{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from src.dataset import PandemicDataset\n", "from src.problem import SIRProblem\n", "from src.dinn import DINN\n", "from src.plotter import Plotter" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "state_lookup = {'Schleswig_Holstein' : 2897000,\n", " 'Hamburg' : 1841000, \n", " 'Niedersachsen' : 7982000, \n", " 'Bremen' : 569352,\n", " 'Nordrhein_Westfalen' : 17930000,\n", " 'Hessen' : 6266000,\n", " 'Rheinland_Pfalz' : 4085000,\n", " 'Baden_Wuerttemberg' : 11070000,\n", " 'Bayern' : 13080000,\n", " 'Saarland' : 990509,\n", " 'Berlin' : 3645000,\n", " 'Brandenburg' : 2641000,\n", " 'Mecklenburg_Vorpommern' : 1610000,\n", " 'Sachsen' : 4078000,\n", " 'Sachsen_Anhalt' : 2208000,\n", " 'Thueringen' : 2143000}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Schleswig_Holstein\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 9954607159808639971\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.004528639657529316\n", "observation loss:\t0.8934279952353252\n", "loss:\t\t\t0.8979566348928546\n", "---------------------------------\n", "alpha:\t\t\t0.7424895763397217\n", "beta:\t\t\t0.17593373358249664\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00018737218181277886\n", "observation loss:\t0.002434413144494204\n", "loss:\t\t\t0.002621785326306983\n", "---------------------------------\n", "alpha:\t\t\t0.40602201223373413\n", "beta:\t\t\t0.513791024684906\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t0.0001424574928350481\n", "observation loss:\t0.0017895697306738263\n", "loss:\t\t\t0.0019320272235088744\n", "---------------------------------\n", "alpha:\t\t\t0.3604664206504822\n", "beta:\t\t\t0.4554630219936371\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t8.836759058855628e-05\n", "observation loss:\t0.0016329017504604368\n", "loss:\t\t\t0.0017212693410489932\n", "---------------------------------\n", "alpha:\t\t\t0.29205790162086487\n", "beta:\t\t\t0.36905401945114136\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t4.2596800287652604e-05\n", "observation loss:\t0.001496442084628734\n", "loss:\t\t\t0.0015390388849163866\n", "---------------------------------\n", "alpha:\t\t\t0.21138690412044525\n", "beta:\t\t\t0.2669493854045868\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.2302731845817357e-05\n", "observation loss:\t0.0006942269564407111\n", "loss:\t\t\t0.0007165296882865284\n", "---------------------------------\n", "alpha:\t\t\t0.140354186296463\n", "beta:\t\t\t0.1774679720401764\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.919444837606914e-05\n", "observation loss:\t0.0003139079719588692\n", "loss:\t\t\t0.00033310242033493835\n", "---------------------------------\n", "alpha:\t\t\t0.09652251750230789\n", "beta:\t\t\t0.12216534465551376\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.9504819160709372e-05\n", "observation loss:\t0.0002536884483617252\n", "loss:\t\t\t0.00027319326752243457\n", "---------------------------------\n", "alpha:\t\t\t0.07838603854179382\n", "beta:\t\t\t0.09931835532188416\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.011440201578909e-05\n", "observation loss:\t0.0002256766341303043\n", "loss:\t\t\t0.00024579103614609337\n", "---------------------------------\n", "alpha:\t\t\t0.07352377474308014\n", "beta:\t\t\t0.09309013932943344\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.0513671507145446e-05\n", "observation loss:\t0.0002189545449066587\n", "loss:\t\t\t0.00023946821641380415\n", "---------------------------------\n", "alpha:\t\t\t0.07250088453292847\n", "beta:\t\t\t0.09180773794651031\n", "#################################\n", "Hamburg\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 8213002851539207963\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.006128085942874438\n", "observation loss:\t1.0531625462838783\n", "loss:\t\t\t1.0592906322267528\n", "---------------------------------\n", "alpha:\t\t\t0.014057229273021221\n", "beta:\t\t\t0.7000399827957153\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00011525986354895297\n", "observation loss:\t0.0018462585390075106\n", "loss:\t\t\t0.0019615184025564636\n", "---------------------------------\n", "alpha:\t\t\t0.31684520840644836\n", "beta:\t\t\t0.41064122319221497\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t7.970986215944496e-05\n", "observation loss:\t0.0014035363744502025\n", "loss:\t\t\t0.0014832462366096476\n", "---------------------------------\n", "alpha:\t\t\t0.2687697112560272\n", "beta:\t\t\t0.3483278453350067\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t4.567827932811588e-05\n", "observation loss:\t0.001332429792443468\n", "loss:\t\t\t0.001378108071771584\n", "---------------------------------\n", "alpha:\t\t\t0.20664569735527039\n", "beta:\t\t\t0.2678300738334656\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t2.5742523272308484e-05\n", "observation loss:\t0.0013151602741429608\n", "loss:\t\t\t0.0013409027974152694\n", "---------------------------------\n", "alpha:\t\t\t0.1464596837759018\n", "beta:\t\t\t0.18997403979301453\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.8904827139233012e-05\n", "observation loss:\t0.0013048247163368067\n", "loss:\t\t\t0.0013237295434760398\n", "---------------------------------\n", "alpha:\t\t\t0.10424784570932388\n", "beta:\t\t\t0.1353677362203598\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.732696114382281e-05\n", "observation loss:\t0.0012935498566298608\n", "loss:\t\t\t0.0013108768177736835\n", "---------------------------------\n", "alpha:\t\t\t0.0835360512137413\n", "beta:\t\t\t0.10859180986881256\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.7303236453697385e-05\n", "observation loss:\t0.0012881607130631812\n", "loss:\t\t\t0.0013054639495168785\n", "---------------------------------\n", "alpha:\t\t\t0.0769636332988739\n", "beta:\t\t\t0.1002507284283638\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.714299751628073e-05\n", "observation loss:\t0.00127982912300224\n", "loss:\t\t\t0.0012969721205185207\n", "---------------------------------\n", "alpha:\t\t\t0.0752338245511055\n", "beta:\t\t\t0.09771635383367538\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.776030710614703e-05\n", "observation loss:\t0.001273948499856377\n", "loss:\t\t\t0.001291708806962524\n", "---------------------------------\n", "alpha:\t\t\t0.07487352937459946\n", "beta:\t\t\t0.0974062979221344\n", "#################################\n", "Niedersachsen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 17736127682735453365\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.018607998209933436\n", "observation loss:\t1.548152144746131\n", "loss:\t\t\t1.5667601429560645\n", "---------------------------------\n", "alpha:\t\t\t0.5141441226005554\n", "beta:\t\t\t0.12226511538028717\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t9.202218962944089e-05\n", "observation loss:\t0.002042833584007444\n", "loss:\t\t\t0.0021348557736368848\n", "---------------------------------\n", "alpha:\t\t\t0.2747378647327423\n", "beta:\t\t\t0.3625786602497101\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t6.357056245748558e-05\n", "observation loss:\t0.0007320334100083311\n", "loss:\t\t\t0.0007956039724658166\n", "---------------------------------\n", "alpha:\t\t\t0.23214146494865417\n", "beta:\t\t\t0.3074958026409149\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t3.6853679438189495e-05\n", "observation loss:\t0.0006011856867276324\n", "loss:\t\t\t0.0006380393661658219\n", "---------------------------------\n", "alpha:\t\t\t0.17898087203502655\n", "beta:\t\t\t0.2373184710741043\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t2.128848890818994e-05\n", "observation loss:\t0.0005162941564679278\n", "loss:\t\t\t0.0005375826453761178\n", "---------------------------------\n", "alpha:\t\t\t0.12836246192455292\n", "beta:\t\t\t0.17033381760120392\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.5871237207342958e-05\n", "observation loss:\t0.00041498476649690465\n", "loss:\t\t\t0.0004308560037042476\n", "---------------------------------\n", "alpha:\t\t\t0.09288942068815231\n", "beta:\t\t\t0.12341601401567459\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.561260814070834e-05\n", "observation loss:\t0.00032421863827033657\n", "loss:\t\t\t0.0003398312464110449\n", "---------------------------------\n", "alpha:\t\t\t0.0752117857336998\n", "beta:\t\t\t0.10016747564077377\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.641523795791533e-05\n", "observation loss:\t0.0002681384888123595\n", "loss:\t\t\t0.00028455372677027487\n", "---------------------------------\n", "alpha:\t\t\t0.06956729292869568\n", "beta:\t\t\t0.09273582696914673\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.684407339775984e-05\n", "observation loss:\t0.0002103247931027866\n", "loss:\t\t\t0.00022716886650054645\n", "---------------------------------\n", "alpha:\t\t\t0.06822884827852249\n", "beta:\t\t\t0.09085801988840103\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.7461497504051052e-05\n", "observation loss:\t0.0001774029295921539\n", "loss:\t\t\t0.00019486442709620497\n", "---------------------------------\n", "alpha:\t\t\t0.06778936088085175\n", "beta:\t\t\t0.09029929339885712\n", "#################################\n", "Bremen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 10471426848566910167\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0008269917446010776\n", "observation loss:\t0.824639072597631\n", "loss:\t\t\t0.8254660643422321\n", "---------------------------------\n", "alpha:\t\t\t0.5323129296302795\n", "beta:\t\t\t0.6627910733222961\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t9.789185608181697e-05\n", "observation loss:\t0.002369574977772489\n", "loss:\t\t\t0.002467466833854306\n", "---------------------------------\n", "alpha:\t\t\t0.2403569370508194\n", "beta:\t\t\t0.32923293113708496\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t1.3042913535891333e-05\n", "observation loss:\t0.0021317997386274194\n", "loss:\t\t\t0.002144842652163311\n", "---------------------------------\n", "alpha:\t\t\t0.06550911068916321\n", "beta:\t\t\t0.09010515362024307\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.7089633741249286e-05\n", "observation loss:\t0.0016105197427502451\n", "loss:\t\t\t0.0016276093764914944\n", "---------------------------------\n", "alpha:\t\t\t0.05258834362030029\n", "beta:\t\t\t0.0725736990571022\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t2.362208649485591e-05\n", "observation loss:\t0.001120302555238262\n", "loss:\t\t\t0.0011439246417331178\n", "---------------------------------\n", "alpha:\t\t\t0.05315761640667915\n", "beta:\t\t\t0.07340638339519501\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.7591555462814342e-05\n", "observation loss:\t0.0009117335410524196\n", "loss:\t\t\t0.0009393250965152339\n", "---------------------------------\n", "alpha:\t\t\t0.05323053523898125\n", "beta:\t\t\t0.07356772571802139\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.9710180132542517e-05\n", "observation loss:\t0.0006198242553404646\n", "loss:\t\t\t0.0006495344354730072\n", "---------------------------------\n", "alpha:\t\t\t0.05355648323893547\n", "beta:\t\t\t0.07406190782785416\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t3.1008248377801655e-05\n", "observation loss:\t0.0005153503093901768\n", "loss:\t\t\t0.0005463585577679784\n", "---------------------------------\n", "alpha:\t\t\t0.053197503089904785\n", "beta:\t\t\t0.07333938032388687\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t3.239595051870036e-05\n", "observation loss:\t0.0004608877039053479\n", "loss:\t\t\t0.0004932836544240482\n", "---------------------------------\n", "alpha:\t\t\t0.05337260663509369\n", "beta:\t\t\t0.0739511027932167\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t3.120469247281289e-05\n", "observation loss:\t0.0004466209701869129\n", "loss:\t\t\t0.0004778256626597258\n", "---------------------------------\n", "alpha:\t\t\t0.05340816453099251\n", "beta:\t\t\t0.07374678552150726\n", "#################################\n", "Nordrhein_Westfalen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 112442546405420392\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0002800543575243523\n", "observation loss:\t0.9124440419723825\n", "loss:\t\t\t0.9127240963299068\n", "---------------------------------\n", "alpha:\t\t\t0.32437169551849365\n", "beta:\t\t\t0.16373209655284882\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t2.1198474309465313e-05\n", "observation loss:\t0.0017940127448971591\n", "loss:\t\t\t0.0018152112192066244\n", "---------------------------------\n", "alpha:\t\t\t0.1340920776128769\n", "beta:\t\t\t0.17443342506885529\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t1.570210266098029e-05\n", "observation loss:\t0.0011716596366955323\n", "loss:\t\t\t0.0011873617393565125\n", "---------------------------------\n", "alpha:\t\t\t0.08088850975036621\n", "beta:\t\t\t0.10541730374097824\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.996635291924119e-05\n", "observation loss:\t0.0006260258738272537\n", "loss:\t\t\t0.0006459922267464949\n", "---------------------------------\n", "alpha:\t\t\t0.07212451100349426\n", "beta:\t\t\t0.09424532949924469\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t2.183243217037284e-05\n", "observation loss:\t0.0005100201474127475\n", "loss:\t\t\t0.0005318525795831203\n", "---------------------------------\n", "alpha:\t\t\t0.07144010812044144\n", "beta:\t\t\t0.09351286292076111\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.2376041290222317e-05\n", "observation loss:\t0.0004698277257581033\n", "loss:\t\t\t0.0004922037670483257\n", "---------------------------------\n", "alpha:\t\t\t0.07118657976388931\n", "beta:\t\t\t0.09312769770622253\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.2775201707975692e-05\n", "observation