123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- # Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena
- # Approach 3: Local features
- # This script is used for generating a BOW vocabulary using
- # densely sampeled SIFT features on Lapse images.
- # See eval_bow.py for evaluation.
- import argparse
- import os
- import numpy as np
- from timeit import default_timer as timer
- from datetime import timedelta
- from py.Dataset import Dataset
- from py.LocalFeatures import extract_descriptors, generate_dictionary_from_descriptors, generate_bow_features, pick_random_descriptors
- def main():
- parser = argparse.ArgumentParser(description="BOW train script")
- parser.add_argument("dataset_dir", type=str, help="Directory of the dataset containing all session folders")
- parser.add_argument("session_name", type=str, help="Name of the session to use for Lapse images (e.g. marten_01)")
- parser.add_argument("--clusters", type=int, help="Number of clusters / BOW vocabulary size", default=1024)
- parser.add_argument("--step_size", type=int, help="DSIFT keypoint step size. Smaller step size = more keypoints.", default=30)
- parser.add_argument("--keypoint_size", type=int, help="DSIFT keypoint size. Defaults to step_size.", default=-1)
- parser.add_argument("--include_motion", action="store_true", help="Include motion images for training.")
- parser.add_argument("--random_prototypes", action="store_true", help="Pick random prototype vectors instead of doing kmeans.")
- parser.add_argument("--num_vocabularies", type=int, help="Number of vocabularies to generate if random prototype choosing is enabled.", default=10)
- args = parser.parse_args()
- if args.keypoint_size <= 0:
- args.keypoint_size = args.step_size
- print(f"Using keypoint size {args.keypoint_size} with step size {args.step_size}.")
- ds = Dataset(args.dataset_dir)
- session = ds.create_session(args.session_name)
- save_dir = f"./bow_train_NoBackup/{session.name}"
- suffix = ""
- if args.include_motion:
- suffix += "_motion"
- print("Including motion data for prototype selection!")
- if args.random_prototypes:
- suffix += "_random"
- print("Picking random prototypes instead of using kmeans!")
- lapse_dscs_file = os.path.join(save_dir, f"lapse_dscs_{args.step_size}_{args.keypoint_size}.npy")
- motion_dscs_file = os.path.join(save_dir, f"motion_dscs_{args.step_size}_{args.keypoint_size}.npy")
- dictionary_file = os.path.join(save_dir, f"bow_dict_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy")
- train_feat_file = os.path.join(save_dir, f"bow_train_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy")
- # Lapse DSIFT descriptors
- if os.path.isfile(lapse_dscs_file):
- if os.path.isfile(dictionary_file):
- # if dictionary file already exists, we don't need the lapse descriptors
- print(f"{dictionary_file} already exists, skipping lapse descriptor extraction...")
- else:
- print(f"{lapse_dscs_file} already exists, loading lapse descriptors from file... ", end="")
- lapse_dscs = np.load(lapse_dscs_file)
- assert lapse_dscs.shape[-1] == 128
- lapse_dscs = lapse_dscs.reshape(-1, 128)
- print(f"Loaded {len(lapse_dscs)} lapse descriptors!")
- else:
- # Step 1 - extract dense SIFT descriptors
- print("Extracting lapse descriptors...")
- lapse_dscs = extract_descriptors(list(session.generate_lapse_images()), kp_step=args.step_size, kp_size=args.keypoint_size)
- os.makedirs(save_dir, exist_ok=True)
- np.save(lapse_dscs_file, lapse_dscs)
-
- # Motion DSIFT descriptors
- if args.include_motion:
- if os.path.isfile(motion_dscs_file):
- if os.path.isfile(dictionary_file):
- # if dictionary file already exists, we don't need the descriptors
- print(f"{dictionary_file} already exists, skipping motion descriptor extraction...")
- else:
- print(f"{motion_dscs_file} already exists, loading motion descriptors from file...", end="")
- motion_dscs = np.load(motion_dscs_file)
- assert motion_dscs.shape[-1] == 128
- motion_dscs = motion_dscs.reshape(-1, 128)
- print(f"Loaded {len(motion_dscs)} motion descriptors!")
- lapse_dscs = np.concatenate([lapse_dscs, motion_dscs])
- else:
- # Step 1b - extract dense SIFT descriptors from motion images
- print("Extracting motion descriptors...")
- motion_dscs = extract_descriptors(list(session.generate_motion_images()), kp_step=args.step_size, kp_size=args.keypoint_size)
- os.makedirs(save_dir, exist_ok=True)
- np.save(motion_dscs_file, motion_dscs)
- lapse_dscs = np.concatenate([lapse_dscs, motion_dscs])
- # BOW dictionary
- if os.path.isfile(dictionary_file):
- print(f"{dictionary_file} already exists, loading BOW dictionary from file...")
- dictionaries = np.load(dictionary_file)
- else:
- # Step 2 - create BOW dictionary from Lapse SIFT descriptors
- print(f"Creating BOW vocabulary with {args.clusters} clusters from {len(lapse_dscs)} descriptors...")
- start_time = timer()
- if args.random_prototypes:
- dictionaries = np.array([pick_random_descriptors(lapse_dscs, args.clusters) for i in range(args.num_vocabularies)])
- else:
- dictionaries = np.array([generate_dictionary_from_descriptors(lapse_dscs, args.clusters)])
- end_time = timer()
- delta_time = timedelta(seconds=end_time-start_time)
- print(f"Clustering took {delta_time}.")
- np.save(dictionary_file, dictionaries)
-
- # Extract Lapse BOW features using vocabulary (train data)
- if os.path.isfile(train_feat_file):
- print(f"{train_feat_file} already exists, skipping lapse BOW feature extraction...")
- else:
- # Step 3 - calculate training data (BOW features of Lapse images)
- print(f"Extracting BOW features from Lapse images...")
- features = [feat for _, feat in generate_bow_features(list(session.generate_lapse_images()), dictionaries, kp_step=args.step_size, kp_size=args.keypoint_size)]
- np.save(train_feat_file, features)
-
- print("Complete!")
- if __name__ == "__main__":
- main()
|