import os from cvargparse import GPUParser, Arg from chainer_addons.links import PoolingType from finetune.parser import default_factory def parse_args(): parser = GPUParser(default_factory([ PoolingType.as_arg("pooling", help_text="type of pre-classification pooling"), # Arg("--triplet_loss", action="store_true", # help="Use triplet loss"), # Arg("--normalize", action="store_true", # help="normalize features after cbil- or alpha-poolings"), # Arg("--subset", "-s", type=int, nargs="*", default=[-1], help="select specific classes"), # Arg("--no_sacred", action="store_true", help="do save outputs to sacred"), # Arg("--use_parts", action="store_true", # help="use parts, if present"), # Arg("--simple_parts", action="store_true", # help="use simple parts classifier, that only concatenates the features"), # Arg("--no_global", action="store_true", # help="use parts only, no global feature"), # Arg("--parts_in_bb", action="store_true", help="take only uniform regions where the centers are inside the bounding box"), # Arg("--rnd_select", action="store_true", help="hide random uniform regions of the image"), # Arg("--recurrent", action="store_true", help="observe all parts in recurrent manner instead of the whole image at once"), # ## AlphaPooling options # Arg("--init_alpha", type=int, default=1, help="initial parameter for alpha pooling"), # Arg("--kappa", type=float, default=1., help="Learning rate factor for alpha pooling"), # Arg("--switch_epochs", type=int, default=0, help="train alpha pooling layer and the rest of the network alternating") ]) ) parser.init_logger() return parser.parse_args()