loss:\t0.00043730066842334305\n", "loss:\t\t\t0.0004600758701313187\n", "---------------------------------\n", "alpha:\t\t\t0.07126495987176895\n", "beta:\t\t\t0.09315630793571472\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.2440246673876958e-05\n", "observation loss:\t0.00040513632803426425\n", "loss:\t\t\t0.0004275765747081412\n", "---------------------------------\n", "alpha:\t\t\t0.07093115895986557\n", "beta:\t\t\t0.09285376965999603\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.379637703173749e-05\n", "observation loss:\t0.000377396431515866\n", "loss:\t\t\t0.0004011928085476035\n", "---------------------------------\n", "alpha:\t\t\t0.07107037305831909\n", "beta:\t\t\t0.09289316833019257\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.4129593958860064e-05\n", "observation loss:\t0.0003554528150134986\n", "loss:\t\t\t0.0003795824089723587\n", "---------------------------------\n", "alpha:\t\t\t0.07092618197202682\n", "beta:\t\t\t0.0926232784986496\n", "#################################\n", "Hessen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 13939839632050168337\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.00012887454340181894\n", "observation loss:\t0.7221651758419915\n", "loss:\t\t\t0.7222940503853933\n", "---------------------------------\n", "alpha:\t\t\t0.7135037779808044\n", "beta:\t\t\t0.4340278208255768\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.0003560147700500243\n", "observation loss:\t0.0037137569724703208\n", "loss:\t\t\t0.004069771742520345\n", "---------------------------------\n", "alpha:\t\t\t0.4555352032184601\n", "beta:\t\t\t0.602733314037323\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t0.00023383939537173091\n", "observation loss:\t0.0029848714025709298\n", "loss:\t\t\t0.003218710797942661\n", "---------------------------------\n", "alpha:\t\t\t0.37217655777931213\n", "beta:\t\t\t0.49129918217658997\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t9.719215021280095e-05\n", "observation loss:\t0.0028563128517048934\n", "loss:\t\t\t0.0029535050019176942\n", "---------------------------------\n", "alpha:\t\t\t0.2504614591598511\n", "beta:\t\t\t0.33068129420280457\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t3.161667787161135e-05\n", "observation loss:\t0.002754867235313043\n", "loss:\t\t\t0.0027864839131846544\n", "---------------------------------\n", "alpha:\t\t\t0.13993576169013977\n", "beta:\t\t\t0.1847681999206543\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.9223609270503412e-05\n", "observation loss:\t0.0026516612249337353\n", "loss:\t\t\t0.0026708848342042388\n", "---------------------------------\n", "alpha:\t\t\t0.08116737753152847\n", "beta:\t\t\t0.10745621472597122\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.9470803802075906e-05\n", "observation loss:\t0.0025288786134861794\n", "loss:\t\t\t0.0025483494172882553\n", "---------------------------------\n", "alpha:\t\t\t0.06312255561351776\n", "beta:\t\t\t0.08362644910812378\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.1219043399720576e-05\n", "observation loss:\t0.0023930128142645875\n", "loss:\t\t\t0.0024142318576643083\n", "---------------------------------\n", "alpha:\t\t\t0.05989883095026016\n", "beta:\t\t\t0.07923818379640579\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.3205540575863666e-05\n", "observation loss:\t0.0022738768915792564\n", "loss:\t\t\t0.00229708243215512\n", "---------------------------------\n", "alpha:\t\t\t0.05944523960351944\n", "beta:\t\t\t0.07870393246412277\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.4823616895325417e-05\n", "observation loss:\t0.00220260002652039\n", "loss:\t\t\t0.0022274236434157153\n", "---------------------------------\n", "alpha:\t\t\t0.059519123286008835\n", "beta:\t\t\t0.07885913550853729\n", "#################################\n", "Rheinland_Pfalz\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 152770810530107398\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.002772126077157629\n", "observation loss:\t1.0950133481128965\n", "loss:\t\t\t1.0977854741900541\n", "---------------------------------\n", "alpha:\t\t\t0.6856586337089539\n", "beta:\t\t\t0.5208848118782043\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00022388268008158716\n", "observation loss:\t0.0027049174959240968\n", "loss:\t\t\t0.002928800176005684\n", "---------------------------------\n", "alpha:\t\t\t0.4717918634414673\n", "beta:\t\t\t0.608841598033905\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t0.00010927090949247611\n", "observation loss:\t0.0018517853990116706\n", "loss:\t\t\t0.001961056308504147\n", "---------------------------------\n", "alpha:\t\t\t0.3354221284389496\n", "beta:\t\t\t0.43330153822898865\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t2.6036599494035383e-05\n", "observation loss:\t0.0016057842051256373\n", "loss:\t\t\t0.0016318208046196727\n", "---------------------------------\n", "alpha:\t\t\t0.17658430337905884\n", "beta:\t\t\t0.22841624915599823\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.190823352642496e-05\n", "observation loss:\t0.0014863556820451376\n", "loss:\t\t\t0.0014982639155715625\n", "---------------------------------\n", "alpha:\t\t\t0.09661097079515457\n", "beta:\t\t\t0.12519945204257965\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.1550563679652586e-05\n", "observation loss:\t0.00142989521296678\n", "loss:\t\t\t0.0014414457766464327\n", "---------------------------------\n", "alpha:\t\t\t0.07828530669212341\n", "beta:\t\t\t0.10161127150058746\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.2038664055840514e-05\n", "observation loss:\t0.0013906457955189877\n", "loss:\t\t\t0.0014026844595748282\n", "---------------------------------\n", "alpha:\t\t\t0.07609040290117264\n", "beta:\t\t\t0.09879869967699051\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.2392827041927555e-05\n", "observation loss:\t0.0013663980213518884\n", "loss:\t\t\t0.0013787908483938159\n", "---------------------------------\n", "alpha:\t\t\t0.07571322470903397\n", "beta:\t\t\t0.09827157855033875\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.2659535654802706e-05\n", "observation loss:\t0.0013541716043467286\n", "loss:\t\t\t0.0013668311400015314\n", "---------------------------------\n", "alpha:\t\t\t0.07550199329853058\n", "beta:\t\t\t0.0980120599269867\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.3095726756737297e-05\n", "observation loss:\t0.0013447096250848625\n", "loss:\t\t\t0.0013578053518415998\n", "---------------------------------\n", "alpha:\t\t\t0.07614234834909439\n", "beta:\t\t\t0.09880165755748749\n", "#################################\n", "Baden_Wuerttemberg\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 4222265198304818481\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.00017604537346963293\n", "observation loss:\t0.8474995916418482\n", "loss:\t\t\t0.8476756370153178\n", "---------------------------------\n", "alpha:\t\t\t0.4037242829799652\n", "beta:\t\t\t0.5226085186004639\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t2.310766492072365e-05\n", "observation loss:\t0.001807602894514205\n", "loss:\t\t\t0.0018307105594349287\n", "---------------------------------\n", "alpha:\t\t\t0.17659343779087067\n", "beta:\t\t\t0.23482048511505127\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t1.1998890833510916e-05\n", "observation loss:\t0.0013643600391141128\n", "loss:\t\t\t0.0013763589299476237\n", "---------------------------------\n", "alpha:\t\t\t0.08697587251663208\n", "beta:\t\t\t0.11564872413873672\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.222115725811731e-05\n", "observation loss:\t0.0013082035862835102\n", "loss:\t\t\t0.0013204247435416275\n", "---------------------------------\n", "alpha:\t\t\t0.0829523503780365\n", "beta:\t\t\t0.1104445606470108\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.2785286864692894e-05\n", "observation loss:\t0.0012728764517596237\n", "loss:\t\t\t0.0012856617386243167\n", "---------------------------------\n", "alpha:\t\t\t0.08277294039726257\n", "beta:\t\t\t0.11004000157117844\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.3170058190648497e-05\n", "observation loss:\t0.0012464935413506533\n", "loss:\t\t\t0.0012596635995413019\n", "---------------------------------\n", "alpha:\t\t\t0.08262190967798233\n", "beta:\t\t\t0.11002866178750992\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.3795838272957016e-05\n", "observation loss:\t0.0012322652956063007\n", "loss:\t\t\t0.0012460611338792576\n", "---------------------------------\n", "alpha:\t\t\t0.08275509625673294\n", "beta:\t\t\t0.11017636209726334\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.401400190303017e-05\n", "observation loss:\t0.0012122468102575398\n", "loss:\t\t\t0.00122626081216057\n", "---------------------------------\n", "alpha:\t\t\t0.0829361230134964\n", "beta:\t\t\t0.11046188324689865\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.412135533825693e-05\n", "observation loss:\t0.0011967200223653924\n", "loss:\t\t\t0.0012108413777036492\n", "---------------------------------\n", "alpha:\t\t\t0.08292967826128006\n", "beta:\t\t\t0.11051799356937408\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.4274810974874425e-05\n", "observation loss:\t0.0011844494812316268\n", "loss:\t\t\t0.0011987242922065012\n", "---------------------------------\n", "alpha:\t\t\t0.08281823992729187\n", "beta:\t\t\t0.11008965969085693\n", "#################################\n", "Bayern\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 5458608739487802652\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t1.4591161219739293e-05\n", "observation loss:\t1.2560969413983862\n", "loss:\t\t\t1.256111532559606\n", "---------------------------------\n", "alpha:\t\t\t0.045064520090818405\n", "beta:\t\t\t0.15782766044139862\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t1.0822382080226443e-05\n", "observation loss:\t0.0016587313676589986\n", "loss:\t\t\t0.001669553749739225\n", "---------------------------------\n", "alpha:\t\t\t0.07751639187335968\n", "beta:\t\t\t0.10780163109302521\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t1.326493577138281e-05\n", "observation loss:\t0.001387048763503246\n", "loss:\t\t\t0.0014003136992746287\n", "---------------------------------\n", "alpha:\t\t\t0.07714176177978516\n", "beta:\t\t\t0.10732277482748032\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.4370222884956935e-05\n", "observation loss:\t0.0011560626284930673\n", "loss:\t\t\t0.0011704328513780242\n", "---------------------------------\n", "alpha:\t\t\t0.07663959264755249\n", "beta:\t\t\t0.10674691945314407\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.6227548002830057e-05\n", "observation loss:\t0.0009499285734688245\n", "loss:\t\t\t0.0009661561214716545\n", "---------------------------------\n", "alpha:\t\t\t0.07557302713394165\n", "beta:\t\t\t0.1052836999297142\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.1450638106083336e-05\n", "observation loss:\t0.00022995372836320381\n", "loss:\t\t\t0.00025140436646928715\n", "---------------------------------\n", "alpha:\t\t\t0.07344948500394821\n", "beta:\t\t\t0.1024722307920456\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.24996007754181e-05\n", "observation loss:\t0.00020257784013641636\n", "loss:\t\t\t0.00022507744091183445\n", "---------------------------------\n", "alpha:\t\t\t0.07380025833845139\n", "beta:\t\t\t0.10282279551029205\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.2324196712360622e-05\n", "observation loss:\t0.00016580678530428352\n", "loss:\t\t\t0.00018813098201664414\n", "---------------------------------\n", "alpha:\t\t\t0.07407380640506744\n", "beta:\t\t\t0.10307995975017548\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.2254067879415563e-05\n", "observation loss:\t0.0001546944684189289\n", "loss:\t\t\t0.00017694853629834445\n", "---------------------------------\n", "alpha:\t\t\t0.07407157123088837\n", "beta:\t\t\t0.10298815369606018\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.2321499855686592e-05\n", "observation loss:\t0.00014829393724467317\n", "loss:\t\t\t0.00017061543710035975\n", "---------------------------------\n", "alpha:\t\t\t0.07407994568347931\n", "beta:\t\t\t0.10301422327756882\n", "#################################\n", "Saarland\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 4334325723513897921\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0011654964228303261\n", "observation loss:\t0.9786098364462503\n", "loss:\t\t\t0.9797753328690807\n", "---------------------------------\n", "alpha:\t\t\t0.4615498483181\n", "beta:\t\t\t0.571552038192749\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t7.955819211502135e-05\n", "observation loss:\t0.0033146681556725024\n", "loss:\t\t\t0.003394226347787524\n", "---------------------------------\n", "alpha:\t\t\t0.25908008217811584\n", "beta:\t\t\t0.3483922481536865\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t1.4182538231165783e-05\n", "observation loss:\t0.002840149989837045\n", "loss:\t\t\t0.002854332528068211\n", "---------------------------------\n", "alpha:\t\t\t0.09008684754371643\n", "beta:\t\t\t0.12187173217535019\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.2925853656681788e-05\n", "observation loss:\t0.002843591960539798\n", "loss:\t\t\t0.0028565178141964796\n", "---------------------------------\n", "alpha:\t\t\t0.06694114953279495\n", "beta:\t\t\t0.09084044396877289\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.3152602814300569e-05\n", "observation