Răsfoiți Sursa

set alpha sir problem

phillip.rothenbeck 4 luni în urmă
părinte
comite
c97674cbe1
1 a modificat fișierele cu 32 adăugiri și 4 ștergeri
  1. 32 4
      src/problem.py

+ 32 - 4
src/problem.py

@@ -1,6 +1,7 @@
 import torch
 from .dataset import PandemicDataset
 
+
 class PandemicProblem:
     def __init__(self, data: PandemicDataset) -> None:
         """Parent class for all pandemic problem classes. Holding the function, that calculates the residuals of the differential system.
@@ -18,14 +19,14 @@ class PandemicProblem:
         """NEEDS TO BE IMPLEMENTED WHEN INHERITING FROM THIS CLASS
         """
         assert self._gradients != None, 'Gradientmatrix need to be defined'
-        
 
-    def def_grad_matrix(self, number:int):
+    def def_grad_matrix(self, number: int):
         assert self._gradients == None, 'Gradientmatrix is already defined'
         self._gradients = [torch.zeros((len(self._data.t_raw), number), device=self._device_name) for _ in range(number)]
         for i in range(number):
             self._gradients[i][:, i] = 1
 
+
 class SIRProblem(PandemicProblem):
     def __init__(self, data: PandemicDataset):
         super().__init__(data)
@@ -53,8 +54,36 @@ class SIRProblem(PandemicProblem):
         return S_residual, I_residual, R_residual
 
 
+class SIRAlphaProblem(PandemicProblem):
+    def __init__(self, data: PandemicDataset, alpha):
+        super().__init__(data)
+        self.alpha = alpha
+
+    def residual(self, SIR_pred, beta):
+        super().residual()
+        SIR_pred.backward(self._gradients[0], retain_graph=True)
+        dSdt = self._data.t_raw.grad.clone()
+        self._data.t_raw.grad.zero_()
+
+        SIR_pred.backward(self._gradients[1], retain_graph=True)
+        dIdt = self._data.t_raw.grad.clone()
+        self._data.t_raw.grad.zero_()
+
+        SIR_pred.backward(self._gradients[2], retain_graph=True)
+        dRdt = self._data.t_raw.grad.clone()
+        self._data.t_raw.grad.zero_()
+
+        S, I, _ = self._data.get_denormalized_data([SIR_pred[:, 0], SIR_pred[:, 1], SIR_pred[:, 2]])
+
+        S_residual = dSdt - (-beta * ((S * I) / self._data.N)) / (self._data.get_max('S') - self._data.get_min('S'))
+        I_residual = dIdt - (beta * ((S * I) / self._data.N) - self.alpha * I) / (self._data.get_max('I') - self._data.get_min('I'))
+        R_residual = dRdt - (self.alpha * I) / (self._data.get_max('R') - self._data.get_min('R'))
+
+        return S_residual, I_residual, R_residual
+
+
 class ReducedSIRProblem(PandemicProblem):
-    def __init__(self, data: PandemicDataset, alpha:float):
+    def __init__(self, data: PandemicDataset, alpha: float):
         super().__init__(data)
         self.alpha = alpha
 
@@ -72,4 +101,3 @@ class ReducedSIRProblem(PandemicProblem):
 
         I_residual = dIdt - (self.alpha * (self._data.t_final - self._data.t_init) * (R_t - 1) * I)
         return I_residual
-