 1e-3, weight_decay: float = 1e-5, noise: bool = False, sparse: bool = False, reg_rate: float = 1e-4):
  16. model = model.to(device)
  17. print(f"Using {device} device")
  18. optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
  19. print(f"Saving models to ./ae_train_NoBackup/{name}")
  20. os.makedirs(f"./ae_train_NoBackup/{name}", exist_ok=True)
  21. print(f"Training for {num_epochs} epochs.")
  22. for epoch in range(num_epochs):
  23. total_loss = 0
  24. total_reg_loss = 0
  25. for img, _ in tqdm(train_dataloader):
  26. optimizer.zero_grad()
  27. img = Variable(img).to(device)
  28. input = img
  29. if noise:
  30. input = input + (0.015 ** 0.5) * torch.randn(img.size(), device=device)
  31. # ===================forward=====================
  32. latent = model.encoder(input)
  33. output = model.decoder(latent)
  34. loss = criterion(output, img)
  35. total_loss += loss.item()
  36. if sparse:
  37. reg_loss = reg_rate * torch.mean(torch.abs(latent))
  38. total_reg_loss += reg_loss.item()
  39. loss += reg_loss
  40. # ===================backward====================
  41. loss.backward()
  42. optimizer.step()
  43. # ===================log========================
  44. dsp_epoch = epoch + 1
  45. if sparse:
  46. print('epoch [{}/{}], loss: {:.4f} + reg loss: {:.4f}'.format(dsp_epoch, num_epochs, total_loss, total_reg_loss))
  47. else:
  48. print('epoch [{}/{}], loss: {:.4f}'.format(dsp_epoch, num_epochs, total_loss))
  49. # log file
  50. with open(f"./ae_train_NoBackup/{name}/log.csv", "a+") as f:
  51. f.write(f"{dsp_epoch},{total_loss},{total_reg_loss}\n")
  52. # output image
  53. if epoch % 2 == 0:
  54. pic = model_output_to_image(output.cpu().data)
  55. save_image(pic, f"./ae_train_NoBackup/{name}/image_{dsp_epoch:03d}.png")
  56. # model checkpoint
  57. if epoch % 10 == 0:
  58. torch.save(model.state_dict(), f"./ae_train_NoBackup/{name}/model_{dsp_epoch:03d}.pth")
  59. torch.save(model.state_dict(), f"./ae_train_NoBackup/{name}/model_{num_epochs:03d}.pth")
  60. if __name__ == "__main__":
  61. parser = argparse.ArgumentParser(description="Autoencoder train script")
  62. parser.add_argument("name", type=str, help="Name of the training session (name of the save folder)")
  63. parser.add_argument("img_folder", type=str, help="Path to directory containing train images (may contain subfolders)")
  64. parser.add_argument("--device", type=str, help="PyTorch device to train on (cpu or cuda)", default="cpu")
  65. parser.add_argument("--epochs", type=int, help="Number of epochs", default=100)
  66. parser.add_argument("--batch_size", type=int, help="Batch size (>=1)", default=32)
  67. parser.add_argument("--lr", type=float, help="Learning rate", default=1e-3)
  68. parser.add_argument("--reg_rate", type=float, help="Sparse regularization rate", default=1e-4)
  69. parser.add_argument("--dropout", type=float, help="Dropout rate on all layers", default=0.05)
  70. parser.add_argument("--latent", type=int, help="Number of latent features", default=512)
  71. parser.add_argument("--image_transforms", action="store_true", help="Truncate and resize images (only enable if the input images have not been truncated resized to the target size already)")
  72. parser.add_argument("--noise", action="store_true", help="Add Gaussian noise to model input")
  73. parser.add_argument("--sparse", action="store_true", help="Add L1 penalty to latent features")
  74. args = parser.parse_args()
  75. if args.image_transforms:
  76. print("Image transforms enabled: Images will be truncated and resized.")
  77. else:
  78. print("Image transforms disabled: Images are expected to be of the right size.")
  79. data_loader = create_dataloader(args.img_folder, batch_size=args.batch_size, skip_transforms=not args.image_transforms)
  80. model = Autoencoder(dropout=args.dropout, latent_features=args.latent)
  81. print("Model:")
  82. summary(model, (args.batch_size, 3, 256, 256))
  83. print("Is CUDA available:", torch.cuda.is_available())
  84. print(f"Devices: ({torch.cuda.device_count()})")
  85. for i in range(torch.cuda.device_count()):
  86. print(torch.cuda.get_device_name(i))
  87. if args.noise:
  88. print("Adding Gaussian noise to model input")
  89. if args.sparse:
  90. print("Adding L1 penalty to latent features (sparse)")
  91. train_autoencoder(model, data_loader, args.name, device=args.device, num_epochs=args.epochs, lr=args.lr, noise=args.noise, sparse=args.sparse, reg_rate=args.reg_rate)