loss:\t0.0025360755042049795\n", "loss:\t\t\t0.00254922810701928\n", "---------------------------------\n", "alpha:\t\t\t0.06738315522670746\n", "beta:\t\t\t0.09130023419857025\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.3814993580950926e-05\n", "observation loss:\t0.00215175974950597\n", "loss:\t\t\t0.002165574743086921\n", "---------------------------------\n", "alpha:\t\t\t0.06819472461938858\n", "beta:\t\t\t0.09231330454349518\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.4857984053962785e-05\n", "observation loss:\t0.0019086805453131272\n", "loss:\t\t\t0.00192353852936709\n", "---------------------------------\n", "alpha:\t\t\t0.06856678426265717\n", "beta:\t\t\t0.09309273213148117\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.6116617514906474e-05\n", "observation loss:\t0.0017209607011732693\n", "loss:\t\t\t0.0017370773186881757\n", "---------------------------------\n", "alpha:\t\t\t0.06841585785150528\n", "beta:\t\t\t0.09284781664609909\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.711768184199155e-05\n", "observation loss:\t0.0016121459158344455\n", "loss:\t\t\t0.0016292635976764371\n", "---------------------------------\n", "alpha:\t\t\t0.0679813101887703\n", "beta:\t\t\t0.09238424152135849\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.8541229444604766e-05\n", "observation loss:\t0.0015515043304372056\n", "loss:\t\t\t0.0015700455598818103\n", "---------------------------------\n", "alpha:\t\t\t0.06735924631357193\n", "beta:\t\t\t0.09144578129053116\n", "#################################\n", "Berlin\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 7932940680616521669\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t3.224517838004168e-05\n", "observation loss:\t1.1552679496061828\n", "loss:\t\t\t1.155300194784563\n", "---------------------------------\n", "alpha:\t\t\t0.29569345712661743\n", "beta:\t\t\t0.6870818734169006\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00010112916103015561\n", "observation loss:\t0.0015041721900483221\n", "loss:\t\t\t0.0016053013510784779\n", "---------------------------------\n", "alpha:\t\t\t0.35542529821395874\n", "beta:\t\t\t0.4482330083847046\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t2.869267914742149e-05\n", "observation loss:\t0.0013793878539102014\n", "loss:\t\t\t0.001408080533057623\n", "---------------------------------\n", "alpha:\t\t\t0.19316795468330383\n", "beta:\t\t\t0.2436770349740982\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.8232751781217134e-05\n", "observation loss:\t0.0007928320145858059\n", "loss:\t\t\t0.000811064766367023\n", "---------------------------------\n", "alpha:\t\t\t0.10600779950618744\n", "beta:\t\t\t0.13384275138378143\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.90479828513754e-05\n", "observation loss:\t0.0006126909187520355\n", "loss:\t\t\t0.0006317389016034109\n", "---------------------------------\n", "alpha:\t\t\t0.0879134014248848\n", "beta:\t\t\t0.11104771494865417\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.9545509338195725e-05\n", "observation loss:\t0.00048773685109635735\n", "loss:\t\t\t0.000507282360434553\n", "---------------------------------\n", "alpha:\t\t\t0.08580637723207474\n", "beta:\t\t\t0.10842343419790268\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.0124334126435046e-05\n", "observation loss:\t0.00043693735782885003\n", "loss:\t\t\t0.0004570616919552851\n", "---------------------------------\n", "alpha:\t\t\t0.08481322973966599\n", "beta:\t\t\t0.10735959559679031\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.0093450325227465e-05\n", "observation loss:\t0.00039888709030314685\n", "loss:\t\t\t0.0004189805406283743\n", "---------------------------------\n", "alpha:\t\t\t0.08410066366195679\n", "beta:\t\t\t0.10636762529611588\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.0399692814870935e-05\n", "observation loss:\t0.0003723431731116101\n", "loss:\t\t\t0.00039274286592648103\n", "---------------------------------\n", "alpha:\t\t\t0.08403187245130539\n", "beta:\t\t\t0.1061118021607399\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.131072192346089e-05\n", "observation loss:\t0.00035024579763740383\n", "loss:\t\t\t0.0003715565195608647\n", "---------------------------------\n", "alpha:\t\t\t0.08376751095056534\n", "beta:\t\t\t0.10570374131202698\n", "#################################\n", "Brandenburg\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 15655016213739361487\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0002794371932842464\n", "observation loss:\t0.8411735535190675\n", "loss:\t\t\t0.8414529907123518\n", "---------------------------------\n", "alpha:\t\t\t0.7357388734817505\n", "beta:\t\t\t0.04533272609114647\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00013493774990737926\n", "observation loss:\t0.0018304308825513448\n", "loss:\t\t\t0.001965368632458724\n", "---------------------------------\n", "alpha:\t\t\t0.35654404759407043\n", "beta:\t\t\t0.4578307569026947\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t0.00010386838933441195\n", "observation loss:\t0.001194690256423133\n", "loss:\t\t\t0.0012985586457575449\n", "---------------------------------\n", "alpha:\t\t\t0.31506162881851196\n", "beta:\t\t\t0.4051268994808197\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t6.624891181261695e-05\n", "observation loss:\t0.0011171152219288931\n", "loss:\t\t\t0.0011833641337415102\n", "---------------------------------\n", "alpha:\t\t\t0.25698670744895935\n", "beta:\t\t\t0.3302673399448395\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t3.5370844688550187e-05\n", "observation loss:\t0.001091347164634795\n", "loss:\t\t\t0.0011267180093233453\n", "---------------------------------\n", "alpha:\t\t\t0.19155055284500122\n", "beta:\t\t\t0.24610023200511932\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.9723855558809227e-05\n", "observation loss:\t0.0010734805209309795\n", "loss:\t\t\t0.0010932043764897887\n", "---------------------------------\n", "alpha:\t\t\t0.13539303839206696\n", "beta:\t\t\t0.17401303350925446\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.5094013491464912e-05\n", "observation loss:\t0.0010636219158029663\n", "loss:\t\t\t0.0010787159292944312\n", "---------------------------------\n", "alpha:\t\t\t0.10052646696567535\n", "beta:\t\t\t0.12927913665771484\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.4325563673493561e-05\n", "observation loss:\t0.0010530609953758423\n", "loss:\t\t\t0.001067386559049336\n", "---------------------------------\n", "alpha:\t\t\t0.08530533313751221\n", "beta:\t\t\t0.10977748036384583\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.4399560504386535e-05\n", "observation loss:\t0.0010478151378648924\n", "loss:\t\t\t0.001062214698369279\n", "---------------------------------\n", "alpha:\t\t\t0.080631323158741\n", "beta:\t\t\t0.10381346195936203\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.4483101019997631e-05\n", "observation loss:\t0.0010441744911092233\n", "loss:\t\t\t0.001058657592129221\n", "---------------------------------\n", "alpha:\t\t\t0.07953765243291855\n", "beta:\t\t\t0.10242581367492676\n", "#################################\n", "Mecklenburg_Vorpommern\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 8399486875136359603\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.00034153211206085145\n", "observation loss:\t1.097828394954361\n", "loss:\t\t\t1.0981699270664218\n", "---------------------------------\n", "alpha:\t\t\t0.7574425339698792\n", "beta:\t\t\t0.6663650274276733\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00025895545256498186\n", "observation loss:\t0.0005790449954033842\n", "loss:\t\t\t0.0008380004479683661\n", "---------------------------------\n", "alpha:\t\t\t0.4888583719730377\n", "beta:\t\t\t0.6359072923660278\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t3.7590211958231956e-05\n", "observation loss:\t0.0003492026710983946\n", "loss:\t\t\t0.0003867928830566265\n", "---------------------------------\n", "alpha:\t\t\t0.20943115651607513\n", "beta:\t\t\t0.27214691042900085\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t1.4881055093231621e-05\n", "observation loss:\t0.00027063260791176263\n", "loss:\t\t\t0.00028551366300499426\n", "---------------------------------\n", "alpha:\t\t\t0.09634149819612503\n", "beta:\t\t\t0.1257249116897583\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.537396895225519e-05\n", "observation loss:\t0.00021734249190665582\n", "loss:\t\t\t0.000232716460858911\n", "---------------------------------\n", "alpha:\t\t\t0.08585992455482483\n", "beta:\t\t\t0.11154957115650177\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.5866584538297486e-05\n", "observation loss:\t0.00019354260290220808\n", "loss:\t\t\t0.00020940918744050558\n", "---------------------------------\n", "alpha:\t\t\t0.08528280258178711\n", "beta:\t\t\t0.11108478903770447\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.6145939841786524e-05\n", "observation loss:\t0.0001758587024465201\n", "loss:\t\t\t0.00019200464228830662\n", "---------------------------------\n", "alpha:\t\t\t0.08527565002441406\n", "beta:\t\t\t0.11119267344474792\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.6214058631511763e-05\n", "observation loss:\t0.000164334346756168\n", "loss:\t\t\t0.00018054840538767977\n", "---------------------------------\n", "alpha:\t\t\t0.08535285294055939\n", "beta:\t\t\t0.11122466623783112\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.6553639159047397e-05\n", "observation loss:\t0.00014843898174186977\n", "loss:\t\t\t0.00016499262090091717\n", "---------------------------------\n", "alpha:\t\t\t0.0853889212012291\n", "beta:\t\t\t0.11183805763721466\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.6811181873796448e-05\n", "observation loss:\t0.00014021636748523463\n", "loss:\t\t\t0.00015702754935903107\n", "---------------------------------\n", "alpha:\t\t\t0.08514168113470078\n", "beta:\t\t\t0.11118575930595398\n", "#################################\n", "Sachsen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 12757898824694314612\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.010381513636560579\n", "observation loss:\t0.7979489260144937\n", "loss:\t\t\t0.8083304396510543\n", "---------------------------------\n", "alpha:\t\t\t0.7238389253616333\n", "beta:\t\t\t0.7561345100402832\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00041424078392426406\n", "observation loss:\t0.0016251225706323748\n", "loss:\t\t\t0.002039363354556639\n", "---------------------------------\n", "alpha:\t\t\t0.5777003765106201\n", "beta:\t\t\t0.7931675314903259\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t0.0002834650638877763\n", "observation loss:\t0.0008590534470000332\n", "loss:\t\t\t0.0011425185108878094\n", "---------------------------------\n", "alpha:\t\t\t0.46391794085502625\n", "beta:\t\t\t0.6323843002319336\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t8.652548416886418e-05\n", "observation loss:\t0.0006229426885627511\n", "loss:\t\t\t0.0007094681727316152\n", "---------------------------------\n", "alpha:\t\t\t0.25098681449890137\n", "beta:\t\t\t0.34183838963508606\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t3.24092428824984e-05\n", "observation loss:\t0.000515074993710707\n", "loss:\t\t\t0.0005474842365932053\n", "---------------------------------\n", "alpha:\t\t\t0.10828661918640137\n", "beta:\t\t\t0.1478162407875061\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.9336412944929297e-05\n", "observation loss:\t0.00044062483681068674\n", "loss:\t\t\t0.00046996124975561606\n", "---------------------------------\n", "alpha:\t\t\t0.07218044996261597\n", "beta:\t\t\t0.09892558306455612\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.9510863465530634e-05\n", "observation loss:\t0.0003918260448351125\n", "loss:\t\t\t0.00042133690830064316\n", "---------------------------------\n", "alpha:\t\t\t0.06806929409503937\n", "beta:\t\t\t0.09305132925510406\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.9408919180355372e-05\n", "observation loss:\t0.00035089720159718596\n", "loss:\t\t\t0.00038030612077754136\n", "---------------------------------\n", "alpha:\t\t\t0.0683760717511177\n", "beta:\t\t\t0.09365562349557877\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.938539699849815e-05\n", "observation loss:\t0.0003187493568443539\n", "loss:\t\t\t0.000348134753842852\n", "---------------------------------\n", "alpha:\t\t\t0.0683979019522667\n", "beta:\t\t\t0.09362331032752991\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.9146354314017973e-05\n", "observation loss:\t0.0002851539886845559\n", "loss:\t\t\t0.0003143003429985739\n", "---------------------------------\n", "alpha:\t\t\t0.06854306161403656\n", "beta:\t\t\t0.09383908659219742\n", "#################################\n", "Sachsen_Anhalt\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 7508811073025543387\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0019773816487353925\n", "observation loss:\t0.6980015008109026\n", "loss:\t\t\t0.699978882459638\n", "---------------------------------\n", "alpha:\t\t\t0.7059639692306519\n", "beta:\t\t\t0.23129405081272125\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00014423117665490347\n", "observation loss:\t0.0013705682576004242\n", "loss:\t\t\t0.0015147994342553277\n", "---------------------------------\n", "alpha:\t\t\t0.37947550415992737\n", "beta:\t\t\t0.49926432967185974\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t8.444127656723522e-05\n", "observation loss:\t0.0009264393921535957\n", "loss:\t\t\t0.001010880668720831\n", "---------------------------------\n", "alpha:\t\t\t0.29921653866767883\n", "beta:\t\t\t0.39356961846351624\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t3.644238881155032e-05\n", "observation loss:\t0.0007754738850995117\n", "loss:\t\t\t0.0008119162739110621\n", "---------------------------------\n", "alpha:\t\t\t0.20257757604122162\n", "beta:\t\t\t0.26624321937561035\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t1.9455134513427085e-05\n", "observation loss:\t0.0006865927892246918\n", "loss:\t\t\t0.0007060479237381189\n", "---------------------------------\n", "alpha:\t\t\t0.1290203481912613\n", "beta:\t\t\t0.16966265439987183\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t1.8601496559390347e-05\n", "observation loss:\t0.00046853758584249517\n", "loss:\t\t\t0.0004871390824018855\n", "---------------------------------\n", "alpha:\t\t\t0.09499318152666092\n", "beta:\t\t\t0.12481442093849182\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t1.8580676514686676e-05\n", "observation loss:\t0.000405090775290461\n", "loss:\t\t\t0.0004236714518051477\n", "---------------------------------\n", "alpha:\t\t\t0.08519528806209564\n", "beta:\t\t\t0.11206679046154022\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t1.8679651079166707e-05\n", "observation loss:\t0.0003895323269276687\n", "loss:\t\t\t0.0004082119780068354\n", "---------------------------------\n", "alpha:\t\t\t0.08396591246128082\n", "beta:\t\t\t0.11031294614076614\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t1.9095145207241514e-05\n", "observation loss:\t0.0003778155564320379\n", "loss:\t\t\t0.00039691070163927944\n", "---------------------------------\n", "alpha:\t\t\t0.08371642231941223\n", "beta:\t\t\t0.10994027554988861\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t1.9236424958747645e-05\n", "observation loss:\t0.00037222143728634884\n", "loss:\t\t\t0.0003914578622450965\n", "---------------------------------\n", "alpha:\t\t\t0.08365359902381897\n", "beta:\t\t\t0.109827920794487\n", "#################################\n", "Thueringen\n", "\n", "Learning Rate:\t0.001\n", "Optimizer:\tAdam\n", "Scheduler:\tPolynomialLR\n", "\n", "torch seed: 1236462033540073050\n", "\n", "Epoch 0 | LR 0.0009999\n", "physics loss:\t\t0.0017758392706115366\n", "observation loss:\t1.0746469041593008\n", "loss:\t\t\t1.0764227434299123\n", "---------------------------------\n", "alpha:\t\t\t0.6377124786376953\n", "beta:\t\t\t0.5896137952804565\n", "#################################\n", "\n", "Epoch 1000 | LR 0.0008998999999999944\n", "physics loss:\t\t0.00014405395131575973\n", "observation loss:\t0.0020276932539319494\n", "loss:\t\t\t0.002171747205247709\n", "---------------------------------\n", "alpha:\t\t\t0.39872676134109497\n", "beta:\t\t\t0.5288918018341064\n", "#################################\n", "\n", "Epoch 2000 | LR 0.0007998999999999963\n", "physics loss:\t\t2.9969632447984006e-05\n", "observation loss:\t0.0014727341115173761\n", "loss:\t\t\t0.0015027037439653602\n", "---------------------------------\n", "alpha:\t\t\t0.16710390150547028\n", "beta:\t\t\t0.2223258912563324\n", "#################################\n", "\n", "Epoch 3000 | LR 0.000699900000000002\n", "physics loss:\t\t2.289432557603554e-05\n", "observation loss:\t0.0006503687049192125\n", "loss:\t\t\t0.000673263030495248\n", "---------------------------------\n", "alpha:\t\t\t0.08648668229579926\n", "beta:\t\t\t0.114932581782341\n", "#################################\n", "\n", "Epoch 4000 | LR 0.0005999000000000103\n", "physics loss:\t\t2.3788764131524054e-05\n", "observation loss:\t0.0004438800235084639\n", "loss:\t\t\t0.000467668787639988\n", "---------------------------------\n", "alpha:\t\t\t0.07927881926298141\n", "beta:\t\t\t0.10504459589719772\n", "#################################\n", "\n", "Epoch 5000 | LR 0.0004999000000000169\n", "physics loss:\t\t2.352874142312453e-05\n", "observation loss:\t0.000401509054425722\n", "loss:\t\t\t0.00042503779584884653\n", "---------------------------------\n", "alpha:\t\t\t0.08081863075494766\n", "beta:\t\t\t0.10703548043966293\n", "#################################\n", "\n", "Epoch 6000 | LR 0.0003999000000000128\n", "physics loss:\t\t2.382104014896947e-05\n", "observation loss:\t0.0003698274179399119\n", "loss:\t\t\t0.00039364845808888136\n", "---------------------------------\n", "alpha:\t\t\t0.08221215754747391\n", "beta:\t\t\t0.1088729128241539\n", "#################################\n", "\n", "Epoch 7000 | LR 0.00029990000000000366\n", "physics loss:\t\t2.3716773798096455e-05\n", "observation loss:\t0.0003567061953487072\n", "loss:\t\t\t0.00038042296914680366\n", "---------------------------------\n", "alpha:\t\t\t0.08274330198764801\n", "beta:\t\t\t0.1095130667090416\n", "#################################\n", "\n", "Epoch 8000 | LR 0.0001998999999999976\n", "physics loss:\t\t2.3686958886304885e-05\n", "observation loss:\t0.00034746307303046606\n", "loss:\t\t\t0.0003711500319167709\n", "---------------------------------\n", "alpha:\t\t\t0.0832931250333786\n", "beta:\t\t\t0.11006748676300049\n", "#################################\n", "\n", "Epoch 9000 | LR 9.989999999999895e-05\n", "physics loss:\t\t2.4044727584509886e-05\n", "observation loss:\t0.0003414492701996428\n", "loss:\t\t\t0.00036549399778415266\n", "---------------------------------\n", "alpha:\t\t\t0.08396995812654495\n", "beta:\t\t\t0.11077935993671417\n", "#################################\n", "{'Schleswig_Holstein': (0.07234875112771988, 0.09158661216497421), 'Hamburg': (0.07496267557144165, 0.09750521928071976), 'Niedersachsen': (0.06774494796991348, 0.09020024538040161), 'Bremen': (0.05323466286063194, 0.07339970022439957), 'Nordrhein_Westfalen': (0.07125284522771835, 0.09296130388975143), 'Hessen': (0.05895804986357689, 0.07794705033302307), 'Rheinland_Pfalz': (0.0758102759718895, 0.0983838364481926), 'Baden_Wuerttemberg': (0.08272247761487961, 0.10993821918964386), 'Bayern': (0.07409387081861496, 0.1029800996184349), 'Saarland': (0.06732958555221558, 0.09144697338342667), 'Berlin': (0.08372718840837479, 0.10568778961896896), 'Brandenburg': (0.07942323386669159, 0.10222956538200378), 'Mecklenburg_Vorpommern': (0.0849723070859909, 0.11136287450790405), 'Sachsen': (0.06821469962596893, 0.09359294921159744), 'Sachsen_Anhalt': (0.08359980583190918, 0.10989443957805634), 'Thueringen': (0.08433268964290619, 0.1114044040441513)}\n" ] } ], "source": [ "state_params = {}\n", "for state in state_lookup.keys():\n", " print(state)\n", " covid_data = np.genfromtxt(f'./datasets/SIR_RKI_{state}_1.csv', delimiter=',')\n", " dataset = PandemicDataset(state + '_synth_sir', ['S', 'I', 'R'], state_lookup[state], *covid_data)\n", "\n", " problem = SIRProblem(dataset)\n", " plotter = Plotter()\n", "\n", " dinn = DINN(3, dataset, ['alpha', 'beta'], problem, plotter)\n", "\n", " dinn.configure_training(1e-3, 10000, scheduler_name='PolynomialLR', verbose=True)\n", " dinn.train(create_animation=True, animation_sample_rate=100, verbose=True)\n", "\n", " state_params.update({state : (dinn.get_regulated_param('alpha').item(), dinn.get_regulated_param('beta').item())})\n", "\n", "print(state_params)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAALqCAYAAAAl2EdgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5fYH8O+03U1ILyTUAAJCIPRACEV6lSpYL4pi7yi2a7+Kgt57setFxYL6Q3rvoUgNzYTeawikkN52p/3+CAk7OwmkbDK7m/N5nvt4c2Yzc4YNYc+873teRlVVFYQQQgghhBBCCHEa1ugECCGEEEIIIYQQT0PFNiGEEEIIIYQQ4mRUbBNCCCGEEEIIIU5GxTYhhBBCCCGEEOJkVGwTQgghhBBCCCFORsU2IYQQQgghhBDiZFRsE0IIIYQQQgghTkbFNiGEEEIIIYQQ4mRUbBNCCCGEEEIIIU7GG50AIYR4qpSUFKxYsQKHDh1CVlYWvLy80KxZMwwdOhSdO3fWvf6XX36BqqqYPHlyaSw1NRX//Oc/UVBQUBozmUwICwtD3759MXToUPD8rX+VFxUV4aWXXkJWVlZpjGEYBAYGIioqCqNHj0aDBg2qdb+kdmVmZuLPP/9EQkICGIbB559/DpPJZGhOqqpi37592LZtG06fPo3c3FyYzWY0atQIXbp0wcCBA+Hj42Noju6qoKAAq1evxr59+5CamgqGYdCgQQP06dMHgwYNAsdxRqdICCHEARXbhBBSA44cOYJPPvkE9erVQ2xsLEJDQ1FYWIiEhAR8+umnGDx4MB5++GHN91y8eFF3nvT0dBQUFGDkyJFo2LAhAMBms+HUqVOYN28e9u/fjzfeeAOCINw0n9zcXGRlZeGOO+5A69atAQCKoiA1NRXbtm3Dnj17MG3aNLRt29ZJfwKeZ/PmzYiOjnaJYjE/Px/vvfce8vLyMGDAALRu3drwQjs3NxdfffUVDh06hAYNGqBXr14ICQmBKIo4f/48lixZglWrVuGpp54q82ETKV9GRgbef/99ZGdnIyYmBr179wbDMDh9+jTmzp2LnTt34vXXX4eXl5fm+2riZzYtLQ2nT59Gz549nXZOQgjxVFRsE0KIk8myjP/9739o0qQJ3n77bZjN5tJjY8eOxfLlyzFv3jy0aNECd9xxR4XO2blzZ0RGRpZ+PXToUPTp0weffvopFi5ciPvuu69C52nTpo3umqNGjcL06dPx5ZdfYtasWZp8SbFr167h+++/B8/z6NOnj9HpYN26dUhPT8cHH3yAFi1aGJ0OcnJy8M477yAnJwfPPPMMYmNjwTCM5jWZmZmYM2cOzp07R8V2Jf3xxx8oKCjARx99VPrQrcTRo0cxc+ZM/PLLL3jyySdL4zX1M7tt2zYsWrSIim1CCKkAWrNNCCFOdvnyZaSnp2PYsGFlFq6jR4/GQw89pPvQXFkdO3ZE3759ERcXB1EUq3weHx8fTJ48GVlZWdi7d2+1cvJUiqJo/mu0gwcPolWrVi5RaKuqim+//RbZ2dl477330KtXL12hDQCBgYF4+eWXMX78eAOydG+JiYno3r17mb8zIiMj8dJLL6Fdu3aaeE39zCqKAlVVnXpOQgjxVFRsE0KIk0mSdMvXDB06FK1atar2tTp06ICCggKkpKRU6zy33347LBYLLly4UO2cSM3Lzs5GaGio0WkAAOLj45GYmIiHHnoITZs2NTodjyTL8k2Pd+zY0SVmXBBCCNGiaeSEEOJkTZs2hb+/P1avXo1u3brBYrHU2LVKzm21Wqt9LpPJBJvNpokVFBRg3bp12L17N1JTU2E2m9GsWTMMGTIEXbp00Z1j6dKlOHHiBJ588kksWLAABw4cQG5uLho3boz33ntPM9J/9epVrF69GomJicjKyoKfnx8iIyMxcuTIMou2Tz75BG3btoWXlxfWr1+PlJQU+Pn5ITY2FnfddRc4jsOqVauwdetWpKenw9/fH3379sXYsWPLbCJXVFSE1atXY9euXUhLS4O3tzfatm2LcePGoXHjxgCK/1yfffZZ5OfnAwD+97//4X//+x8EQcC7776rG1n+66+/sGnTJiQlJYFhGERERGDkyJG6adPbt2/HsmXL8K9//QtLlizB7t27kZmZidDQULz55psIDg4u8z369NNP8ffffwMobsC3Y8cOAMCwYcPw4IMPlr4uLy8P69atQ3x8PNLS0mA2mxEREYFBgwYhOjq6Wu+bo82bNyM4OBh9+/Yt9zW3kpqaihUrViAxMRHZ2dkIDAxEdHQ0Ro8eDV9fX81rp02bhrFjx8Lf3x/Lli3D2bNnAQAjRozAhAkTADj/Z0VVVfz111/YsmULkpKSoChKaXOygQMH6r7n+PHj+OabbzB9+nRs2bIF27dvx9WrV2GxWNCiRQuMGDECUVFRFf7ziYqKQnx8PIYPH176s1meyv7MHj16FGvXrsXp06dRUFCA4OBgREdHY/jw4fD39y993Y4dO/DNN9+Ujmrff//9AIDmzZtj+vTpmnPm5ORg5cqV2Lt3LzIyMuDn54eOHTti7NixCAkJ0f3Zbtu2DRs3bkRycjJUVUWjRo3Qv39/3HHHHWBZGhcihLgvKrYJIcTJeJ7Ho48+is8++wwvvfQShgwZgttvvx3Nmzd3euFd0lStuqOc165dQ25uLurXr18au3r1KmbOnImMjAzExMSgX79+sFqt+Pvvv/Hvf/8bAwYMwJQpUzRThq9evYozZ87gnXfeQb169TBgwAAEBQXB29tbU7AdOHAAX331FUwmE3r16oX69esjMzMTu3btwq5duzBlyhTd2vKkpCQcO3YMkiThjjvuQP/+/XHmzBmsWLECZ8+ehcViQUJCAvr164eGDRvizJkzWLx4MZKSkvDiiy9qzpWdnY2PPvoIycnJ6NmzJ/r374+cnBzEx8fj7bffxksvvYSoqCiYzWY89thjuHr1KubNm1faYI7neTRq1Kj0fKqq4quvvsKuXbvQvn173HnnnVBVFQcPHsSnn36Ku+++G2PHjtX8OV2+fBkffvghCgoKSpuJmUwmTYHjaOzYsejWrRv+7//+Dw0bNiz9M7KfJXH58mXMnDkTOTk5iImJQf/+/WGz2ZCYmIhZs2ahb9++eOKJJ6r0vjlSFAXHjx/HgAEDqlwUnTx5Ep9++ikYhkHv3r0RGhqKlJQUbNq0CXv37sXbb7+tefiQnJyM1atX49KlS+jRowfuuusueHt7o3nz5qWvcebPis1mw6xZs5CYmIioqCiMGjUKPM/j5MmTmDt3Lnbs2IFXX31V04QsJSUF6enpeO+995Cfn49evXphwIAByMzMxN69ezFjxgw88MADGDFiRIX+jO6//368//77eOutt9CvXz906NABt912W5k/KxX9mQWAhQsXYsmSJWjUqBEGDBgAX19fJCUlYcOGDfjrr78wbdq00uK8ffv2eOyxx7Bv3z4cOHAAjz32GABofmcAwJUrVzB9+nTk5+ejd+/eaNiwITIyMrB9+3bs27cPb7zxBiIiIkpf/+eff2L58uXo2rUrevbsCUVRcPDgQXz//fc4deoUHn/88Qr9GRFCiCuiYpsQQmpA165dMX36dMydOxcLFiyAqqpgGAbNmjVDv3790L9//wpt2XUzOTk5WL9+PaKiouDn51etcy1atAgsyyImJgZA8VT4WbNmQRRFTJ8+XTOaNnbsWKxduxa//vorGjRogJEjR2rOlZeXh549e2Ly5Mllrt29evUqvvrqK7Ro0QJTp05FvXr1So/ddddd+O677/DDDz+gUaNGaNmypeZ7bTYbXn/9dc2oYOPGjTF//nwAwBtvvFHmsRMnTuD2228vjf/www9ITU3Fu+++q7nGuHHj8N///hfffPMN/vOf/8Db2xvdu3dHWloa5s2bV2aDOQBYu3Ytdu3ahcmTJ2PIkCGa882fPx8LFixAZGRkaSf4EkFBQXj//fcr/LPQqlUrtGrVCkuWLEF4eDj69++vOS6KImbNmgUAumZaY8aMQVxcHH788UeEh4drin/g1u9bWbKzsyGKoq7gcnxNyWgowzDw9fUtLcyLiorwxRdfICAgAG+99ZameBw5ciTeffdd/PDDD3jttdc057x06RLefPNNtGnTptzrOutnZe7cuTh8+DBefPFFdO/evTQ+YsQIHD9+HJ9++im+/fZbvPLKK7oceJ7Hp59+qhmdnzBhAr7++mv88ccf6Nixo64ALktYWBhmzJiBP//8E5s3b8b69esBFD9k69mzJ0aMGKH5HVCRn9mdO3di8eLFGDlyJO677z7Nw5Jx48Zh5syZmDVrFmbMmIF69erB398f/fr1Q3p6Og4cOKD72QOKH758+eWXkGUZM2bMQFhYWOmx0aNHY/r06fj6668xY8aM0uvFxcUhJiYGzz//fOlrR44cic2bN+PgwYO3/LMhhBBXRnNzCCGkhjRt2hRvvvkm/ve//+Gll17CsGHDUFRUhJ9++gnTp09HUVFRhc+Vl5eHrKwsZGVlITU1FTt37sS7776LwsJCPPDAAxU+T0FBQel5MjMzcfLkSXzxxRfYsmUL7r777tIRxD179uDSpUt47LHHypy2OmzYMMTExGDZsmW6qecsy+K+++4rt2BbtWoVAOD555/XFNoAIAgCnnjiCQQFBWHJkiW6723VqpVu+u2IESPAMAxatmxZ7rHExMTS2JUrV7B//36MHz9eV8ybzWY88cQTyM3Nxe7du8vM35GiKFizZg06deqkKbRLTJgwAY0aNSotkOzde++91X7oYi8+Ph7Jycl4/PHHy2ymNXDgQPTu3RsrV67ULT241ftWllu9dv78+Xjqqafw9NNP4+mnn8ZTTz2Fb775pvT4rl27kJGRgSeffFI3ShsaGopJkyYhMTERV65c0RyLjo6+aaENOOdnJSMjA5s3b8bIkSM1hXaJNm3a4L777sPff/9dOp3d3r333qubBs/zfOmMkG3btt30Huz5+fnhsccew/fff4+33noLEyZMQHBwMJYvX47XX38dly9frvC5AGDx4sVo1aoV7r//ft2shKCgIDz//POl919RR44cwfnz5/HQQw9pCm0A8PX1xaOPPoqkpCQcOXKkNG42m8ts8Ni/f3+88MILlbonQghxNTSyTQghNczHxwfdunVDt27dcP/992PRokVYunQpFi1aVOFC+bPPPtPFmjdvjueee65STanmzp2LuXPnamJBQUF4/PHH0a9fv9LYwYMHERQUhI4dO5Z7rv79+2P37t04c+aMZn/uoKCgm06XP3jwILp06VLuaLzJZEJsbCxWrlwJRVE0hUBZI6gmkwmBgYEIDw8v91hWVlZp7Pjx4wCAtm3bauIlWJZFo0aNSqdH30paWhrS09MxfPjwMs8HFDegK1lrba+6HekdHTp0CEFBQWjfvn25r+nTpw+2b9+Os2fPVup9K4ufnx9MJhNSU1PLPD5ixAjNKPEff/yBzMzM0q+PHTuGoKAgBAcHl/ln16xZMzAMg+PHj6NBgwal8Yr8uTnjZ+Xw4cNQFOWmW/T17dsXv/zyCxISEnTrocsbtfbx8UF4eDiSk5NveR9l5RkZGYnIyEiMHz8e+/fvx+eff45vv/0WH374YYXOkZaWhuTkZDz66KPlPjBp1KgRWrVqhYSEBNx5550VOu+xY8fA8zxuu+22Mt/PkJAQ1KtXD8eOHSt92DFhwgR8//33+OCDDxATE4NWrVqhSZMm4DiuQtckhBBXRsU2IYTUIo7jcPfdd+Po0aOIj4+vcLF93333lRbVV69exS+//IL27dtXeusn+8ZMLMsiICAAjRo10o1sZWVlISgo6KbnKhkFz8jIqFQOWVlZuiZJjkJCQiDLcmmzrBLlrQtmWfamx+y3P8rJyQEAvPPOOzfN4WZTo+1lZ2cDKPtBhj0vLy9drDKjyBXNpaLvW3kPBiqDZVncfvvt2LdvHyZNmqR7D3x8fDQPbJYvX67LNyMjA08//fRNr1NYWFil3MqLV/RnpeTP6GY/ryaTCb6+vrh27Zru2M3eXz8/PxQUFJR7vKK6du2KESNGYPny5UhNTa3Qz23JfZXXiK9EcHAwzp07V+FccnJyIEnSLUek7d/Pfv36oUmTJlizZg2WLFmCrKwseHl5ITY2Fvfcc49mLTwhhLgbKrYJIcQALVu2xIYNGyr8+ttuuw2RkZEAirf5uXDhAlatWoXo6GjdVOibadKkyU1Hq0v4+fndclpqSZFdka3OHM99qwK9pHCp7Lkren0AeOGFF246klvRGQMl05/Hjx9/0+3cblUEO0Nl3rfqrvMvMXDgQHz22WfYvn17pTuS+/v7o379+nj44YfLfQ3Lsrq17rWl5M8oIyNDNy26hM1mQ25u7i235yqLs/arLvm5y87OrlCxbX9fN5ORkVGpv4N+fn6wWCy3LLZvu+023dfPPvssgOJlHvv27cPSpUtx6dIlvPPOO9SRnBDitqjYJoQQJ1uyZAnOnj2LqVOnlvshMS0trVrF1z/+8Q8cPnwY3333HT766COYTKYqn6ss7du3x/bt23H48OFypyT/9ddfVTp3u3btsHfvXuTl5ZU5aiVJEnbt2lWlc1dEZGQkGIaBKIro0aNHhb6nZFS6rBHW0NBQhISEIDMzs0IPMmpSRd83Ly8vXcFTVdHR0ejcuTN++eUXtGjR4pZbU9mLjIzEjh070KhRo1vOdjBCu3btwDAMtm7dirvvvrvM1+zYsaNKhXZFHTx4EP/3f/+HV199VTPLw15aWhoA7QOdm/3M1q9fH/Xr18e2bdvKbHQGFBe9J0+e1I1+l5y3oKAA3t7emmPt2rXD0qVLYbFYNMsHKqNBgwYYNWoUfH19MXv2bFy5cqVCTeQIIcQV0aNCQghxsubNm2P//v348ccfy2z8c/DgQezfvx+xsbFVvoa3tzcee+wxXLlyBQsWLKhOumWKiYlBeHh46YddRxs2bMD27durdO4777wTkiThyy+/1E2jlSQJs2fPRkpKSpXOXRFhYWHo3r07fvnlF5w/f153/Nq1a7pmVz4+PmjQoAH27dunez3Lshg1ahS2bNmCLVu26I4XFRXh8OHDzkr/pm71vsXFxWH79u0YOnSo07ahYxgGTz75JPz8/PDee+9hz549Zb7uypUrSEtL06zFjYmJQUhICD777LPS6f32zp8/X+b07NoSGhqKXr16YcWKFdi/f7/u+KlTp/D777/XaA5NmjRBeno6/vvf/2rWu5e4du0aVqxYgTZt2mgK45v9zDIMgzFjxuD48eOYN2+eboQ9MzMTX3zxRZkj7yWj6GWdNzIyErfddhu++eabMtfxX7lyRTPz4uTJk5g5c2aZr83NzQUAWrtNCHFrNLJNCCFO1qlTJ0yaNAl//PEHEhMT0b17d4SFhaGoqAinT5/GgQMH0Lp1a4wZM6Za14mKisKAAQOwevVqREdHO3WqrclkwksvvYQZM2bgn//8J3r06IFmzZrBarUiISEBp0+fxoQJE7Bw4cJKn7tx48Z48skn8d1332HatGno1asXQkNDkZWVhV27dqGoqAhDhw7FunXrnHY/jh577DHMmDEDb775JqKjo9GiRQswDIOLFy9i7969aNu2rW67qbvvvhuff/45Zs6cic6dO6N169Zo1qwZAGDw4MG4ePEiZs+ejS1btqB9+/aoV68erl69ir1795Y+XLjZntXOYDKZMHXqVMycOVPzvtlsNiQkJOD48eOIiYnBhAkTnHpdX19ffPDBB/j666/x2WefoVGjRujUqRNCQkJgtVpx4sQJJCYmwtvbW7PlmMViwdSpU/HJJ59g6tSpiI2NRcOGDVFQUIBTp07h4MGDuPfeezF69Gin5lsZjzzySGmx26FDB0RGRoLneZw6dQp79+7FoEGDKty5vioCAwMxdepUfPHFF5g2bRq6deuGpk2bgmEYXL58GTt37oSXl1eZ+1Hf7Ge2f//+SEpKwvLly5GQkIDo6Gj4+PggOTkZO3bsQOPGjdG5c2dcunRJc87WrVujc+fO+PHHH3Hp0iU0btwY0dHR8Pb2BsMweOGFF/Dxxx/jlVdeQc+ePdGkSROIoohz587hwIED6NevH6ZMmQKg+P0/e/YsXnvtNfTs2RMRERGQZRnnzp3D7t27ERsbW2YzO0IIcRdUbBNCSA0YPnw42rVrh7i4OCQmJiIjI6O0y/WkSZMwePBg3YhNkyZNdOcJDg5GQEBAuVPOH3jgAZw4cQJHjx69abHt6+uL4ODgSn1wbdy4MT766COsXr0ae/fuxa5du+Dt7Y3IyEhMnz4dQUFBiIuL06xlDQ8Pr1DjrZ49e6Jx48ZYuXIldu3ahdzcXAQEBKBbt24YM2YMLly4gH379mm2TWrYsGG5+Tdq1KhSx7y9vfHOO+9gw4YN2LFjBw4dOgRFUdC4cWPcc889GDRokO48PXr0wIsvvoglS5Zg7ty56NWrF5588snS41OmTEHHjh0RFxeHjRs3oqCgAKGhoejduzdGjBihKbTDwsKqNTW2cePG5X5/kyZNMGPGjNL3LT4+HoIgICIiAs8//3zpXur2Kvq+3YyPjw9ee+017N+/H3/99Rd27NiB3NxcmM1mNGjQAOPHj8fgwYN1W2E1a9YMH3/8MVavXo19+/Zh27ZtEAQBLVu2xNSpUxEdHa15/c1+Dirymsr+rFgsFrz55puIi4vDX3/9haVLl4JhGDRv3hwvvvgiunbtiqSkJM37Ub9+fQQGBt60uVfDhg0r3CAvMjISM2fORFxcHPbt24f9+/dDkiSEhIRg8ODBpdOuHd3qZ3bSpElo37491q1bh/Xr18NqtaJBgwa46667MGTIECxdurTM0e0XXngB8+fPx/bt25Gfn4+AgIDSJRQhISH48MMPsXbtWsTHxyM+Ph4sy6JZs2Z49NFH0adPn9LzNG3aFDNnzsSaNWvw999/Y+fOnWAYBg0bNsQDDzyAwYMHV+jPhxBCXBWjOqs7ByGEEEIIIYQQQgDQmm1CCCGEEEIIIcTpqNgmhBBCCCGEEEKcjIptQgghhBBCCCHEyajYJoQQQgghhBBCnIyKbUIIIYQQQgghxMmo2CaEEEIIIYQQQpyMiu1acPr0aZw+fdroNGoM3Z/78/R79PT7Azz/Hun+3J+n3yPdn/vz9Huk+3N/nn6Pnnh/VGwTQgghhBBCCCFORsU2IYQQQgghhBDiZFRsE0IIIYQQQgghTkbFNiGEEEIIIYQQ4mRUbBNCCCGEEEIIIU5GxTYhhBBCCCGEEOJkVGwTQgghhBBCCCFOxhudQG2RZRmiKBp2bQAoKioy5Po1zZn3JwgCOI6r9nkIIYQQQgghxEgeX2yrqoqrV68iKyvLsBxKivxz584ZlkNNcvb9BQQEIDw8HAzDOOV8hBBCCCGEEFLbPL7YLim069evD29vb0MKOKvVCgAwm821fu3a4Kz7U1UVBQUFSE1NBQA0aNCg2rkRQgghhBBCiBE8utiWZbm00A4ODjY6HVgsFqNTqFHOuD8vLy8AQGpqKurXr09TygkhhBBCCCFuyaMbpJVMb/b29jY4E1IZJe+XUWvsCSGEEEIIIaS6PLrYLkFrf90LvV+EEEIIIYQQd1cnim1CCCGEEEIIIaQ2UbFNCCGEEEIIIYQ4GRXbdcD8+fOxYMGCap3jww8/xKFDh5yUESGEEEIIIYR4No/uRk6KZWRkVPscqampTjkPIYQQQgghhNQFNLJNCCGEEEIIIcQlqIpidApOQyPbhBBCCCGEeDjhyhUwogg1IgKMIBidDiEAANVmg5KUBOXiRfgfOgQhJQWFOTnw+uwzMKz7jwvXqWJbUVXkF9X+dYusxf8VVbXc19SzAGwlt7wSRRErV67Ejh07kJaWBl9fX3Tu3Bnjx49HYGBghc6RmJiIlStX4ty5cwCA5s2bY9SoUejQoYPutZIkYf78+fjrr7+Qm5uL0NBQ3HHHHRg4cCBYh78MBQUFWLJkCfbs2YOsrCwEBAQgJiYGY8aMoX3PCSGEEEJqiaqqEP/8E6EbNgAAbEeOwPTMMx5RyBD3ohYWQrl48cb/LlyAeuUKcH0ku579a69eBdOwoTGJOlGdKrbzi4Cpc60GZlD+tWdNMsPXq+Jnstls+PDDD1FQUIBx48ahadOmyMjIwNq1a/HPf/4T7733HsLCwm56jjVr1mDevHkYNWoU7rvvPgDAgQMH8J///Af33nsvhg8frnn9b7/9hi5duuCZZ56Bt7c3zpw5g4ULF+L8+fN47LHHSl+Xm5uLd955B76+vvjHP/6B8PBwpKSkYPny5di3bx/ef/99+Pj4VPxmCSGEEEJIlUhr10K6XmgDgJyQADkhAXyXLgZmRTydmpOjKaqVixehpqZW+PuVixfBUrFNjLJ8+XLk5OTgo48+Kh0pbtKkCTp27IjPP/8cP/zwA958881yv//q1av4448/MHXqVHSx+2XbokUL3Hbbbfjvf/+LLl26aAr2Dh064Lnnniv9OiIiAs2aNcPbb7+NIUOG4PbbbwcA/P777/D19cU777wDnudLc+vUqRM++OAD/PHHH3j88ced+udBCCGEEEK0pP37IS5cqI9v2EDFNnEKVVWhZmTcGKm+XmCrmZnVOq9y4QIQE+OkLI1Dxbab2rFjB4YPH17mlOzx48fjtddeQ2ZmZrnTyXft2oWmTZtqCu0SnTt3RtOmTbFr1y6MHTu2NN6xY0fda1u0aIH69evj1KlTuP3226EoCnbt2oUXXnihtNAuwfM8xowZgy+++AKPPvqobuo5IYQQQghxDvncOdh++KHMY8rJk1AuXAAbEVHLWRF3pioK1NTU0pHqkv8hL696J2YYMGFhyA8KghgWhvpduoBt2tQ5SRuMim03lZGRgfDw8DKPlYxGp6amlltsp6WloUGDBuWePywsDNeuXdPEOI4r87UBAQHIz88HAOTk5EAUxZvmZrPZkJWVhaCgoHKvTwghhBBCqkZJT4f1iy8Am63c14gbNsD86KO1mBVxJ6okQb1yRV9YW6u5JJfjwDRsCLZpU7AREcX/bdIEjMWCy6dPF7+kZUsn3IFrqFPFdj1L8dro2lZ0/YfSYi7/2vUslTtnQEAAUstZ91ASl2W53O9XFAVJSUnlHk9NTS1z1Ls86vXmb76+vuB5HikpKWhYxjqLiuRGCCGEEEKqRi0oKC60c3I0ccnPD7xdTN6zB+qECWACAmo5Q+Jq7DuCKxcuQL1wAcrly4AkVe/EJhPYxo1vFNUREWAaNqxT3fCdXmynpaXh119/xdGjR1GvXj0MGjQIo0aNAlNGp+2cnBzEx8dj586d4DgOb731FoDi5l8JCQnYuXMnTpw4gf/85z9O6WDNMkylmpA5i3D91i2WynUbv5mePXtizZo16N27N7y8tDe1dOlSzddeXl7Izs7WnePixYvYt28funXrpoknJibi3LlzeOqppyqdF8dxiI6OxvLly9GhQwfNaLgsy1ixYkWlz0kIIYQQQm5NlWVY//c/qJcva+Js27ZIHzQIYd9+C6akgJJliJs3wzRunAGZEqOoBQVQLl26MWJ94QLUq1dLO4JXmZeXpqhmmzYFEx5e57veO7XYLioqwowZM9CkSRO8+eabyMzMxJw5c2Cz2TBhwgTd66dNmwZAP2X566+/RkJCAlq3bo3s7Gzk5+fTdlEOxo4di8TERLz77rsYN24cmjRpgszMTKxbt05XWLdu3Ro//fQTTp06hYiICJhMJgDFTctmz56Nc+fOoVOnTuA4DgkJCVi+fDkmTpyIRo0aVSm3f/zjH3jnnXfwwQcfYNSoUQgLC0NKSgpWrFhBI9qEEEIIITVAVVWIf/wB5fBhTZxp0ADmp5+GkpyMgvbtUS8hofSYtGULhJEjwVz/bEg8i5qToymqlUuXKtURvFx+fjcK65IR65CQMgdX6zqnFtubN2+GJEl49tlnS5tj8TyPWbNmYejQofD19dW8fvr06QgMDMSOHTuwaNGi0vgjjzwCQRCQn5+PF154wZkpegyLxYJ3330XS5Yswbx580qbofXq1QujRo3Ca6+9Bj8/PwBAjx49cOzYMXz88ccYO3YsRo8eDaB4T+2nn34aCxYswLp166AoCpo2bYqnn34a3bt311wvJCQEAeVMMwoKCtKsvw4MDMT06dOxcOFC/PTTT6V7cvfv3x+xsbF488036eEJIYQQQogTSRs2QNqyRRv09YX5hRfAXP/cld+tm6bYRl4e5N27wfftW2t5EudTVRXqtWuatdXqhQtQs7KqfW4mJERTVLNNm9LSg0pwarG9e/duxMTEaLpQR0VFwWKxYP/+/ejXr5/m9aGhoWWex9/fHwBKm26RslksFtx3332le2Tb++KLL0r/P8uyeOSRR/DII4/oXhcREVE6w+Bm3nnnnXKP2e+xXcLPz6/ca37zzTe3vB4hhNQpqlr9tXGEkDpL+vtviPPna4M8D/Ozz4K1+7wthYaCbdcOypEjpTFxwwZwffrQqKS7UFUoV69qR6wvXgSqWzcxDJjwcH3jMh8f5+RdRzmt2FYUBefPn9dsFQUUF3pt2rTBmTNndMU2IYQQUtcply+j/nffgcvKgjU6GqaHHgLjZUCDEUKIW1LOn4dt9uzih3Z2TFOmlNnVWRg8GFa7YltNToZy9Ci4du1qPFdSdfKJEwj+808IyckoEsXqnYzjwDRqpJ0K3qQJmJs0cyZV47Riu6CgAKIolo5K2/P390dmNTc2L8vp6+3hyyPLMkRRhLW6LeqryXaTbReMUrJ2uqioqNrncvb9Wa1WiKKICxculLvdWG26cOGC0SnUOE+/R0+/P8Dz79FT74+x2RA6Zw7461P95L17kXPhAq7dcw8UDxtN8NT3sATdn/tzx3tkc3IQ+ssv4Bw+i+X07Yu8oCDA7rNy6f01bYrQ4GAIdv2SspctQ4abF1ru+P5VFJuTg/qzZ8NchSJbEQRI9etDDAuDLTwcYlgYpNBQwPEz9qVLTsq26tzpPWxZwe3JnFZslxS0Za3F9fb2RnJysrMuRZwgODjY6BQIIaTO892yBbzDw2ghNRUhv/6KjHvugUS/qwkh5WCsVgQvWAAuL08TL4iKQl5s7E2+kUF+t24IWLeuNGQ5cwb8tWv0O8dF+cTHg61Aoa1YLBDDwor/V1JYBwUBdbwjuJGcVmybrz8NKygo0B0rKCgo7YDtTLd6olBUVIRz587BbDbDYqnkRtY1wBVyKHHvvfc6/ZzOvD9BEBAREeFSf2YVfYLlzjz9Hj39/gDPv0dPuj/5+HFY9+8v8xifnY36v/8O8/PPlzkN1J150ntYFro/9+cO96jKMqxffQXFobM0e/vtCH72WYTw5X/Eb9myJdQmTVC4bRtg97m94cmTME2aVGM51xZ3eP8qQ83NReHBg7o44+8Pxn59dUQEmOBgj1h770nvodOKbW9vbwiCgJycHN2x7OxsTbdqQgghpC5TCwth++mnm78oPx/Wf/8bpieeAN+5c+0kRghxC+Kff0JxKMCYsDCYn34azE0K7dLXms3g+/WDtHp1aUzauRPCuHHUEMvFiBs2AHbLBFSGgdf774Ot4ha9pHY5bU4By7Jo1qwZjh8/rokrioLjx4+jWbNmzroUIYQQ4tbEBQugpqdrYrmxsWAd/60URdi+/hqi43Y+hJA6S4yLgxQXpw36+BRv8VWJQpnv31+7btdmg/TXX07KkjiDWlAAadMmTaywfXsqtN2IUyfwd+/eHfHx8aXNtwDg8OHDKCgoQNeuXZ15KUIIIcQtyYcPQ9q6VROzNmmC3L59YX7lFbBRUdpvUFWIc+fCtngxVIduw4SQukVOTIT4f/+nDZZs8RUWVqlzsUFB4Lp108SkTZug0jaELkPavBkoLCz9WgWQ27OncQmRSnNqsT1w4ECwLIuvvvoK586dw4EDBzB79myMGDECAQEBOHz4MKZNm4akpCRnXpYQQghxC2pBAWw//6wNms3IGjmyeI9TiwXmZ58F16uX7nulVatg++kn+iBMSB2lXLoE6//+p9/i6+GHwbVqVaVz8oMGab5WMzMhl9NLgtQu1WqFuH69JlbUpg1kamLnVpxabFssFrz++uuQJAkffvghfvjhB/Tv3x933303AKCwsBBZWVm6raKCgoIQVsbTOG9vbwQHB5fZ4ZwQQghxN7Z586A6dh+fOBFyYGDp1wzPw/Tww+BHjdJ9v7xjB6xffgnVCds2EkLch5KZCevnnwMO29kKo0eDj4mp8nm5Fi3AOjSjkjZurPL5iPNIf/0FOHSap1Ft9+O0BmklQkND8fLLL5d5LDo6GtHR0bp4VFQUohynzQGoV68evvzyS2enSAghhNQ6OTER8o4dmhgbGQm+Xz/gzBlNnGEYmMaOBRMQAPG33zQjWcrhw7B++mnx+kw/v9pInRBiINVqLX7I5vCgjouJAT96dLXPzw8aBJvdftzK2bOQT5/2uJ0Q3IkqipDstmYDADYqClJ4uEEZkaqiTdcIIYSQGqbm5cH6yy/aoJcXTJMn33SbFqFfP5ieeQYQBE1cOX8eRR9/DCUlpSbSJYS4CFVRYJs9G+qFC5o426rVLX9/VBTXpQsYh12DaHTbWPLOnfpZUCNHGpQNqQ4qtgkhhJAaZvvjDyA7WxMz3XMP2AqsveM7d4Z52jSgXj1NXE1NRdFHH0E+e9apuRJCXIc4fz7khARNjKlfH+ZnngHj8BCuqhiOAz9woCYm798P5do1p5yfVI4qyxDXrtXE2Ntvr/K6fGIsKrbd2JYtW/Ddd98ZnQYhhJCbkPbtgxwfr4mxUVHgeveu8Dm4li1h+ec/wYSEaA/k5cH66aeQExOdkSohxIWImzdD2rBBG/T2Ll5C4uvr1GvxffsCZvONgKLotpwitUPeuxdqaqomRqPa7ouKbTeWnp6OtLQ0p54zLy8PzzzzDPIcGjIQQgipPDUnB7a5c7VBb2+YHnqo0tM/2fBwWN54A0yTJtoDNhusX30Fadu2amZLCHEV8uHDEP/4QxvkuOItvmpg3S7j7Q3eYRcEaetWasZYy1RFgbh6tSbGNmsGNjLSoIxIdVGxTTQKCwuRmZmJQrs9/QghhFSeqqrFhbbDw0vTAw+Ates+XhlMQAAsr72m/+ClKLD9/DPE5ctpL25C3JySlATrt98CiqKJmyZPBnf77TV2XX7QIMD+IWBhIaSdO2vsekRPTkyEevmyJsaPHOmUtfnEGE7vRu7KVEUB8vNr/7rXnwqqolj+i+rVA8PSsw9CCPEUcnw85AMHNDGuSxdwPXpU67yMlxfML7wA208/Qd69W3NMXLYMalYWhAceAMNx1boOIaT2qdnZxVt8OYwo83feCT42tkavzYaFgevQQbMsRdq4EXy/fvQZtRaoqgpp1SpNjGnYEFynTsYkRJyiThXbyM9H4YsvGnb5m40Ve332GVDF9TdpaWlYuHAhEhMTYbVa0bBhQwwePBj9+vXTvO7ChQtYuHAhTpw4AVmW0bJlS0ycOBEtr2/t8PnnnyP++rrCF154AQBw3333YZTdXq+nT5/GsmXLcOLECUiShCZNmmDAgAHoUc0Pj4QQ4kmUzEzYfv9dG/TxgWnSJKeMUDA8D9OUKRADAyGtWaM5Jm3dCjUrC6YnngBjvwaTEOLSSrf4ysjQxLnoaAhjxtRKDvzgwZpiW01JgXLoELiOHWvl+nWZcuwYlHPnNDFh5Eh60OHm6lax7YGuXbuGd955B927d8cLL7wALy8vHD16FL/99hvOnDmDKVOmAABOnjyJjz76CD179sTUqVMhCAL27t2L6dOn49VXX0Xbtm3x2GOPYciQIfjggw/w9ttvIzAwEMF2nXLj4+Px9ddfY+DAgRg1ahTMZjOOHDmCX3/9FRcuXMCDDz5o1B8DIYS4DFVVYfv1V6CgQBM3TZrk1H2xGZaFacIEMIGBEP/v/zR7ccuJibD++98wP/+80xspEUKcT1UU2H74QVdssbfdBtOUKbVWcLFt2oBp3BhqUlJpTFy/nortWiCuXKn5mgkNBRcdbVA2xFmo2HZzqampmDRpEoYPH14aa9asGdq1a4e3334b3bt3R1RUFObMmYPevXvj0UcfLX1dy5YtYTab8csvv2DGjBnw9vZGyPVOtyEhIQgNDS19bUFBAWbPno0HHngAQ4cOLY1HRETgtttuw/Tp09G9e3e0adOmFu6aEEJcl7xjB5SDBzUxrnt38N261cj1hIEDwfj7w/b994AklcaVs2dR9PHHME+dCtbu9zkhxPWIixbplp0wISEwP/ec07b4qgiGYSAMHgzbTz+VxpTjx6FcugTWsTkjcRr59GkoJ05oYsLw4bQcyAPQvAQ35+PjgyFDhujiERER6NKlC3bt2oXU1FRcvHgRI8vYNmDQoEG4dOnSLbuaHzhwAIIgYPDgwWVeq2PHjti+fXvVb4QQQjyAkpEB27x52qC/P0wPPFCj1+W7dYP55ZcBb29NXE1JQdFHH0G5cKFGr08IqTpp61ZIDvsq43pvBiNmpnA9egAOs3DEjRtrPY+6RHRcqx0QAK6G1+iT2lG3Rrbr1SteG13Liq43ubBYLOW/qF69Sp+X4zg0bNgQXDlPvcLCwnDx4kVkZWUBAF5//fUyX6eqKvLy8jQj2Y4yMjJQv359sOVMY6pfvz4uXbpUuRsghBAPoqpq8WiQw24OpgcfBOPjU+PX51q3huX112H97DPtms+cHBTNnAnz00+Da9++xvMghFScfPQobL/9pg1yHMxPPw22YUNDcmIEAXy/fpCWLy+Nybt3Q73rLqcuhSHFlIsXdbOh+KFDa3VGA6k5darYZli2yk3IqnXd639ZmJsV21UQGhqKlJQUKIpSZhGckpKCoKAgBF7fYubNN99EvTKKep7nERYWVpxjOY17AgICkJ6eXu610tLSIMtydW6HEELcmrR1K5SjRzUxLjYWfC12kmUbNYL5n/8sLrjt1lzCaoX1iy9gmjy5xjsaE0IqRklOhvWbb/RbfE2aBM7gfZWFfv0grV59Y2mKJEHasgXC6NGG5uWJHPfVho8P+DvuMCYZ4nQ0jdyNdenSBTabDXFxcbpj58+fx4EDBxAbG4vQ0FA0a9YMCQkJaNSoke5/JYU2APj6+oLjOKSmpuquVVhYiM2bN+uudenSJSQkJDj9/gghxF0oaWkQ58/XxJjAQJjuu6/Wc2EDA4v34nbcj1eWYfvxR4irV9Ne3IQYrHSLL4eZMPzw4eD79DEoqxsYf3/dNoXi5s0338aWVJpy9Srkffs0MWHwYNpJwoPUqZFtT+Pt7Y3HHnsM33zzDZKTkxEbGwtBEHD06FEsXrwYgwYNQrt27QAAjz/+OD744ANcu3YNvXv3hr+/P5KTkxEXF4eYmBgMHDgQAGA2m9GjRw/89ttvmDx5Mho2bAhfX1/4+Pjg4Ycfxvfff4/k5GTExMTAZDLh2LFjWLJkCRo1amTkHwUhhBhGVZTi6eNWqyZumjwZjMMa6trCeHvDPHUqbD/+CHnvXs0xcdEiqJmZEO67j7aUIcQAqs0G61dfQU1P18S5rl0hjB9vUFZ6wuDBkHfsuBHIyYG8Zw/4Xr2MS8rDiKtXa3aSgJcX+AEDjEuIOB0V224uJiYGQUFBWLZsGT755JPSva8nT56M3r17l76uWbNm+PDDD7FkyRJ8++23yMvLQ/369REbG4teDr80H330Ufzyyy/45JNPEB4ejunTpwMA+vbti+DgYCxduhRbtmwBUNzR/JlnnsGlS5dwgRrwEELqICkuTtdFluvb1/D10YwgwPT44xADAiBt2KA5Jm3aVLwX92OPgTGZDMqQkLpHVRTY5syBcvasJs42bw7To4+61AMwtkkTsG3aQDl+vDQmbtgALja23GWHpOKU9HTIu3drYnz//oY9pCU1g4ptD9C6dWu88sort3xdgwYN8PTTT9/ydRaLBU888QSeeOIJ3bF27dqVjpaXKCoqQuvWrW/eAI4QQjyQcvUqxMWLNTEmOBimu+82KCMthmVhuvfe4r24Haa5ywcOwPrf/8L87LO10sCNEAKIS5fqZpswwcHFW3y54IMvfvBg2OyKbfXSJSgnToCjrV6rTVq3DrDvd2QyQShj1x/i3lzn8RkhhBDiRkpGqGCzaeKmRx4B4+VlUFZlE4YOhenxxwFe+4xdOXUKRTNmQLl2zaDMCKk7pO3bITls8VS6xZe/vzFJ3QLXoQOY+vU1MceZMqTy1OxsSH/9pYnxffpQt3cPRMU2IYQQUgXS+vVQzpzRxPgBA1x2xIfv0QPmqVMBhwcB6pUrsH70ERTavpGQGiMfPw7br79qgywL85NPgnXhvjcMy4IfNEgTkxMToaSkGJSRZxDXr7/R6R0AOA78sGHGJURqDBXbhBBCSCUpyckQlyzRxJj69SFMmGBQRhXDtWkDy2uvgQkI0MTVrCwUzZwJ+dgxYxIjxIMpV6/C+vXX2inDAIQHHjC8t0NF8L16aR/SqSqkMnbCIRWj5udDctjdh4uNBRsUZFBGpCZRsU0IIYRUgnp9Cy3NqATDFE8fd4PtWtgmTWD+5z/BNGigPVBYCOusWZDi441JjBAPpObmFm/xVVCgifNDhkDo18+YpCqJsVh025FJ27dDdbgnUjFSXJx29wqGgTB8uHEJkRpFxTYhhBBSCdLq1VDOn9fE+MGDwbVqZUxCVcAGB8Py+utgHXOWZdhmz4a4bp0xiRGXxaenw+vwYShpaUan4jZUUSze4is1VRPnOneGMHGiQVlVDT9wIGDfgdxqhbRtm3EJuSm1qAjixo2aGBcdDTYszKCMSE2rE8W2ar9/HXF59H4RQlyVcukSxBUrNDGmQQMI48YZlFHVMT4+ML/8MrguXXTHxPnzYZs3D6qiGJAZcTXyoUMI/eEHBK5YgaI33oD1q68gnzhB/17fhKqqsP30E5TTpzVxNiKieMs9F9riqyLYkBDd7wopLg6qw9R4cnPS1q1Afr4mJowcaVA2pDa419/0ShIEAQBQQNNc3ErJ+1Xy/hFCiCtQJQnWH37QrrssmT7uglv2VAQjCDA99RT4AQN0x6QNG2CbPRuqKBqQGXEVqijC9ttvYEoKa1WF/PffsH7yCYo++ADS7t1Q7ZdUEACAuGwZZIclGUxgIEzPPecWy03Kwg8ZovlavXYN8t9/G5SN+1FFUTdriOvUCWzjxgZlRGqDR++zzXEcAgICkHp9+o63tzcY+ykwtcRqvy7DAznr/lRVRUFBAVJTUxEQEACO45xyXkIIcQZxxQqoSUmaGD9iBLgWLQzKyDkYloVw//3Fe3EvWqQ5Ju/dC2tOTvFe3N7eBmVIjCRt3gw1Pb3MY+qFC7B9/z2YBQvADxwIvm9f2rMdgLRrFySHGTAwm2F+4QWwgYHGJOUE7G23gW3eHMq5c6UxacMG8N26GZiV+5B27ACyszUxnka1PZ5HF9sAEB4eDgClBbcRxOujAp46Uuvs+wsICCh93wghxBXI585BWr1aE2MaN4YwapRBGTkXwzAQRowAExAA288/a0bvlRMnUDRzJswvvujWhQKpPDU/X7dsoszXZWVBXLQI4ooV4GNjwQ8eDLaO/jsunzxZ/HfIHsMUb/HVpIkhOTkLwzDgBw+Gbfbs0phy+jTkc+fANW9uYGauT5UkSGvWaGJs27Zu/7CW3JrHF9sMw6BBgwaoX79+aVFY2y5cuAAAiIiIMOT6Nc2Z9ycIAo1oE0JciiqKxd3H7dcvcxzMU6aA8bCHqHxsLBh//+JtiuxmLalJSbB+9FFxwe3CewIT5xJXr9Z30R42DPK+fWWPdttskLZsgbRlC9iOHSEMGQL29tsNmVVoBCUlBdavvtLuVABAuP9+cB06GJSVc3Fdu4IJDISamVkakzZsAPf44wZm5frkPXt0f2dorXbd4PHFdgmO4wwr4kqua7FYDLl+TfP0+yOE1G3i0qVQr1zRxIQ77wTbtKlBGdUsrl07WF57DUWffQbk5JTG1YwMFM2YAfNzz4Fr3dq4BEmtUNLTITl0TS5s0wbBEydCvesuyAkJkNavh3LqVNnfn5gIa2IimCZNIAwZAq57dzC8537sVPPyirf4cmh+xQ8aBKGMngjuiuF58AMGaJacyPv2QZk4kWa+lENVlOIHV3bYFi3AtmljUEakNnl0gzRCCCGkOuTTpyE5NLRhIyLAjxhhUEa1g42IgOWf/wTjuB1NQQGs//kPpH37jEmM1BpxyRLNCK3Kssi54w4Axev8+S5dYHn9dZjfegtcjx5AOd211UuXYPvxRxS++irElSuh5ubWSv61SRVFWL/+GmpKiibOduwI4Z57DMqq5vB9+wL2TSFlGdKmTcYl5OLkAwfKfGBbV2Z81HVUbBNCCCFlUK1W2ObMAey3N+J5mKZM8egRuhJsaCgsb7wB1nFNoSTB9t13EOPijEmM1DjlwgXIu3drYvmdO0MOCtK9lmveHObHH4dl5kzww4YB5TXSy86GuGQJCl95BbZff4WSnFwTqdc6VVWL7+fkSU2cadIE5scfd7stviqC8fEBHxuriUlbt0L18IbAVaGqqm5Um2ncGKyHLCsgt+Z5vwEIIYQQJxAXLdKNVAljxtSpNcuMry/M06aB69RJe0BVIf7xB2wLF9Je3B5GVVXYFizQBr28kNe7902/jw0KgmniRHh9+imEBx4AU79+2S8URUhbt6Lo7bdR9NlnkI8ccev9uqWVKyHv3KmJMQEBMD//PBgPXl7HDxqkDeTnQ9q1y5hkXJhy+DDU672NSggjR9Kodh1CxTYhhBDiQD5+HJLDyC3bokXxyF0dw5jNMD39NPjrU4jtSWvWwPbjj7TPsgdRDh+GcuyYJiYMHw6lglu/MRYLhAEDYJk+HabnngN7++3lX+vQIVj/+18UvfcepG3b3G5Pdyk+HuLSpdqg2Qzz88+DLWMWgCdhGzQAGxWliUkbN9LDNwfiqlWar5mwMHC0VVqdQsU2IYQQYkctLITtp5+0QUEonj7ugVNCK4LhOAiTJkEYO1Z3TN69G9bPP4daWFj7iRGnUhUFtoULNTEmMFA/ilkBDMuC79QJlldfheWdd8D17AmU06hWTUqC7eefi9d1L1sG1a4xn6uST58uXmZij2FgevxxsB66+4wjweHnQr1yBcqRIwZl43rkkyd1DQSF4cPr7L8jdRW924QQQogdccEC/RYtd91VZ/cNLsEwDIRRo2CaPFnXDEs5ehRFn3wCNSvLkNyIc8g7d0JNStLEhLFjwZjN1TovGxEB86OPFq/rHjkSqFev7Bfm5EBcvhyFr7wC688/Q7l8uVrXrSlKaiqsX36p3+LrnnvAOy658GBsu3ZgGjbUxESHDvZ1mW5UOyio+KETqVOo2CaEEEKukw8fhrR1qybGtm4NfuBAgzJyPXyfPjA//7y2GzEA9eJFFH38MZSrVw3KjFSHarXqpkQzjRuDc2iEVR1sYCBM48cXr+ueNEnf7b6EJEHetg1F77yDov/+F/KhQy6zrlvNz4f1iy+AvDxNnO/fv0ozANwZwzC60W3l8GGPaX5XHcr581AOH9bE+GHD6kRzTaJFxTYhhBACQC0ogO3nn7VBsxmmRx6haX8OuKgomF99FfD11cTV9HQUffQR5NOnDcqMVJW0cSPUzExNzDRhQo387DNmM4R+/WD58MPi9c1t25b7WuXIEVg/+wxF77xT3PHaZnN6PhWlShKs33yj28aJjYqCcN99dbLpFdezJ+Djo4k57s9eFzmOasPPD3yfPsYkQwxFnx4IIYQQALZ583TFhjBxItjQUIMycm1c8+awvPGGvut0fj6s//43pIQEQ/Iilafm5uq2J2IjI8G2b1+j12VYFlzHjrBMmwbLe++B69ULKGfkT01Ohu3XX4u3Dlu6FGp2do3mpru+qsI2dy6U48c1caZxY5ifeAJMOevRPR1jMumaJ0o7d0J1GPmvS5TkZMgHDmhiwuDBYBxmA5G6gYptQgghdZ6cmAh5xw5NjI2MBN+vnzEJuQk2LKx4L+5mzbQHRBG2r76CuGWLEWmRShJXrACKijQx04QJtTpSyzZpAvMjj8Drk0/AjxqlGy0tlZcHacUKFL76Kqxz5kC5dKlW8pPWrIG8fbs26O9fvMWXl1et5OCq+P79tc3vrm/vVlc5PriCt3fxnxGpk6jYJoQQUqepeXmw/vKLNujlBdPkyXVyWmhlMX5+ML/yim4bIKgqxLlzi0chXWS9LdFTUlIgOTwU4WJiDOuozfj7wzR2LLw+/RSmBx8E06BB2S+UJMg7dqDovfdQ9O9/Q05MrLFtp6S9eyEuWqQNmkzFU+CDg2vkmu6EDQwEFx2tiUmbNtXJLQGVtDTI8fGaGD9wYJ1/IFOXUbFNCCGkTrP98QfgMCXVdM899CG6EhiLBeZnnwXXu7fumLRiRfFWarJsQGbkVsTFi7XvDc9DGDfOuISuK5mebPngA5hffBFsu3blvlY5dgzWL75A0dtvQ9yyBarV6rQ85LNnYfvxR4fkGJgeewyc44yOOkwYPFjztZqVBXnfPoOyMY60di1g/9DHZIJADTbrNCq2CSGE1FnS/v26UQg2KqrMopHcHMPzME2eXDwF2IG8YweCFi4EY2BzK6InnzmjK4j4QYPAhoQYlJEewzDgoqJgeeklWN5/H1yfPuWv6756FeLcucXruhcvhuLQg6GylPT04i2+RFETFyZMAN+lS7XO7WnYZs3AtmqliUkbNtSpWS1KZiYkh6UGfL9+YBwaSZK6hYptQgghdZKamwvb3LnaoLc3TA89RNPHq4hhGJjGjoUwaRLg8GdoOXsWwb//XqcbJ7kSVVUhLligDXp7QxgxwpiEKoBt3BjmyZOLtw4bPRrw8yv7hfn5kFatQtFrr8H6ww9QLlyo9LXUggJYP/8cyMnRxPk77gA/dGhV0vd4vMPotnL+PJQ6tDOBtH69du91ngc/ZIhxCRGXQMU2IYSQOqekszByczVx0/33gw0MNCgrzyH06wfTs8/q9uI2Xb0K648/1qnRLlclJyRAOXVKExPuvBNMvXoGZVRxjJ8fhDFj4PXJJ8W9FRo1KvuFsgx51y4U/etfKPrkE0gJCRVa161KEqzffgvVYb9oNjISwv3308O4cnCdO4NxmBUhbdhgUDa1S83L0/U+4Hv1on9PCBXbhBBC6h55zx7I+/drYlznzuBiYgzKyPPwnTrB/PLLuq7SysGDus7vpHapkgRx4UJNjAkJAT9ggEEZVQ0jCOD79IHl/fdhfvllfZM+O8qJE7B9+SWK3noL4qZN5a/rVlWIf/wB5ehR7bUaNoT5qafAlDOFnRRv5cY7rE+WDxyAkpZmUEa1R9y4EbBfJsOy4IcPNy4h4jKo2CaEEFKnqFlZsP32mzbo4wPTpEk0YuVkXMuWsLzxhm66r23ePCgZGQZlRaTt26FevaqJCePHgxEEgzKqHoZhwEVGwvLii7B88EHxvs/l3IuakgLx999ROG0abAsX6n4O6+3Zo9+2ys8P5hdeAOPtXVO34DH4Pn0Ai+VGQFUhbdpkXEK1QC0shBQXp4lx3buDDQ01KCPiSqjYJoQQUmeoqgrrr78CBQWauOkf/wDj729QVp6NDQ+H6aGHtMHCQth++ommkxtALSyEuGyZJsZGROi2bnJXbMOGMD34YPG67nHjgPL+XhcUQFqzBkWvvw7r7NmQz5+H5eRJ+DkWhoIA83PPuVTTOFfGeHmBd2gwKW3bBrWw0KCMap60ebPu3xRh5EiDsiGuhoptQgghdYa8YweUxERNjIuOBu8hhYar4jt1QoHDFF/l6FH9CCKpceK6dbqmX8Ldd4NhPesjIePrC+HOO+E1cyZMU6aAadKk7BfKMuT4eFg/+ACBixfDcW6L6dFHwbVoUeP5ehJ+4EBtg8TCQkgeunREtdkgOqxL57p0AduwoUEZEVfjWb9ZCSGEkHIoGRmwzZunDfr5wfSPfxiTUB2TPWgQZIctcMT58+vEek5XoWZlQVq3ThNjO3QA16aNQRnVPEYQwMfGwvLuuzC/8grYjh3Lf63DTAvhrrvAd+tW0yl6HLZ+fXCdOmliUlxchZrTuRtp2zb9wysa1SZ2qNgmhBDi8VRVhe3nnwGHqYymhx4C49DAi9QM1WJBluO2UlYrbHPmeOSHcFckLl+ubeLEMDBNmGBcQrWIYRhwbdrA8vzzsEyfDr5fP123fHtc797U4KoaHLcBU1NTITvMKnJ3qiRBWrtWE2PbtwfbrJkxCRGXRMU2IYQQjydt3QrlyBFNjIuNBe8w+kJqlrVFi+LmVXaUkyd1zYWI8ynJyZD++ksT43r3BlvetlkejA0Ph2nSpOJ13XfdBSYgQHu8TRtqmFhNbOvWYJo21cQ8bRswefduqA4N9lx5n3piDCq2CSGEeDQlLQ3i/PmaGBMYCNN99xmUUd0mTJyo24tXXLQIikN3bOJc4sKFgP00aZMJwpgxxiXkAhgfHwgjRsAycyZMjz2G/M6dkdO3L8wvvkhbfFUTwzAQHEa3lRMnoFy8aFBGzqUqCsTVqzUxtlUrcLffblBGxFVRsU0IIcRjqYoC208/AQ576poeeoi28TEI4+UF08MPa4OiCNuPP0KVZWOS8nDyiRO6Kbz8kCFgAwMNysi1MDwPPiYG2cOGIa9XL7fdAs3VcNHRum7wjs3E3JW8bx/UlBRNjNZqk7JQsU0IIcRjSZs2QTlxQhPj+vYF59AZm9Qurk2b4o7FdpSzZ3XNu0j1qYoCccECbdDXF8KwYcYkROoMRhAg9O+vicl79kDNzjYoI+dQVRXiqlWaGBMRAbZ9e4MyIq6Mim1CCCEeSbl6FeKiRZoYExwM0913G5QRsSfcdReYsDBNTFy2DEpSkkEZeSZ53z4o585pYsLo0WC8vAzKiNQlfL9+gP2UfEmCuHmzYfk4g3LwIFSH31PCiBG0xp+UiYptQgghHkdVFNjmzNF2XgZgeuQRKjJcBGM2w/TII9r9eCUJ1h9/hCpJxiXmQVRR1D9wCgsD37evQRmRuobx9QXXs6cmJm3ZAlUUDcqoelRVhbhypSbGNGgArksXgzIiro6KbUIIIR5HWr8eypkzmhg/YIBH7yfsjriWLcEPHaqJqRcv6qZokqqRtmyBmp6uiQkTJlDzL1KrhEGDtIHcXMi7dxuTTDUpJ05AOXtWExNGjADDUklFykY/GYQQQjyKkpwMcckSTYypXx9CHdlP2N0IY8eCadhQE5NWrYJy4YJBGXkGtaAA4ooVmhjbsiW4zp0NyojUVWzjxmAjIzUxceNGqPbd8d2EblQ7JARc9+4GZUPcARXbhBBCPIYqy7D9+CNgPw2ZYYqnj5vNxiVGysUIAsxTpgD2I0OyDOsPP7jtVFNXIK5eDeTna2LCxIm0rpQYwnF0W01KgnLsmEHZVI189qwuZ37YMJopQm6Kim1CCCEeQ1q9Gsr585oYP3gwuFatjEmIVAjbrBl4h21z1ORkiMuWGZSRe1OuXYPksMUS17UruJYtDcqI1HVsVJS+IeLGjQZlUzWS4/IWf3/wvXsbkwxxG9V+FJOWloZff/0VR48eRb169TBo0CCMGjWqzCenOTk5iI+Px86dO8FxHN566y3N8bi4OKxcuRLZ2dlo1aoVHnzwQTRq1Ki6KRJCCKkDlEuXdNNmmQYNIIwbZ1BGpDKEO++EnJAA9dKl0pi0di24zp3B3XabgZm5H3HpUu3sDo6DMH68YfkQwrAs+EGDIP7+e2lMSUyEcvUq2PBwAzOrGCUpCXJCgiYmDBlCe7KTW6rWyHZRURFmzJgBjuPw5ptv4qGHHsK6deuwyKHzZYlp06ZhwYIFkCQJqampmmNxcXH4448/MGHCBLz77ruoX78+pk+fjqysrOqkSAghpA5QJQnWH34AZPlGsGT6uMlkXGKkwhieh/nRRwGOuxFUVdh+/BGq1WpcYm5GuXgR8q5dmhh/xx1uUdAQz8b36gV4e2tiUlycQdlUjrh6tTbg7V28rRkht1CtYnvz5s2QJAnPPvssWrRoga5du+Lxxx/HypUrkZubq3v99OnT8c0332CQw7oNURSxcOFC/OMf/0CvXr0QERGBKVOmICQkBKsdf7gJIYQQB+KKFbp9T/kRI8C1aGFQRqQq2MaNIYwZo4mpKSkQFy82KCP3Y1uwALBvPGWxQBg1yriECLmOMZt1285J27dDdegt4GqUlBTIe/ZoYsKgQWAsFoMyIu6kWsX27t27ERMTA96uMUBUVBQsFgv279+ve31oaKjmtSWOHTuGvLw89OjRQxPv1asXdrvp1gCEEEJqh3z+PCSHB7NM48ZUYLgpftgwsM2ba2LSxo2QT5wwKCP3IR8+DOXoUU1MGD4cjJ+fQRkRosUPHKhthmizQdq2zbiEKkBcs0b7AMtsLr4PQiqgysW2oig4f/482jjsWcqyLNq0aYMzDvub3sy5c+cQEREBb4epJe3atUN6ejqys7OrmiYhhBAPpopicfdxRbkR5DiYp0yhtXRuiuE4mKZMARzeP9ucOVCLigzKyvWpigLbwoWaGBMQAH7wYIMyIkSPDQoC17WrJibFxUG1XwLkQpSMDMg7d2pifP/+YHx8DMqIuJsqN0grKCiAKIrw9/fXHfP390dmZmaFz5WVlVXmefyuP4kt7/jp06crkbFxLnj4XqF0f+7P0+/R0+8P8Px7LO/+fDdvhm9ysiaWExuLZJsNcJN/IwDPf/+Ayt9jvb594W+3nlNNT0f6Dz8ge9gwZ6fmFEa/h14HDyLQrrkcAGTExqLQIVZVRt9fbfD0e3SV+xPatkXo3r2lX6sZGbi8ejWK2rat1nlr4v78NmyAj92DAJXjkNSqFRSD/n1xlfewprjT/bWs4O4OVR7Ztl5vVuI4Gl0SKywsrNS5yjsPgEqdixBCSN0gJCXBJz5eE7OFhyOvZ0+DMiLOlB8dDWuTJppYvb//hvnsWYMycmGiCL+//tKGQkJQGBVlUEKElE9s1Ai2hg01MR+HNdGugM3Ph7dDB/KCjh2h0Kg2qYQqj2ybzWYAxSPcjgoKCmCqRPdXs9lc5lTxknOXd66KPlFwFe6Wb2XR/bk/T79HT78/wPPvseT+VKsVRXPmQLVfR8fz8HvqKQQ0bmxQdtXn6e8fULl7VJ5+GkXvvgvYbKWxkPXrYfnXv8CU8ZDeFRjxHoqrV0N0aEzr88AD8G/d2unXop9R9+cK9yeNHg3bd9+Vfm1KTkZzhnHKNn/Ouj/bokWQHLbQC77nHoSGhDjl/NXhCu9hTfKk+6vyyLa3tzcEQUBOTo7uWHZ2NoKCgip8roCAgDLPUxKrzLkIIYR4PnHxYqgpKZqYMGYMWDcutIkeW78+hIkTNTE1MxO2efMMysj1qLm5um2J2DZtwNKoNnFhXJcuYBw+30sbNhiUjZ5aUABp82ZNjIuJAesChTZxL1UutlmWRbNmzXD8+HFNXFEUHD9+HM2aNavwuZo3b47z58/rposfOXIEgYGBCAgIqGqahBBCPIx84gSkjRs1MbZFC/BDhxqUEalJfL9+YCMjNTF5xw5IDtM76ypx5UrA4fOTaeJEMAxjUEaE3BrDcbqO3vL+/VAyMgzKSEvatEn794phIIwYYVxCxG1Va+uv7t27Iz4+HrJd44DDhw+joKAAXR06Dd5MmzZtUK9ePexxWK+xa9cudO/evTopEkII8SBqURFsc+Zog4IA05QpYDjOmKRIjWJYFqbJkwEvL03c9ssvUPPyjEnKRSipqfrRtx49wFZiwIMQo/B9+gD2S0UVpbjINZhqtUJ0GGXnunYFGx5uUEbEnVWr2B44cCBYlsVXX32Fc+fO4cCBA5g9ezZGjBiBgIAAHD58GNOmTUNSUtJNz2MymTBx4kTMnTsXO3fuxMWLFzFnzhwkJydj9OjR1UmREEKIBxEXLICanq6JCePH04cgD8cGB8N0zz3aYE4ObL//bkxCLkJcvBiw3zKJ5yGMH29cQoRUAlOvHvhevTQxaetWqNebMBtF+usvwOFBnjBypEHZEHdX5QZpAGCxWPD666/j119/xYcffgiz2YyBAwdi3LhxAIq7iGdlZcFm19gEKF6DHRYWpokNHDgQqqpiwYIFyMzMRIsWLfDWW28hMDCwOikSQgjxEOZz5yBt2aKJsa1agR80yJiESK3ievcGe+AAlIMHS2Pynj2QunQBHx1tYGbGkM+ehWy3fRIA8AMG0JpS4lb4QYO0szMKCiDt3Amhf39D8lFFEdLatZoYGxUFtmlTQ/Ih7q9axTYAhIaG4uWXXy7zWHR0NKLL+AcwKioKUWU07hg0aBAG0YcmQgghDpiiIgSsWqUNmkwwPfIIGLZak7SIm2AYBuaHHkLh228Ddjuh2H77DVzr1mD8/Q3MrnapqgpxwQJt0NubRt+I22HDw8F26KB5iCZt2AD+jjsM+d0u79wJNStLExPuvLPW8yCegz6hEEIIcXn+cXHgHLY2EiZOBFu/vkEZESMwAQEwPfCANpiXB9vcudpt4DycnJgI5eRJTUwYORIM7f9L3JAweLDmazUlBcrhw7WehyrLENes0cTY228H50HbUJHaR8U2IYQQlyYnJsLbbtQDANi2bcH362dMQsRQXI8e4Lp00cTkv/+GvHu3QRnVLlWWIS5cqIkxwcG6zs6EuAu2bVswDts2OjYoqw3y3r1Q09I0MZotQqqLim1CCCEuSxVF2ObO1QYtFpgefpimj9dRDMPANGkS4Ouridv++ANKZqZBWdUeeft2qFeuaGLC+PFgBMGgjAipHoZhIDgsI1WOHoVyiwbLzqQqCkSHpUps8+a6bQcJqSz6pEIIIcRlyYmJUB0KKNO994INDjYoI+IKGD+/4oLbXkEBbD//7NHTydWiItiWLtXEmIgIcLRNKnFzXEyM7gGauHFjrV1fTkiAmpysifEjRtB+9aTaqNgmhBDisqTt2zVfsy1bguvd26BsiCvhu3YF16OHJqYcPgx52zaDMqp50rp1QE6OJmaaOJFmeRC3xwiCbmmQvGsXVIdeHTVBVVVIq1dr82nYEFynTjV+beL56LczIYQQl6RkZuqa5PB33EEjDaSU6f77dV3IbX/+CcVhL3ZPoGZnQ1y3ThNjo6LAtW1rUEaEOJfQvz/A222UJEm67R5rgnL0KJRz57S5jBxJD7GIU9BPESGEEJck79wJ2E0JVkwmcF27GpgRcTWMjw9MDz2kDRYVwfbTT1AVxZikaoi4bBlgtd4IMAxMEyYYlxAhTsb4++uWRIibN0MVxRq9ruNabSY0FFwZWxcTUhVUbJNq41NSYLp40eM+2BBCjKOqqm4KeWFkJBiz2aCMiKviOnbULS1Qjh+HtHmzQRk5n5KcDMlhejzXqxdYhw7OhLg7x23AkJ0Nee/eGruefPo0lBMntDkMHw6G42rsmqRuoWKbVJlaVATr99+j/pw5CPn9d1g/+QRqXp7RaRFCPIBy6hTU1FRNrKBDB4OyIa7OdM89YIKCNDFx4UIoKSkGZeRc4qJFgP0DbZMJwpgxxiVESA1hmzYFe/vtmpi4YUONNT4UV67UfM0EBoKLja2Ra5G6iYptUiXK5cso+vBDzb6myqlTKPr0U6jZ2QZmRgjxBI6j2mJwMMSGDQ3Khrg6xtsbpocf1gZtNtjmzHH7WVfyyZOQExI0MX7wYLAODxcI8RS8w+i2evEilJMnnX4d5eJFKIcOaa89dChto0ecioptUmnSzp0o+vBD3T6fAKAmJaFoxgyPbE5DCKkdamGhbtpgQYcOADVGIzfBRUaC799fE1NOn4a0fr1BGVWfqqoQ58/XBn18IAwfbkxChNQCrmNHMKGhmpi0YYPTr+O4Vhs+PuD79nX6dUjdRsU2qTDVZoP1559h+/FHwGYr/3WpqbDOmAHFYb9CQgipCHnfPu3vGJZFYfv2xiVE3IYwYYLuQ7q4ZInb/nsk79un75I8ejQYLy+DMiKk5jEsC37QIE1MTkiAkpbmtGsoV69C3r9fExMGD6a+IMTpqNgmFaJcvYqi6dPL3L/UFh4OKSBAE1MzM1E0cyaU8+drJ0FCiMdwnELOdegAxcfHoGyIO2EsFpgeeUQ7C0KSiqeTy7JxiVWBKkkQFy/WxJj69cHfcYdBGRFSe/hevQD7h0qqCmnjRqedX1y9WrPbBby8wA8Y4LTzE1KCim1yS9LevSj617+gJiXpjvH9+iF90iSkT5oEplEj7cG8PBR9+ilkhy6PhBBSHuXqVSinT2tiXK9eBmVD3BHXurVuzady7hykNWsMyqhqpC1bdE0ChbvuAmO/DzEhHorx8gLfp48mJm3fDrWwsNrnVtLTNT2HAIDv3x+Mt3e1z02IIyq2SblUUYTt999h++477d6eAGA2w/T44zBNmgTwPBQfH1hefRVsixba1xUVwTprFuTExNpLnBDithxHteHnB466kJNKEsaNA9OggSYmLl8O5dIlgzKqHLWgAOKKFZoY26IF7TNP6hR+4EDtLJWiIt0WeFUhrVsH2M90MZkgDBlS7fMSUhYqtkmZlLQ0WGfMgLRpk+4Y06gRLG+/Db5HD23cxwfml18G27at9htEEdavv4YUH1+TKRNC3Jwqy5B27tTE+JgYGskjlcaYTPrp5LIM6w8/QJUk4xKrIHHNGsBhK03h7rvBUJNAUoewISHgunTRxKS4uGrtMKBmZ0P66y9NjO/bF4yvb5XPScjNULFNdKSEBBT9619lrrfmevWC5c03wTqMGJRgLBaYX3gBXOfO2gOyDNv330PcssX5CRNCPIJy+DDgsHUg37u3QdkQd8e1aAHeoWu3mpSkGzF2NUpGhq7zMtelC7hWrQzKiBDj6LYBS0+H/PffVT6fuH49YP/AjePADx1a5fMRcitUbJNSqiTBNn8+bF9+CRQUaA+aTDA9/DDMjzxyy06NjCDA9NRT4GJjHS6gQpw7t7gpBSGEOHCcQs62aAHWsRcEIZUgjB4NpnFjTUxavRqyQ4dvVyIuXQqI4o0Ay0K46y7D8iHESGzLlmCbNdPEqroNmJqXB2nzZk2Mi42lPetJjaJimwAofpJu/fTT4nUsDpjwcFjefLNSI0wMx8H08MPF620ciIsWwbZoEVT7LpCEkDpNzc3V9XagxmikuhhBgHnKFIDjbgQVBbYff4RqX9C6COXSJciOSyn69gUbHm5QRoQYi2EYfcPDU6eqtNuNFBen7UHEMLRnPalxVGwTyIcPo+j993UdgAGA694dlrfeAuswMlARDMtCuO8+8KNG6Y5Jq1dD/O23aq27IYR4DmnXLm3DGkEA3727cQkRj8E2bQrhzjs1MfXKFYhLlhiUUflsCxdqtyMymyGMHm1cQoS4AK5bNzAOW8yKlRzdVgsLITpsHcZ17w42LKy66RFyU1Rs12GqosC2ZAmsn32ma8QCnofwj3/A9PjjYOz3OawkhmFgGjsWwj336I5JW7bA5ibNagghNUdVVf3e2l270jYsxGn4ESPARkRoYtL69ZBPnTIoIz35yJHivgV2hOHDwfj7G5QRIa6B4XndHtjy3r1QMjMrfA5p61bdEklhxAin5EfIzVCxXUep2dmw/uc/kFau1D5FB8CEhMDyxhsQ+vd3WudTYcgQmCZP1naGBSDHx8P69ddQbTanXIcQ4n6UCxegXr6siTnur0pIdTA8D9OUKYB9Z3tVhW3OHKiOW1saQFUU2BYs0MQYf3/wtB0RIQAA/o47AEG4EZBl3frr8qiiWNwYzQ7XqVOVZm0SUllUbNdB8vHjKHzvPSjHj+uOcZ07w/Luu7pmFM7A9+kD05NPatfOAVAOHoT1s8+gFhY6/ZqEENcnO+ybyoSEgG3d2qBsiKdiGzWCMHasJqampkJcuNCYhOzIu3dDddgDXBg79pYNSQmpKxgfH/AOjXelrVsrNFgjbd+u3+li5Ein5kdIeajYrkNURYG4ahWs//43kJOjPchxEO65B6ZnnqnRqZt8t24wP/88YDJp4sqJE7B++inU3NwauzYhxPWoNhuk+HhNjO/VCwxL/zwR5+OHDgV7222amLRpE+RjxwzK6Pqom8P6caZhQ2oQSIgDftAgbSAvD/KuXTf9HlWSIK1Zo4mxbduCa9HC2ekRUib6NFNHqLm5sH7+OcTFi/XTxgMDYX71VQhDhjht2vjNcO3bw/zyy4DDWnDlwgUUzZxZqTU4hBD3Jh84ANjPamEY/baBhDgJw7IwPfKI7oGv7aefDJtdJcXFQc3I0MRMEyaAcZgFRkhdxzZsCLZ9e01M3LjxprvbyHv2QL12TRNzbJhISE2iYrsOkE+fLu427tB4BQDYqChY3n0XXMuWtZoT17IlLK+9Bvj5aeLqlSuwzpgBJSWlVvMhhBhD2rFD8zXbti3YkBCDsiF1ARsertu3Wr12DbY//6z1XNS8PIgrV2pi7O23g+3QodZzIcQdCA6j22pyMpQjR8p8raooEFev1sTY224De/vtNZYfIY6o2PZgqqpCXLcO1k8+geo4WswwEMaPh/n558H4+hqSH9ukCSyvvQYmKEgTV9PTUTRjBpSkJEPyIoTUDiU9HYrD9F2+d2+DsiF1CT9ggO4Dt7xtG+RDh2o1D3HlSu3MDgDCxIm1MsuMEHfEtm8PpkEDTcxxS68S8oEDUK9c0cSEkSPp7xepVVRseyg1Px+2r76COH++du9aAPD3h3natOJfOAavi2TDw2F+4w0w4eHaAzk5KJo5E/KZM8YkRgipcfKOHdplLd7e4Lp0MS4hUmcwLAvTww8DDg3IbD//DDU/v1ZyUNLSIG3apIlx3buDa968Vq5PiDtiGEa3dls5dAhKcrImpqoqxFWrtN/buDHNGiG1joptD6ScP4+if/0LckKC7hjbpg283n0XXJs2tZ9YOdigoOIR7qZNtQcKCmD9z38gHz1qTGKEkBqjKopuCjnfowcY+61dCKlBbGgoTPfco4mpWVmw/d//1cr1xcWLtQ/DOQ7C+PG1cm1C3BnfsydQr54mJsXFab5WDh+GevGiJkaj2sQIVGx7EFVVIW7ahKKPP4aanq49yDDgR42C+eWXwfj7G5PgTTB+frC88grYVq20B6xWWD//HNKBA8YkRgipEcrx47qmNTSFnNQ2rm9fXcMledeuGv83Rz53DvKePZoYP2AA2NDQGr0uIZ6AMZuL9922I+3cCaagoPRr3ah2WBi4bt1qJT9C7FGx7SHUwkLYZs+G+PvvgCRpD/r4wPziizCNHWv4tPGbYby9YZ46VffBB5IE27ffQtq505jECCFO5ziqzTRuDCYiwqBsSF3FMAxMDz2k2x3DNndujW1FqaoqxAULtEEvL+qQTEgl8AMGAPYd+2021EtMBADIJ05AOXVK83phxAiX/gxMPBf91HkAJSkJRR98oHtKDgBsy5bF3cYdC1gXxZjNMD/3HLjoaO0BRYHtxx8hOkwTIoS4H7WgAPL+/ZoY37s3Te8jhmCDgmC67z5tMCenuOC+yZZCVaUcPAjlxAlNTLjzTjA+Pk6/FiGeig0M1I1U19u/H5BlXQdyJigIXExMbaZHSCkqtt2ctH07ij78EGoZW2Xxw4bB/MorYB26fbs6hudhevxxcH366I6Jf/wBccWKGvkARAipHdKePYAo3ghwHHj6IEQMxMXGguvUSROT9+8v8yF2daiyDNvChZoYExQEfuBAp16HkLqAHzJE8zWXmwu/LVt0W93yw4aB4fnaTI2QUlRsuynVaoV1zhzYfvpJ+6EVALy9YXruOZgmTnTbXy4My8L00EPghw3THROXLoX4559UcBPipuTt2zVfc506GbYFISHA9enkDz6oa7pk+/13qNnZTruOvGMHVIeuycK4cdQYkJAq4Jo1A9uypSbm4/iAzM8PfBmDN4TUFiq23ZBy5QqKpk8v3jbHAdusGSzvvgve4Qm9O2IYBsKECWV2Z5U2bIDtp5+gOm5rRghxaUpSEpRz5zQxaoxGXAHj7w/TP/6hDebnw/bLL055uKtarRCXLtVes0kTmt5KSDXwgwff9LgweDAYk6mWsiFEj4ptNyPt3o2iDz6Aevmy7hg/cCDMr78ONiTEgMxqBsMwEEaOhPDAA7pj8o4dsP3vf1AdR/YJIS5L1xgtIABsu3YGZUOIFt+9u65niJyYCNkJDTql9et1o+Smu++mpk2EVAPXuTOY4OCyD3p7g+/fv3YTIsQB/YZ3E6oowjZ3Lmzffw9YrdqDFgtMTz4J0/33e+xUNGHAAJgefRRw+FAi798P65dfQnX8MyGEuBxVkiDt2qWJcbGxYOw7yhJiMNMDDwB+fpqY7f/+D0pGRpXPqWZnQ1yzRhNj27cHFxlZ5XMSQgCG48rtecAPHAjGYacBQmobFdtuQElNRdFHH0HaskV3jGncGJa33wbv2L3bA/E9e8L0zDOAwzp05cgRWP/7X6h2+ysSQlyPfPAg4LCdEt+rl0HZEFI2xte3eP22vcJC2H7+ucrTycXly7UPyhkGpgkTqpElIaQE36cPYDZrg2YzhEGDjEmIEDtUbLs4af9+FP3rX1AvXtQd4/r0geXNN8GGhxuQmTH4Tp1gnjpV90tVOX0aRZ984tRGNoQQ55IcGqOxrVrVqd9fxH3wnTuD69lTE1OOHIG0dWulz6VcvQrpr780MS42FmyTJtXKkRBSjPH21jVB4++4g7bTIy6Bim0XpUoSbPPmwfbNN0BhofagyQTTlCkwT55cJ5s+cG3awDxtmq5rrHrpEopmzoSSnm5QZoSQ8qhZWVAOHtTEqDEacWWm++4DExioiYnz50NJS6vUecRFiwBFuREQBAhjxzohQ0JICWHcOFibNYPKMGDbt6e/Y8RlULHtgpRr12CdORPShg26Y0yDBrC89Rb42FgDMnMdXIsWsLz2Ghh/f01cTUmBdcYMKFeuGJQZcTWqosBy4gTq7d0LJTPT6HTqLGnXLsB+Cq7ZDK5bN+MSIuQWmHr1YHroIW3Qai3eCcO+eL4J+dQpyAcOaGL84MFgg4KclSYhBABjseDafffhyiuvwDJ1KhjHaeWEGISKbRcjHzyIovffh3L2rO4YFxMDy1tvgW3UyIDMXA/bqBHMb7wBxqH7upqZWTzCfeGCQZkRVyKtWIGgxYvhv3EjrDNmQM3LMzqlOkdVVd0Ucq5bNzAWi0EZEVIxXFQUuL59NTHlxAlIcXG3/F5VVSHOn68N+vhAGD7cmSkSQuxRw03iYqjYdhGqLMO2aBGsn38O5OdrD/I8TA8+CNOjj9KHUwdsaCjMr78OpmFD7YHcXBR9+inkkyeNSYy4BLWgAOLatTe+Tk/XdQQmNU85cwbq1auamOP6OkJclenuu3VbC4mLFkFx+Jl2JO/fr3twLowaBcbb2+k5EkIIcU1UbLsAJTMT1n//G9Lq1bpjTP36sPzzn8WNHhjGgOxcHxsYCMtrr4Ft3lx7oLAQ1lmzIB86ZExixHBSfDxgs2ljmzZBzcoyJqE6ynFUmwkLA9uypUHZEFI5jJcXTI88og2KImw//ljudHJVkorXatufp3598P361VCWhBBCXBEV2waTjx5F0b/+BaWMEViua1dY3n4bbESEAZm5F8bHB+aXXwbbpo32gM0G65dfQtq715jEiGFUVS27c7DNBnHVqtpPqI5SrVbIe/ZoYnzv3vTwkLgVrk0b3V6+ytmzkOxmztiTtm6FmpqqiQnjx4Nx2LqSEEKIZ6Ni2yCqokBcvhzW//4XyMnRHuQ4CPfdB9NTT9F0s0pgvLxgfvFFcJ06aQ/IMmz/+1+Vtmwh7ks5fx7qpUtlHpO2bqWu9bVE3rdPt7+w45ZKhLgD4a67wNSvr4mJy5ZBSUrSxNTCwuJ9te2wzZtTQ0BCCKmDqNg2gJqTA+usWRCXLdN25wXABAXB/PrrEAYNopGfKmAEAaanngIXE6M9oKqw/fqrZv0u8Ww3fbgiyxBXrKi9ZOow3d7a7duDddhOiRB3wJjNME2ZAtj/2yxJsM6ZA1WSSkPimjWAQyNG4e676d90Qgipg6jYrmXyyZPF3caPHtUdYzt2hOXdd8G1aGFAZp6D4XmYpkwBP2CA7pi4YAFsixdDdXjIQTyLWlgIOT5eE5Md9mWXd+y4ZYMjUj1KSopuiQztrU3cGdeyJfihQzUx9cIFSNeXprA5OZDWr9d+T6dO4Fq3rrUcCSGEuA4qtmuLqkJcswbWTz/VN2diWQgTJsD87LNgfHwMSc/TMCwL4f77wY8cqTsmrVoF8fffK7xPKnE/jo3RVIbBtXvuAUymGy9SVYhLl9Z+cnWItGOHNuDjo1/mQYibEcaO1e2AIa5aBeHqVfhu2waI4o0D1/99J4QQUjdRsV0LmMJCBC1cCHHhQsChwGMCAmB+5RUIw4eDYentcCaGYWAaPx7CxIm6Y9LmzcWdZO2m/hHPoKoqpC1bNLGiVq0ghYWBHzRIE5f37oVSzrpuUj2qokDeuVMT43v2pAZRxO0xglA8ndz+32xZRuCSJfA+eFDzWr5PH7ANGtRyhoQQQlwFVXc1TD57FqE//QTL6dO6Y2xkZPG0cZpeVqOEYcNgeugh7To7APLu3bB9+y1U+1EI4vaUCxd0jdEKro+mCkOHAl5emmPikiW1lVqdohw5AjUzUxPje/UyKBtCnItr1kw3c4rPyoLmXxmzGcKYMbWaFyGEENdCxXYNUVUVYlwcrDNmgM/O1h5kGAijR8M8dSoYPz9jEqxj+L59YXriCYDjNHE5IQHWzz6DWlhoUGbE2RwbozHBwbBe34Od8fEpLrjtyImJkM+cqbX86gpdY7SICLBNmhiUDSHOJ9x5J5ib/EwLQ4eC8fevxYwIIYS4Giq2a4okQdq2DZBlbdzXF+aXXoIwZgxNG69lfHQ0zM89p123C0A5fhzW//wHqkP3WOJ+ymqMxvfpo5nuyQ8aBDj0RqDRbedSc3Mh//23JsZRYzTiYRieh3nKFN1DXACAv7+ukRohhJC6h6q9GsIIAsxPPQVYLKUxtlWr4mnjkZEGZla3cVFRML/0km4qsXLuHIpmzoTiMO2VuBcpPl67pzPL6oo8xssLwogRmphy7Bjk48drI8U6QYqP1z5o5HnwPXoYlxAhNYRt0gTC6NG6uGnMGDB2//4TQgipm6jYrkFsWBhMkycDAHJ79oT5lVdof1kXwLVqBcsrrwC+vpq4mpwM64wZUNLSDMqMVJf011+ar7mOHcv8O8f37w8mIEATE2lLOKdxnELOde0KxmHrNUI8BT98ONhWrUq/Zps3p5kchBBCAFCxXeP46GikPvoocvv1A1PWVDNiCDYiApbXXwcTFKSJq+npsH78MZSkJIMyI1WlnD8P9cIFTYy/444yX8uYTOBHjdJ+/5kzUBw6CZPKK6tBHTVGI56M4TiYp05F9qBByB4wAOYXX6R/7wkhhACgYrtWSKGhRqdAysCGh8P8+utgwsI0cTU7G0WffAL57FmDMiNV4TiqzQQFgW3XrtzX8717gwkJ0cRsS5bQ/uvV5DiqzQQFgW3b1qBsCKkdjNmM/Oho5PfoAcahJwQhhJC6i4ptUqexwcGwvPaavqNsfj6s//43reN1E2phIaTduzUxvm/fmzYhZHhety2PeukS5P37ayTHukAVRd37wPXqRc0gCSGEEFIn8VX5prS0NPz66684evQo6tWrh0GDBmHUqFFgHPYxLmGz2fDnn39i165dkGUZXbt2xQMPPIB6Dmv4Nm/ejDVr1iAlJQWBgYHo168fRo0aBY6mY5EaxPj7w/Lqq7B+/jkU+/3QrVZYZ82CeexYWO3W4xHXI+/Zo22MxjAVWjPJxcSAWb0a6pUrpTFx6VJwXbrQNNAqkP/+Gygo0MRoCjkhhBBC6qpKDzcUFRVhxowZ4DgOb775Jh566CGsW7cOixYtKvd7Zs+ejcOHD+OZZ57Byy+/jCtXrmDWrFmaZkSLFy/G77//jqFDh+KDDz7AxIkTsX79enz99ddVuzNCKoHx9ob5pZf0044lCUGLFsHr8GFjEiMV4ri3dnmN0RwxLAth7FhNTL16FfKuXc5Mr86QduzQfM22aQOWltEQQgghpI6qdLG9efNmSJKEZ599Fi1atEDXrl3x+OOPY+XKlcjNzdW9/vz589i1axdefPFFtGvXDq1bt8bUqVNx9uxZJCQkAABycnKwZMkSPPXUUxg4cCCaNm2KXr164ZVXXsHu3btx6tSpat8oIbfCmM0wP/ccuK5dtXFVReCKFRA3bTIoM3IzyvnzUCrYGK0sXJcuYJo21cTEFSugSpJT8qsrlIwMKEeOaGI8dWQmhBBCSB1W6WJ79+7diImJAc/fmIEeFRUFi8WC/WWsddy9ezdatGiBBg0alMb8/PzQoUMH7L6+tu/kyZMwmUzo0qWL5nubN2+Oxo0b4+TJk5VNk5AqYQQBpiefLHMKsvj775APHTIgK3IzZTZGa9++wt/PsCxM48ZpYmp6uu685ObkHTsA+63TvLzAOfxOJ4QQQgipSypVbCuKgvPnz6NNmzbak7As2rRpgzNnzui+59y5c2hbRifayMjI0tcrigKO48pc883zvKawJ6SmMSwL0+TJ4IcM0R0Tly2jvZhdiFpUpG+M1qdPpRtysVFRYFu21MSklSuh2q8DJ+VSFUU3hZzv3h2M2WxQRoQQQgghxqtUFVtQUABRFOHv76875u/vj8zMTF08Ozu73NdnZWUBACIiIpCXl4dTp06hlV0jqrS0NFy6dAntyxmlOm3fzMqFXXCY4uppPPb+unSBb34+fO2KCOXcOVzatAm2iAgDE3M+d30PvRMSEGBXEKsMg0uNG2sb3aFi92fq0QMhdt+nZmfj6sKFyO/Rw3kJ1yAj30PTxYsISUvTxK40awbRib+j3fVntKI8/f4Az79Huj/35+n3SPfn/jz9Ht3p/lo6DNKUp1LDP9brH2q9vb11x7y9vVFYWFjm95T3+qKiIgBAWFgYevfuja+++gonT56Eoii4ePEiZs2ahZiYGDRq1KgyaRLiHAyD3N69UeTQNd+Hmme5DO+//9Z8bb3tNih+flU6l61pUxQ1a6aJ+ezaBYZGt2/JOzFR87UYEgLRbukQIYQQQkhdVKmRbfP1KYEFDlu7lMRMJlOZ31PW6/Pz8zWvf+yxx/D7779j+vTpkCQJqqrC29sbr732Wrn5VPSJgqtwt3wry1PvL7lXL1jWry/92nLuHFqYTGAdmmp5And6D5ULF1B09aom5j9iBIJucg+3uj/5gQdgnT699GuusBBNz5yBMHp09ZKtRbX9HqqFhSh06KvhPWAAWtbQdnnu9DNaFZ5+f4Dn3yPdn/vz9Huk+3N/nn6PnnR/lRrZ9vb2hiAIyMnJ0R3Lzs5GUFCQLu7v71/m63NychBotzWPIAiYPHkyfvjhB3z88cfw8/PDPffcU+YUdEJqU2GHDpC9vDQxce1ag7IhJXSN0QIDwUZFVeucXIsW4Dp10sTE9euh5uVV67yeTN6zB7DZbgQ4DnxMjHEJEUIIIYS4iEoV2yzLolmzZjh+/LgmrigKjh8/jmYOUzCB4o7ix44d08WPHj2K5s2b6+KCICAuLg7BwcEYOHBgZdIjpEaogoD8bt00MXnPHigOa1RJ7XFWY7SyCOPGAfbNGgsL6eHKTUjbt2u+5jp0AEMPSQkhhBBCKr/1V/fu3REfHw9Zlktjhw8fRkFBAbo67E8MAD169MCZM2eQkpJSGsvNzcXBgwfRo4zGQ8eOHcOmTZswZcoUsE744EyIM+R37QrYd1ZWVUh2U8tJ7ZL37gWu93wAADAMuD59nHJutnFjcN27a2JSXBzU6w0dyQ1KcjKUs2c1sbK2zSOEEEIIqYsqXc0OHDgQLMviq6++wrlz53DgwAHMnj0bI0aMQEBAAA4fPoxp06YhKSkJQPHIds+ePTFr1iwcOXIEp06dwqxZs9C0aVNdcW61WjF79mwMGDAALVq0cM4dEuIEqpcX+L59NTFp+3aoubkGZVS3SVu3ar5mO3QAW8YylqoSxowB7B/22WwQV61y2vk9heN2X/DzA1fNqfyEEEIIIZ6i0sW2xWLB66+/DkmS8OGHH+KHH35A//79cffddwMACgsLkZWVBZvdGr7HH38ckZGR+OqrrzBjxgwEBwdj2rRpupHrkn2377nnnurcEyE1gh8yBOC4GwGbDWJcnHEJ1VHKxYtQzp3TxBwfhFQXGxYGrlcvTUzauhVKerpTr+POVEmCtHOnJsbHxoKx/ztCCCGEEFKHVaobeYnQ0FC8/PLLZR6Ljo5GdHS0JmYymfDggw/iwQcfvOl5IyMjMWvWrKqkREiNY4OCwPXoAdmuwJA2bYIwfDgY+ynmpEY5jmozgYE1MpoqjBoFedcuQJKKA7IMccUKmB9+2OnXckfy4cOAQ/NL3uEBBSGEEEJIXUaLogmpBGHYMG0gP1/XFZvUHNVq1TVG43r3rpHRVDY4GPwdd2hi8s6dUBy2G6ur5G3bNF+zt90GtmFDg7IhhBBCCHE9VGwTUglso0ZgO3bUxKT166GWjH6SGiXv2aNrjMY7qTFaWYSRIwGT6UZAUSAuW1Zj13MXanY25EOHNDEa1SaEEEII0aJim5BKEoYP13ytZmQUF4GkxjnOImCjosAGB9fY9Rh/f/CDBmli8p49UC5dqrFrugNp927AbkcKmEy6Du6EEEIIIXUdFduEVBLXqhXYli01MXHtWqiqalBGdYNy6ZJumynHad41QRg6FPDy0sTEpUtr/LquSlVV/d7a3bqBcfgzIoQQQgip66jYJqQKeMfR7cuXoRw8aFA2dYOuMVpAQK1sM8X4+BQX3HbkhATIDoV/XaGcOwc1OVkT42lvbUIIIYQQHSq2CakCrkMHMA0aaGLimjUGZeP5ymyM1qdPrW0zxQ8aBPj4aGLikiW1cm1XIzuMajP164Nt3dqgbAghhBBCXBcV24RUAcOyus7kyqlTkE+fNigjzybv3QsUFt4IMEytjqYyXl4QRozQxJSjRyEfP15rObgC1WqF5NCfgI+NBcMwBmVECCGEEOK6qNgmpIq4mBgwgYGamESj2zXCcQo527492JCQWs2B798fTECAJiYuXlyn1urLBw7oHnpw1IWcEEIIIaRMVGwTUkUMz4MfPFgTkxMSoDisZyXVY1RjNEeMyQT+zjs1MeXMmTq1Vt+xMRrbrh3YoCCDsiGEEEIIcW1UbBNSDXzfvoC3tyYmrl1rUDaeyXG7L8bfH1yHDobkwvfpA8ZhRN22ZAlURTEkn9qkpKVBcZg2T43RCCGEEELKR8U2IdXAeHmB799fE5N374aSkWFQRp5FtVoh7dqlidVmYzRHDM9DGDNGE1MvXYK8f78h+dQmaccObcDbG1ynTobkQgghhBDiDqjYJqSahIEDAZ6/EZBlSBs2GJeQBymzMVqfPsYlhOtr9R070S9b5tGj26qiQHYotvmYGDCCYFBGhBBCCCGuj4ptQqqJ8ffXTaeVtm6Fmp9vUEaew3EKOduuXa03RnPEsCyEsWM1MfXKFcgOI/CeRDl2DKrDbA2aQk4IIYQQcnNUbBPiBPzQoYD99kdWK6QtWwzLxxMoSUlQzpzRxIxojFYWrksXME2bamLi8uVQJcmgjGqWY2M0pkkTsBERBmVDCCGEEOIeqNgmxAnY+vXBdeumiYkbN0K12QzKyP25UmM0RwzLwjRunCampqdD2rbNoIxqjpqfX7zllx2jp/ITQgghhLgDKrYJcRJh+HBtICcH0s6dxiTj5spsjNa7Nxj7tfEGY6OiwLZsqYlJK1Z43AMWKT4esB+x53nwPXoYlxAhhBBCiJugYpsQJ2EjIsBGRmpi0rp1Ht04q6bI+/cDBQU3Ai7QGM0RwzAQHEe3s7MhbdpkUEY1Q3aYQs516gTGx8egbAghhBBC3AcV24Q4kePotpqaWie2hXI2aetWzddsu3ZgQ0MNyqZ8XJs2ugcs4po1UO07qLsx5dIlKBcuaGLUGI0QQgghpGKo2CbEidi2bcE4NI6S1qyBqqoGZeR+lKQkKKdPa2J8374GZXNrjqPbyMvzmK3fdI3RAgPBtmtnUDaEEEIIIe6Fim1CnIhhGN3otnLhApRjxwzKyP04NkaDvz+4jh2NSaYCuBYtwHXqpImJ69dDzcszJiEnUSUJ0u7dmhgXGwuGpX82CCGEEEIqgj41EeJkXNeuYOrX18TENWsMysa9qDabrjEa72KN0coijBun3fqtsBDi2rXGJeQEckIC4PDAgO/Vy5hkCCGEEELcEBXbhDgZw7LF+27bUY4e1a19JXryvn3axmhwj22m2MaNwXXvrolJcXFQs7MNyqj6HKeQs61bgw0LMygbQgghhBD3Q8U2ITWAj40F/Pw0MRrdvjXHKeSu2hitLMKYMYD9FGubDeKqVcYlVA1KZiaUw4c1MWqMRgghhBBSOVRsE1IDGJMJwqBBmpi8bx+U1FSDMnJ9yuXLUE6d0sRcuTGaIzYsDJzDNGtp61Yo164ZlFHVyTt3AvZN/cxmcN26GZcQIYQQQogbomKbkBrC9+sHmM03AqoKad06w/JxdbrGaH5+usZjrk4YNQqwX18uSRBXrDAuoSpQVVU3hZzr3h2M/c8yIYQQQgi5JSq2CakhTL164O+4QxOTduyAmpNjUEauS7XZIO3cqYm5Q2M0R2xwsO49l3fsgJKSYlBGlaecPg3VYQYGTSEnhBBCCKk8KrYJqUH84MEAx90IiCLEjRuNS8hFyfv3u2VjtLIII0cCJtONgKJAXLbMuIQqSdq2TfM1Ex4O9rbbDMqGEEKIM1xMV7D0cBDm/R2C48my0ekQUmdQsU1IDWKDgsDFxGhi0ubNUAsLDcrINUlbt2q+ZiMjwTpsn+YuGH9/8AMHamJyfDyUS5cMyqji1MLC4o7wdvjevcHYb2tGCCHEbSiqijUJEqYvteF4qjfOZ1rw5ToRmfnqrb+ZEFJtVGwTUsOEYcO0gYIC/frkOkxJTtY3RnOYiu1uhGHDAC8vTUxcutSYZCpB3rcPsFpvBFgWfM+exiVECCGkyjLyVPx3lYhFeyTIyo24VQQ2HpKMS4yQOoSKbUJqGNuwoa7Rl7RhA1SJ/qEDPKMxmiPGxweCw17rckIC5LNnDcqoYqQdOzRfs1FRYAICjEmGEEJIle07K+O9RVYcT1bKPL7lmIx8K41uE1LTqNgmpBbww4drvlYzMyHv3m1QNq5DFUVdgcf36uV2jdHKwg8aBPj4aGLikiUGZXNrytWr+hkG1BiNEELcSpFNxU9bRHy3UUSBtfzXWUVgy1Fau01cg6KqyC1SkZbH43yGGbtOySgSPeNhkPt/oiXEDXAtW4Jt1UpTzIhr14KLjQXD1t1nXp7UGM0R4+UFYcQIiPPnl8aUo0chHz8Ork0bAzMrm+NDD/j6guvQwZhkCCGEVNrZVAXfbxKRlqMvUoLqAd68FUnZN7Zx3HhYwuAoDiae+nKQmlEkqsguUJFTiOL/FqjILlSRXQDkFJYcU5FTAMgqAIRf/04R700woXGQ+/9sUrFNSC0Rhg+H1a7YVq9cgXzwIHg3nzJdHbrGaG3bgg0LMygb5+P794e0fj3UrKzSmLhkCdjXX3eppmOqLEN2nGHQs6dHzDAghBBPpygqVifIWL5fglLGYGB0CxaT+gg4cDQFP++98W9sbiGw86SMfpH0u55UnCQXF88lxXL29WK5pHAujgE5BSqs1VgxmV2gonGQ8/I2Cv3tIqSWsFFRYBo2hJqcXBqT1qyps8W2cuUKlJMnNTF3b4zmiDGZwN95J8TffiuNKadPQzl0yKVGjZXDh6FmZ2tifK9eBmVDCCGkotJzFfy4WcSpq/oq2yIAD/QSENOKBcMwCPcV0SywCOczLaWvWZcoo08bDhzrOg+ASe1TVRX5VvuCGdeLaBVZDiPTeTdZnuBMOQW3fo07oGKbkFrCsCyE4cNh+/HH0phy+jTkU6fAtWplYGbG0DVG8/UF17mzMcnUIL5PH0hr10JNTy+N2ZYsgaV9e5dZQqBrjNa8OdjGjQ3KhhBCSEXEn5bx2zYRhaL+2G1hDB7tLyDUT/vvTExErqbYTstVsf+cgu63cTWdLjGAVbSbtl06Cl088mw/Ep1TCE3HeiN5CTKCfHhwHvIjScU2IbWI694dzJIlUDMySmPimjV1rtj25MZojhiehzB6NGxz5pTG1IsXIR84AL5bNwMzu55Lbi7khARNjKPGaIQQO5KsYv3JAFzJMaFzhoihHXnUM9NIqFEKbCp+3y4i/rS+OmIYYFQXHiM7lz1aHRFoRUQIgwvpN0bC1yZIiG7ButTyJlI+WQEy81XttG2HNdAlI9PWMh7EGMEsAP5eDPy9AT8vBv7ezPX/wu7/M0i9fAYcC7Rs2dLolJ3G8z7ZEuLCGJ4HP2QIxHnzSmNKYiKUy5fBNmpkYGa1S96/H8jP18T4vn0NyqbmcT17glmzBuqVK6UxcelScF26GD66Le3eDch2HWkFAXz37sYlRAhxOYv3SjiQVLy7wpUEGVuOybizM4/+7TgIHBVotenUVQU/bLLhWp7+WIhv8Wh2y/Dy/11hGGB4Jx7fbbxRhV28puLoZQXtGnvIUKKH2n1KxsLd4cgq5AHU0lzum+AYwK+s4tmLgZ93caykuLYIFfs9cc01Jvw5FRXbhNQyvk8fiMuXa7pwi2vXwjxlioFZ1S7HKeRsmzYe1RjNEcOyEMaMge2770pj6pUrkHftMnRttKqqkLZv18S4rl3BeHsblBEhxNXkFKrYckS7RVSBFZi/W8KmIzLGd+dpVLQWSIqKlQckrPpbhlpGE7SerVjc30uAl+nW70OXZizq+zFItetaviZBpmLbhV3OUDBniwhFrfnSzceM0mLZz6t45Lm0gL7+tZ83g3pmgKW/97dExTYhtYyxWMAPHAhpxYrSmBwfD2XcOLBBHtB28RaUq1ehnDihiXlaY7SycF27gmnaFOrFi6UxcflycD16GDZ9XrlwAWpSkiZGjdEIIfY2HpJgK2c75vRcFbPjRGw4yGBijIDWDTxwWMoFpOYo+GGTiLOp+irbywRM6iNUas01yzIY2pHD3G03WkUfT1ZwPk1Bs1B6D11ReZ3mK8rE35jGbT9t28+7JF4c8/MCeJqt4lRUbBNiAGHgQEjr1gE2W3FAliGtXw/Tvfcam1gtcNzuCz4+HtkYzRHDsjCNGwfr55+XxtT0dEjbtkHo39+QnGSHUW0mOBisC+4BTggxRoFNxeYj5VTads6lqfhkhQ2dIlhM6MEjPIAKNmdQVRU7T8r4Y6dU5trb1g0YTOlvQrBP5Yuj2FYclu2TkFN4I7YmQcJTg03VyJjUhEvXFOw/p1+fzzKAn9f1UWgvh5Foh2ndZgE0+8QgVGwTYgDG1xd8796QNm0qjUl//QXhzjvB+PgYmFnNUkUR0s6dmhjfuzcYQTAoo9rFRkWBbdkSyunTpTFp5cri5nCm2v2Ao9pskOLjNTG+Vy/D15ATQlzHliOyQ6drFY/2N2HLUQmnU/TDbAkXFBy8aEPfthxGd+Xh50Uf7qsqr0jFb9tF7DurL7I4BhgTzWNYBw5sFbfsEngGg6J4LN5zY3T7wDkFKdkKwvzp3wFXsny/drNqM6/gX3d7IbAeTeN2B/S3iRCD8EOGAPaFjdUKafNm4xKqBfKBA0CetqsL36ePQdnUPoZhIIwbp4mpWVmGvO/y339r+gaAYcDRFHJCyHVWScWGQ9oP+W3qFyKmFYfXRpvw9GABYf76D/qKCmw5KuONeVasPCDBKlVj7msddTxZxvuLrGUW2mH+DN4Ya8KITnyVC+0S/SI5eNk961ZRvO82cR3n0xT8fV77c9CjaS6CfRgqtN0EFduEGIQNDQUXHa2JiXFxUEumlnsgxynkbJs2YMPDDcrGGFybNmAjIzUxcfVqqIWF5XxHzXBsjMa2bQs2JKRWcyDFZEXFoSve2HLGD5czXGSjU1LnbT8uI7dIG4uJyAVQ/OCwS3MO70804f5ePHws+u+3isDSfRLe+tOK7SckKNVZcFpHSLKKhfEi/rNSRGa+/nifNhzeHm9y2rpqbxODOyK1a713npSRVUDvlatwHNW28DK6Ni6jFT1xWVRsE2IgYdgwbSA3V1cEeYoyG6N58HZfN+M4uo28PEgbN9ba9ZX0dCjHjmli1BjNGFZRxdfrRaw6FoTdF/zwwWIbjifTyBIxliSrWJeo/ZDfIrgQ4b7ahcM8y2BAOx4f3WvGiE4chDJ6dGXmAz9vlfCvxTYcvkQ/2+W5mqXgo2U2rE2U4Vjq1jMDTw0W8FBfocJbKFXUoCgevF01ICnFTfGI8c6lKjh40XFUOw9mnh6GuBMqtgkxENu0Kdj27TUxad06qLLnfSBx3O4LPj7gunQxJhmDcS1agOvUSRMT162Dmlc7T6vlnTuh2TvGy6vOvhdGyilU8e+VNs2HKUkBvlon4mI6jXAT48SflpHhMLLa8/qodlm8TQzGdxcw/R4zYluzKKscTMpQ8dkaEf9dZcOla/TzXUJVVWw9JuFfi2y4mK4voto2YvHeBDO6Nq+ZbbkCvBn0bK0999ajMgpsVNAZbZnDqLaPBTSq7Yao2CbEYMLw4Zqv1fR0yPv2GZRNzVBFEdKOHZoYHxtbZxqjlUUYOxawX29VWAhx3boav66qKPr3okePWm/QVtelZCv4eJkN59L0H2iLROCzNTak5VBBQmqfoqhYk6B94NsqnEGTgFsvcQryYfBIPxPeHm9C20Zlf8Q8elnBvxbZMGeLiIy8ul3Q5RYWz2yZu02/vRrPAhNjeEwdISCwXs2uzR3agdM8ICkUiwtuYpwzKQoOX9L+GzC8Iw8TjWq7HSq2CTEYe/vtYJs318TENWugqp7zC1X++299Y7Q6sLf2zbBNmujW7EsbN0LNzq7R6yonTkBNT9fEuDrUpM4VnE0tLrTTcsr/O55TCMxaLSKn0HN+DxD3cOC8gqvZ2p+7EZ0qt3lN0xAWL40Q8OJwAY2C9IWiiuK1wW/9acXiPSIK6+Ao6pEkGe8ttCLhgv6hWoMABv8ca8LQDnytNMEKD2DRpbm2JNh4SIJIze0Ms2yfdlTbzwvo165mZjeQmkXFNiEGYxgGvMPabfXSJShHjhiUkfPpGqPdfnuda4xWFmHMGG1HepsN4qpVNXpNx54ATKNGYCMiavSa5IaECzL+vcKGPIfGU34WCY38rZpYao6Kz9fYUFQHCxFiDFVVsfpv7Yf8JsEM2jep/MdFhmHQvgmHd8ebMLkvjwBv/WtsMrA6QcY/51mx6YgEqQ40URMlFfN2ipi1WkR2GX0x+0dyeGu8CU1Davcj+rCO2gcq2YXArlM0um2Ek1cUHL3sMKrdiYeZp+7j7oiKbUJcANelC5iwME1MXLPGoGycS0lJgXL8uCZW10e1S7Dh4brttqStW6Fcu1Yj11MLCiDv36+J8b17g6HtQ2rF1qMSvl4v6qaLNglm8GDXVEzsmI4mwdr34kK6iq83iJBkzy9CiPGOJCm4eE37szayM1+t3xEsy6B3Gx7T7zFjbDce5jJWD+UWAX/skPDuAhv+Pi971Mwue5czFHy41IaNh/VFrK8FeG6ogAd6C4YUVc3rs2jTUFsWrDsoUxd5Azh2IPf3Bu5oS6Pa7oqKbUJcAMOyEIYO1cSU48chnz9vTEJORI3Rbk4YNQrg7UYUJAniihU1ci1pzx5AtOsmzHHge/askWuRG1RVxZK9IuZul+BYQ0Q2YvHqKBN8zAosvIoXhpsQ4qv9oH3ssoI5W0QoHlqAENexymFUO8yfQZdmzvmoaBYY3NmFx0f3mNEvkkNZW0SnZBevYf5khQ1nUz2nZ4Gqqog7LOGDJTZcztD/PW7fpLgJWscIYwuq4Z2010/JVnHgvOe8D+7geLKM48naP/ORnXiYaFTbbVGxTYiL4GJjAT8/TUxavdqgbJxDFUXdtOW63hjNERscrBvpl3fsgJKS4vRryQ7vBdexIxhfX6dfh9wgKSp+2ipi1d/6kayerVg8P1yAl+nGh6gAbwYvDhd0+xbvOaNg/i7JY0f8iPFOXlFw6qr252t4Jw5sWVVxNfh7M/hHbwHvTzShU0TZH0NPXVXx0VIbvtvo/o0CswtUfL5WxP/tlCA5NkHjgPtjebwwTIC/t/HFVGQjFk0dZtesTaTfO7VFVVXdWu3AesX7qxP3RcU2IS6CEQQIgwdrYvKBAzVSdNUWOSFB3xitju6tfTPCyJGAfTdwRYG4bJlTr6EkJUE5d04T43v3duo1iFaRTcUXa0TsPKkvFu7szOGRfgL4MgqZ8AAWLwwzwezQk2rjYRlrE2kNJakZqxO0H/KD6gExLWvuQ36DABbPDjXh1VEmNAstu9Dcd1bBW/NtmLdTRF6R+xV8iReKm6A5dpUGgEZBDN4eZ8KA9tWbpu9MDMPo1m6fT1N1I62kZhy7rH/gNbIzD4FGtd0aFduEuBC+Xz/AYjekpaqQamE7qJqia4zWujXYBg0MysZ1Mf7+4AcO1MTkPXugJCU57RqO230x/v66Pd6J82QVqJi5wqZrcsMwwKTePMZGCzf9gN28PounBgvgHF6y6P/Zu++4KO78f+CvmdldegcBEaSJCCIqYsPeEEs05kxy6cnl8sslOS+JySVeElNMUVNMO785k0suuTQTe8Xee6OJiIKKqPRed2dnfn9wIrO7KGWX3Rnez8cjj0f47C5+hp3yeX/en3Kcx6HzvOkPEdJBeSXG2wxNiVVBZXgCWkCEP4t/zNbgqQlqoykUAKAXmjqa/vFrI5JT5bFCdiMv4qeDOnyxTYfqBuPXJ8dweH22BgGettcMjwtl4eNimN2mTj5LE0XRaF9tT2dgVF/Kasud7V3lhHRjjKNjU8DdAn/okMW3g7IEobAQwrlzkjJaGK116qlTAQeHWwWiCN3atWb53SLPgz9yRFLGjRwJhqOHuCVcLxfwwbpGXDVYaErDAc9OUWNsVNu2UeofyOHxccZTLr7fzyMtjxq/xHwMs9rO9l07dJVlGAwN57DoXg3uHa6Co53xe+q0wKpjPF7/rRHHLuptdg2DvBIB767RYo+JfardHIAXpqlx3wi1zWYrOZbBlFjpd382X8CVEspuW9LZfAE5hdJzesagrunwIpZFwTYhNkY1aZLxglk7d1qvQh1ktDCakxO4uDjrVEYGGGdnqKdMkZTpU1Kgz83t9O/Wp6UB1dWSMhpCbhkXCgQs3qBFqXT2BJztgZdmajCwnQsgDe/D4d7h0uBcEIGvduiQU0iNX9J5BRUCTuVKz6XJMdbZZkjNMZgyoGkRtckxHFQmWqmlNcDXu3V4b60WWddtp9NJEEVsS+Px3jotblQYdwQM7M3irbl2iO5l+52cCREcXBykZckpNKLGUkzN1fZ2YTCSstqKQME2ITaG9fAAZ7BCNL9nD8R6Exty2iiR542GLdPCaHemmjwZcHaWlJkju224MBobHk77nFvAqVw9Pt6sRZ10u2z4uDJYMEuD0B4de+ROGaBC4gBpo0urBz5P1uJ6OQXcpHOSU/VoGRo6qJv2erYmZ3sG941QY9G9GgwNM33dXCkR8dEmnU1cB+W1IpZt0eH3ozz0BlXRcMDDo1V4dooaLvbyyFJqVAwmRks7+U5eElAk88XqbFX6VQGXig2y2oM5k2t6EPmhYJsQG6SeOrVpcudN9fVG859tmf7MGeNMKi2MdkeMgwPUSUmSMiEzE/rz5zv8O8WKCujT0yVllNU2v53pPL7aqTNabTjYpynQ9nXr3OP2nmEqjOgj/R21jcCnW7Qoq7HN4bTE9pXWiDiSLT1px0dzcLSzjUa+jyuLpyZq8NpsDSL8TdcpLU/Am6u0+GG/DpV1XX8tnL7UtAjauWvGgWiQN4M37tFgbD/bWQStrcZHc5I90UUR2J5mOyMJlEIURawzyGr7uDIY0Yey2kpBwTYhNoj18wM3aJCkjN+xA2LLPZJtmOEQcrZPH7A9e1qpNvKimjABjLu7pEy3Zk2Ht17hjxwBhBaNQI0G3JAhnaghaUkQRfx2VIdfj/Aw/IYGBLF4eYYGrg6db2SzDINHx6rRP1D62C6rBT7dqkVtIwXcpP22p/HQtzh11BwwKaZtawp0pZAeTdfSc1PU8HMzvp5EEdif1bSI2sZTPBp1lr8eGnQivt+vw/IdOtQajGZhAEyN5fCPWRr4u8uzqe1kx2BsP2nAd/C83iodGkqWckVAXon0b3rXYBU4ymorhjzvAIR0AyqDDKdYUQH90aNWqk3bCUVFEDIzJWW0MFrbMRoNVDNmSMqEixchGGSn20IURaPh/Fx8PBgHh1Y+QdpDpxfxzW6dyWzPmEgOz05Rw05tvgaTimXwl0lqhBhsk3S9XMSX27TQymCVZmI7qupFHDgnPXdHR3Jm6RyyBIZhMDCYw1tzNXhwlMpoTjEANPLA+lM8/rGyEfuzeAiCZa6JS0UCFq3R4kCW8bXv4QTMn6HGH4apZb+41eQYFbgWkQKvB3Zl0NxtcxFEERsMViD3c2MwNJzCMyXpUPdlcXExfvjhB2RmZsLJyQmTJk3CzJkzWx0io9VqsXLlShw5cgR6vR5xcXF48MEH4eTkJHnfpUuX8NNPP+HixYtwdHTE6NGjMXfuXKhUttfLSoilcaGhYPv2hdBiCLEuORlcQgIY1nZvxPyBA9ICR0fKpLaTavRo8MnJEEtKmsu0a9fCvn//dn33Qk4OxBs3pL+bhpCbRV2jiC+3a5F9w7gxP3uICtMHcRYZNmqnZjAvSYMl67UoqLz1b18oELFil65puzDKiJA22JnOQ9siVuQYIDHW9ttbKpbB+CgVRoRzSE7lsT1NLzkOAKisA37Yz2Nnuh5/GKZCTCBrlutREEQkp+qx/qR0RMBNcSEsHh6thrNM5mbfiYcTg+HhHA61mGqwN1OPaQNVsNco4xit6cwlwWjXiplxlNVWmna32BsaGrB48WJwHIfXXnsNjz76KLZt24bVq1e3+pkVK1YgIyMDzz77LObPn48bN25g2bJlkmGR5eXleO+99+Dr64s333wTjz/+OA4ePIhff/21Y0dGiAIYzt8VCwqgT0mxTmXaQOR58AaLcakSEmhhtHZiVCqo77pLUibm5UF/+nS7fo/hd8H06AG2T59O16+7K6sRsXiDcaDNMcDjY1WYMdiy8zNd7Bm8ME0Dd0dpecoVAT8e5Ds85YB0H3Va0WhrqmF9OHg5y6eRb69hMDtejffut8OovhxM1fx6uYjPk3X4ZIsOeZ3cuqq0RsRHm7VYc8I40LZTNV37T09STqB9U2Ks9G9bpwX2mcjok/YRTOyr3dODQXyo7SZTSMe0+xvds2cPeJ7Hc889h9DQUMTFxeGpp57Cpk2bUG2wIBIAXL58GUeOHMHzzz+P6OhoRERE4IUXXkBubi5SWgQNx48fh5OTE5588kmEhIQgPj4e999/P/bJaFEoQsyN7d8fTK9ekjJ+61abbUzrU1KAqipJGS2M1jHciBFg/P0lZbp16yAKbWswio2N0B8/LilTjRolu0V6bE1+mYAP1jfiern0GrRTA3+dqkZC367JDHq5MHh+mgYOGmn5gSy90RYyhBjam6lHvfbWzwyApIHyXJDJw4nBY2PVePMPGqM1DW46d61p2Pe/92hR2oEFBY/nNC2CZmokS2gPBgvv0SChr/wWQWuLnh4sBgZL/6470njoTKX2SZudzBWMniMzB6vAUlZbcdodbB89ehTDhw+XDO2OiYmBvb09Tp06ZfL9oaGh8G/RaHR1dcWAAQNwtMX8U0EQoFarJTcqljXPsB9C5IphGOPVqXNzIWRnW6lGt2e4YjotjNZxDMtCPWuWpEy8caPN8/b1p04BjS1W7WEYoy3lSPucu6bHkvValNdKy90cgL/P1KB/YNcGK708Wfw1UQOVwT+76Yweu89SwE1Ma+RF7EiTnh+DQ1jZLuR1Uy9PFs8nafDCNDUCvUwsogbgyAUBr61sxKpjOtRp7xws1mtF/HuPFit26SSdE0DThiEzBnP4+12d323A1k01mF5QUQccu0DZ7Y4SBBEbDbLaAR4M4iirrUjt6oIXBAGXL1/G7NmzJeUsyyIyMhI5OTkYN26c5LVLly6hX79+Rr8rKioK27dvb/55yJAhWLlyJTZu3IjExEQUFxdjzZo1SEhIaLU+Fy9ebE/1rebKlSvWroJF0fFZmKcneri5QVVZ2VxUuXo1yu6912z/hDmOkSsvh6/Bwmilffui3gauU6t/hx3l7g4fX1+oCwubi+pWr0aRlxfASSMsw2P02rEDdi1+bggJwfWyMqCszJI1thhrf4dnCxyw+ZwnBFHaiPdy1GFubAl0FXpcrOj47+/o8bEA7oqyx9p0L4gtBnv+fEiHuspCRPao73ilzMza36GlyeX4TuU7obrBQ1IW430DFy/efrcLuRyfHYA/DgDOFjhif64rqhulTV1e37S3+L5MLRKCqzEooKZ5EbCWx3itUoMNZz1R2WDcVHa15zEzqgyB7lpczrXk0ZhXZ77DQHcfXK249VTZcLIevlwhbCknJpdz9GyBA25UeEnKhgYUIzen4Y6flcsxdpScji88PLxN72tXF0pdXR10Oh3c3NyMXnNzc0Nli2DgpsrKylbfX1FR0fyzj48P7rrrLvzyyy94/PHH8fLLL6O6uhpz5sxpTxUJUR6WRe3QoZIi+5wcqIqKrFQh0xxTUyU/C/b2qI+MtFJtFIJhUGUwDF9VUWH0tzbElZXBLi9PUlYXG2v26nUHoggcveKMjZleRoF2L7dGPBRXBHcH62Z4InwakNi3wqCUwcaznrhSbmfqI6Sb0gvAsSsukrJQzwb4uchjW8m2Yhkgxr8OTw0vwNjQSmg44+k39ToOOy+445tjvsgqcsDN2VmCCBzIdcWPp31MBtrRvrV4YmghAt21Rq8p2fDe0qmiZXVqXCixt1Jt5EsQgEOXXSVlPZy1iPC5c6BN5Kldme3G/w1JdHR0NHrN0dER169fN/mZ1t7f0HDrxEpNTcXatWsxa9YsxMfHo7y8HL/99hs+/vhjvPHGG+A44+F5be1RsBVyq2970fFZjhgYiPojR4CamuYy/7NnYTdypFn/nY4eo8jzqD97VlKmSUhAuIlRLdYkx3NUDAtD4+nTEHJymss8jh2D/+zZYDQao/eHh4dDu2YNJAPUnJ0RkJioiIXquvI7FAQRvx7hsTfHOJgeHMziyQmu0KiMO5M7o6PHFx4O2DnzkgV39CKDtRk++PtMDYK8bWd4ohyvw/aw5eM7dJ5HVaN0+OofElwR7u/e5t9hy8dnSr++wOx6ERtP89iXqTda3Ky8Xo11GV4I82UwoIc9jl9xwbUq404qBzXw4Cg1hvfxAuBl9LqcdOQ7DAsTceSqFvllt/6AKYU+SBqusbkpn7Z8jh7O1qOsTtq5de9IJ/QJbl+dbfkYzUFJx9eup6+dXdPNp66uzui1uro6aEw0/Ozs7Ey+v7a2VvL+H3/8ETNmzMB9993XvPDaa6+9hvz8fBw7dqw91SREcRg7O6gnTJCU6Y8fh9BiayhrMrkwGu2tbRYMw0BtMMJHrKgAv2ePyfeLggD94cOSMtWwYYoItLuSlhfxfzt12H3WONCe2J/D05PU0Khsq4E5YzCHsf2kHdMNOuDTrVoUV3VuJWYif4IgYmuK9Hzu48cgwt92OmIsxcWBwQMJarw9V4NBwaaPN6dQxNp0b5OBdrgvgzf/oMHwPvJcRM4cGIYxmrudWySaXDSOmMYLTZ0+LfX2ZhDbW/nXYHfWrm/X0dERarUaVQaNaqBpuLinp6dRuZubm8n3V1VVwcOjac5QTU0Nrl27hhEGi/e4uroiOjoaFy5caE81CVEk1cSJQMsOLUEA32LdA2vi9++X/MyGh4MNCLBSbZSHi4wEGxUlKdNt2QKx3ng+rpCZCbG8XFKmGj3aovVTmpoGER9v1uLMZeMAde4wFe4fYZsrxjIMgwcTVBhsEExU1QPLtuhQVU+N4u7s9GVBsjc7ACQNtP19tc3Jz53Fs1M0eOUuDUJ73PkaZhlg9hAVXp6pgbcLBUTxYSy8nKVlW1NpMca2OpqtR3GV9BqcNUSZq9iTW9p152BZFsHBwcjKypKUC4KArKwsBAcHG30mJCQE586dMyrPzMxESEgIADSfZIKJLW14ngfL0g2OEMbZ2Sho4g8cgNhiaLk1CMXFEAyGkFNW2/zUd98tLaipAb9zp9H7jPbW7t0bbGCgJaumKMVVAj5Yr0VOocEe2izw5wlqJMbadsOIZRn8eYIaEf7SOhZVifhsqxYNbViBmSiPKIrYkiINigK9GMS0slWW0vXxY7FglgZPT1LDx8X09ezjyuDVWRrMGKwCZ4Oda9bAsQwSB0g7aDKuCrhaSiNn7oTXi9h0RjqyJLRH970Gu5N2f8NDhw7FsWPHoNffOmEyMjJQV1eHuLg4o/cPGzYMOTk5KGyxmm51dTXS0tIwbNgwAICTkxMCAwNx2GDoY3l5OTIzMxEdHd3eahKiSKopU4CWnU9aLfhdu6xXITQF/BKOjuCGDLFOZRSMCw0FN3CgpEy3bZuks4Wpq4P+zBnJe1SjRnVF9RThcnFToF1okP1z0AAvTFNjWLg8hpCqVQyeS9Sgl6c0QLhSImL5Dh142h+32zmbLyCvRPq9Txto2x1HlsYwDIaEclh0rwb3j1DBqcXo8YQIDm/O0SC0BwVChhIiOTgbrIuWTNntOzqUrUdJNWW1u6N230UmTpwIlmXx5Zdf4tKlSzh9+jRWrFiBadOmwd3dHRkZGXjppZeQn58PoCmzPWLECCxbtgxnz57FhQsXsGzZMgQFBUmC84ceegjJycn4/fffkZeXh5SUFCxevBh9+/bFoEGDzHfEhMgY6+0NzmBlct3u3RBb7qfchUSeN8qkqkaMMLlwF+k89ezZkOyzUl8P3bZtzT86ZmYCfItGj0oFlcH5QkzLuKrHhxu1qDIYme/hBLxylwaRPeURaN/kqGHwfJIG3gZZu8xrAr7dq4MgUsDdnRhmtX3dGMSFUCAJACqOwaQYFRb/0Q5zB5TgyWEFeHycGvYaCoJMsVMxmBgtzW6fyBFQUk3Z7dbo9CI2G8zVDvdlEBVA12B30O5v2d7eHq+++ip4nse7776Lb775BuPHj8e9/9vzt76+HhUVFdBqb22J8NRTTyEqKgpffvklFi9eDC8vL7z00kuS4eExMTF45ZVXcPbsWbz55pv4+uuvMXDgQLz44ovU60NIC+qpU6UFNTVGAW9X0aelAQZb/qkMtqoi5sMGBoKLj5eU8Tt3Qvzfd+CYliZ5jRs0CIyzwQQ7YuTgeR6fJ+tgsEgzAjwYLJhlh16e8mwQuTsxeD5JbZSFOp4j4LcjPEQKuLuFCwWC0SJWSbGcTa47YE0OGgZh3g3wdqIs7Z2Mj+agaRFvCyKwPc26WyDasoPn9SirlZZRVrv76NDKGD4+Ppg/f77J1+Lj4xFv0BjUaDR45JFH8Mgjj9z290ZHR9OQcULugA0MBBsTAyE9vbmM37YNqrFjwai6drEbft8+ad3Cw8H26tWldehu1LNmQX/yZNNmnQCg1UK3eTNUQUFQt5iuA9AQ8jsRRRGbTusl22XdFNmTxTOT1XC0k3djyM+dxbypGny8SSvpTNiZoYebI9PtFsjqjrackZ7fHk7o1qtqk85ztmcwJpLDzoxbAfbBLD1mDlbBxUHe90xz0/Gi0TUY4c8gsqc8O3FJ+9E3TYgMqZOSJD+LpaVNAVgXEkpKjBdGo6y2xbF+fuAM9lfn9+2Dy6FDkjLG09NoBXNyi14Q8d8DvMlAe2gYi78lyT/Qvim0B4u/TFaDMzic1cd5HDpPWTwlyysRkH5VOrw3MVYFleHJQEg7TRmgktxTtHpg11m6nxjan6VHuWFWO05NWe1uhIJtQmSIjYgAGxoqKdNt3dqlw0L5/fuBlv+egwMtjNZF1DNnAlyLzBTPwyE7W/IeLiEBDO3kYFKjTsQ/t+uwP8t42OPUWA5PTlBDrbBgpH8gh8fHGe+1/v1+Hml5NPxTqQznajvbA6MjKatNOs/TmcHQcOkzZvdZPRp0ND3lJq2JrHZkTxZ9KavdrdC3TYgMMQwDlWF2Oz8fQkZGl/z7Is9Db2phNDu7Vj5BzIn19r7j9mqqhIQuqo28VNWL+HCTFml50mwfA+CBkSr8YZgarEIzDsP7cLh3uHTYuCACX+3QIaeQFjdSmoIKAadypd/rpP4q2KmUeX6Trjc1Vno/qWsEDpjoxOyu9mbqUWmw6OasITR1p7uhYJsQmeIGDgTj5ycp023d2iX/tj4trXlRrptob+2upZ4xA2hl1Xe2b1+wPj5dXCPbV1gp4IN1WlwulmZe1Bzw9GQ1JvRXfiNoygAVEgdIM5taPfB5shbXyyngVpLkVD1anun2amBCNGW1ifkEeLKIDZKGEjvSeNpeEE0jqLYabIkW3YtFHz8Kvbob+sYJkSmGZY1WJhfOn4c+N9fi/za/f7/kZzY0lBZG62KMmxtUEyeafI0WRjOWU9gUaBcb7HPqZAe8OF2DuJDuE4TcM0yFEX2kj//aRuDTLVqU1VAjWQnKakQcuSDNMI6P5hSzDgGxHVMNFlksqwWO5VDH3Z5MPaoNstp3xSm/Q5cYo2CbEBnjhg8H4+4uKeMtnN0WSkqMhqtTVts61FOnAg4O0kJ7e3BxcdapkI1KuazHx5u0qDHYjt7bhcGrszTdLtPAMgweHatG/0DpcZfVAp9u1aK2kQJuuduexkPfIt5Rc01DyAkxtz5+LMJ9pZ0421J5CN14a8EGrYhkg/USYgJZhPl2r2cNaULfOiEyxqjVUE2eLCnTnzkDoaDAYv8mf+CA8cJoBtv9ka7BODtDnZgoKVMNH05z51vYk8njnzt00BpMIwzyYrBglgb+7t3zMahiGfxlkhohPtJG8vVyEV9u00LLd9+GstxV14vYf056wo+O5ODmSFltYhmG2e3r5aLRuhjdye6zeqPOXZqr3X11z1YGIQqiGjtWmt0UReiSky3yb4l6PfQHDkj/fVoYzapUSUnghg+HoFKhMTgY6nvusXaVbIIoilhzXIefDvIwTLBE92Lx95mabh982KkZzEvSwM9N+ne4UCBixS4d9AIF3HK0M4OXdC5xDJA4gBr6xHIGBLHo6SG9jxhmdruLeq2IbWnSY48NYhHsQyFXd0XfPCEyxzg4QDV+vKRMf+QIxIoKs/9bJhdGo721rYpRqWD35z+j4KWXUPrHP4JxdLR2layO14v4dq8OW1KMV8UdGcHhr1PVsNd070D7Jhd7Bi9M08DN4LRJuSLgx4N8l24nSDqvTiti91npeT+sDwcvFzrfieWwDGO0MvnFQhEXCrpfdntXhh61lNUmLVCwTYgCqCdNAlQtbuY8D92OHWb/d/h9+yQ/s6GhYAMDzf7vkA5Q6HZV7VWvFfFZsg5HLhg38mYO5vD4WBVULP2tWvJyYfB8kgYOBovbH8jSY/2p7pmdkqu9mXrUa2/9zABIGth9Fv8j1jM0nIWnk7RsazfLbtc1ithukNUeFMwiyJvCre6Mvn1CFIBxczPaV5nftw9iXZ3Z/g2htNR4YTTKahMbUlErYulGLc5dkwbaLAM8MlqFWUPUYKhTwqRALxZ/TdRAZRCXbTqtx+6z3avBLFdaXsSOdOl3NTiE7bbrEpCupWIZTDaYrpCWJ+BaWffJbu9I51GnlZbRCuSE7sCEKIQqMVGa3ayvB793r9l+v8mF0YYONdvvJ6QzrpcLeH99I66WSoc9a1TAc4lqjOlHDZ47ifBn8dQEtdEgiV8O8TiZazwkn9iWg+eNtxpKGkjnPek6oyM5OBks4ZKc2j0662oaROxMl94nh4SyCPSiUKu7ozOAEIVgfX3BDR4sKdPt3AlRp+v07za5MBqtek1sRPYNAYvXa1FWIy13sQdenqHBgCAaRttWg0M4PJQgDdBEAN/s1iHrOgXctooXRKOgJroXLcpEupa9msGEaOn99vhFAaU1yl/7YUc6j/oWzS0GwMzB1NlFKNgmRFFU06ZJCyoroT98uNO/V5+ebrTgGu2tTWzByVw9PtmiNRq618OVwYLZGoT0oMdce42NUhkNfeQF4MttOuSVdJ8hoXJy7KJg1Nk0fRA19EnXm9BfBU2LeFsvAjvSlJ3drm4QsTND2hkZH8YiwJOeP4SCbUIUhQsOBhsZKSnTbdsGUehcA9loYbSQEFoYjVjdjnQe/9qpA2+QcA3t0bSHdg9XesR11MzBHMb2k2aoGnTAp1u1KK6igNuWCIKIrWekwUy4L4M+frQ+Ael6LvYMRkVK7x37s/SoaVBudntbKo/GllltBphJc7XJ/1BLhBCFUSclSX4WCwuhP326w79PKC2FkJ4uKaOsNrEmQRSx8ogOK4/wMGy+xQaxmD9DAxcHCjQ6g2EYPJigwuBgaTOhqh5YtkWHqnrlNpzl5sxlAQWV0u9j2iAVLQZIrGbKAA4tN33Q8sCes8qchlJVb7zd3vBwWpiQ3EJnAiEKw0ZHgwkKkpTxyckd3i+XP3hQujCavT24+PjOVJGQDtPxIlbs0mFHunHDbWw/Ds9MUcNORUGGObAsgz9PUCPCX/r3LKoS8dlWLRq0FHBbmyiK2GywvVKgF4OYQGreEevxdmERHyY9B3dl8GjUKe+ekZzKQ9viEmQZYAbN1SYt0N2YEIVhGAbqqVMlZcKlSxDOn2/372p1YTR7+07VkZCOaNAxWLZVi5O5xsOY745X4aFRKnC0h7ZZqVUMnpuiQS9P6d/1SomI5Tt04PXKazzLydl8AXkl0u8gaSBltYn1TY2VBpw1jU0r5itJZZ2IvYZZ7T4cfN0ovCK30NlAiAJxQ4aA8faWlOm2bm3379Gnp0MsL5eU0d7axBoqGzj8eLoHsm9IAwuOAZ4Yp8Z0GjZrMY52DJ5P0sDLWVqeeU3At3t1EDo4aoZ03haDrHYPVwZDQqhpR6wv0Is1GmGxPY0HLyjnfrE1hYe2RazNMk3rXRDSEt2RCVEghuOa9t1uQcjIgJCX167fw+/fL/mZDQkB27t3p+tHSHvklwn478keKKlVS8rt1MC8JDVGRlDjxtLcnRi8ME0DZ4NBLcdzBPx2hO/wNBXScRcKBKPOp6SBHFga3UFshOE+76U1wMkcZSywWFErYu85aVY7oS8HH1qYkxigM4IQhVIlJADO0lSULjm5zZ8XysogpKVJfydltUkX0/IivkjWokYrDajdHIFXZmoQ3YsC7a7i585i3lQN7AymI+7M0CM5VVnDQ+Vgq0FW28MJGNGHrgdiO/r4MQjtIe382ZqqjM65LSm8ZCcMjgWmD6LrjxijYJsQhWLs7KCeNElSpj9xAkJJSZs+rz9wQLowmp0duKFDzVlFQu7oULYepQb7B/u7M/jHLDsEedMjrKuF9mDxl8lqcAbJ09XHeRzKpoC7q+SVCEjLk2YIEweooDL8YgixIoZhjLLb18pEpF+Vd3a7rEbEfoOs9qi+HLxd6JlEjNFZQYiCqcaPB+zsbhUIAvht2+74OVEQwNPCaMTK9IKI7QYZ0yBvBq/cpYGXCwUV1tI/kMNj49RG5d/v0yEtjwLurmCY1Xa2B0ZHUlaN2J7Y3iz83KX36+RUvpV3y8PmMzz4Fv0FKhaYPohWICemUbBNiIIxzs5GQ7/5gwchVlff9nOCqYXRaG9t0sVOXxJQXC0dbjh3mArO9hRoW9uIPhzmDpc2LgUR+GqHDjmF8s5a2bqCCsFoRf5J/VWwU9N1QWwPyzCYGivtCMq+Icr2PlFSLRitqj6mHwdPZ7r+iGkUbBOicKopUwCuxYNOq4Vu167bfobft0/yM9u7Ny2MRrqUKIrYapD98HPRIrInPbZsReIAFRIHSBvRWj3webIW18vl2ZCWg+RUPVp2QdmrgQnRlNUmtmt4OAcPJ2mZ4egMudh8Rg99y6w2B0wbSFlt0jpqtZBOKagQcDzPGUcuu6CyTv4LXigR6+kJbtgwSRm/ezfExkaT7xfKyqA3XBiNstqki2VdN94/eHjvatrey8bcM0yFEX2kTYnaRuDTLVqU1dAzwdzKakQcuSDNqo2L4uBoR9cFsV0qjsGkGGlAmnJFkF2nXHGVgEMGWe1x/Ti4O9H1R1pHwTZpt4IKAZtO83hrVSNe/02L3RfdsS/XDW+takReibxunN2FeupUaUFtrdG2XjfpDx6khdGI1W1NkTZo3B14RPjUW6k2pDUsw+DRsWr0N9hPt6wW+HSrFrWNFHCb0/Y0XpJVU3PA5BjKqhHbNzaSg6NGWrZNZrsYbDqtR8ttwjWc8fZmhBiiYJu0SWGlgM1neLy9uinAXneSR36ZtBFV3QB8uFGL7BsUcNsaNiAAbGyspIzfvh0iLx3G1erCaA4OFq8jITddKRGQeU16HxkWVA3aPtg2qVgGT09SI8RH+gVdLxfx5TYttDwF3OZQXS9if5bxCshujnRhENtnr2Ew3mC6w9GLetmMgCmsFIxHlUTT9UfujIJt0qrCSgFbzvB4Z3UjXlupxdoTPK6W3v6mWK8Dlm3RIuWKvHoruwN1UpLkZ7GsDPrjxyVlQkYGxLIySRntrU262jaDudouDkB/v1or1Ya0hb2awbwkDXzdpA3PCwUiVuzSQS/Io0Fty3Zl8NC2uDQ4BpgaS1k1Ih8T+6ugbhFv6wVgR7o85m5vOs1Ls9oquv5I21CwTSSKqwRsTeHxzpqmAHvNCR55dwiwOVb6uk4PLN+uw2Hac9WmcH36gA0Pl5TpkpMhthgybrgwGtO7N9jg4K6oHiEAmu5BJwxWWp4YLW2gEdvkYs/ghWlquDlKy1OuCPjxIC+ZnULap14rYtdZ6TN1WB+WtsAjsuLqwCChr/Rmvj9Lb/PTTW5UCDh6UfpcmhDNwdWBrj9yZxRsk+YAe9GaRiz4VYvVx3mjhYkMuToA46M4vDxDg+dHX0cfb+lcSkEEvt2rw06Z9Fh2FyrD7Pa1axD+txgaW11tvDAaZbVJF9ueppcuGaCC0dBDYru8XVg8n6SBg8HczANZehy45GqdSinA3kw96rW3fmZAWTUiT4kDOLRc57JRB+w5a9vJmY2npJ2Fdmogka4/0kZ0pnRTJdVN+3SezNXjcnHbehRdHIC4EA5DQllE+LFg/zeB8uJFEXf3L8Wh671xyCCb/esRHjWNImbFqWgVYRvADRgApmdPiNevN5fptm4F/vAHOKamAkKLnls7O6gMVjEnxJKq60WjlV7H9OPgRCsty0qgF4vnpmiwbKsWfIuv8/BlVzhp9DAYYEPuQMuL2G7QcT04hEVPD8qXEPnxcWURH8rieM6t9sauDB5TBnDQqGzvXn+tTMCJHMN97Tm42NteXYltomC7GymtFnEyV48T7Qmw7YHBIRziw6QBtiGWBR4bq4KTfVNmqqVNp/WobQD+mKACSwG3VTEsC3ViIrTffddcJly4AM3Vq03BdgvcsGG0MBrpUrvP8tC2uH1wDK20LFd9e7L48wQ1vtqpk2SEdmS7w9+Xx5h+9L221cHzelQbLMRPKyATOZsaq8LxnFtDNaobgEPn9RgfbXvn9cbTvGRfewc1PZdI+9DZonClNU0B9skcPS61McB2tm+RwfZnwbVxCWCGYTB3mArO9gzWHJf2wu/JbJqT88Q4NVQcBdzWxA0fDmbdOojl5c1l7hs2QFVVJXkf7a1NulKjTsRuE3NSPZ3pfiFXcSEcHkoQ8d+DLZ8HDH44wKOkWsTseOqAvRNeEI0WDIzuxSLYh7LaRL6CvFlE92JxNv9Wxnhbmh5j+nFtbnN2haulTaNAW5oUw8GZstqkHSjYVqDSGhGncvU4matHblEbA2y7pgz2kFAWfXu2PcA2xDAMpg1UwckO+PGAtDfweI6AOq0Of5mkhp2ablTWwqhUUE2eDN1vvzWXGQbaTFAQ2N69u7pqpBs7kKVHbaO0LHEAPaLkbmyUCpX1wIZT0oBxS4oeJdUiHh+rhtoGh47aiuMXBZTWSMumUVabKEDSQE4SbJdUiziVK2BouO2s0WF433LUUFabtB+dMQpR9r8M9qlLeuQUti/AjgtlEdmJANuUsf1UcLJj8PVuHfQtOgUzrgr4ZIsW86ZqaB6mFanGjIFu0yagrs7062PH0hx70mV4wXhO6oAgFgGelL1TgpmDOfB6EVtSpCMXjucIKK/V4tkpGsoUmSCIIrakSK+LMF8GEf70tyLy19efRbAPI5nWuDWVR3wYaxPtj7wSAWcuS7PaUwao4EhtV9JOFGzLWHltUwb7RG7bA2wngwy2yoLDdYaEcnDQAP/crpPsDZpTKGLpBi1emK6BuyPdtKyBcXCAavx48Js3G7+o0dDCaKRLncgRUGaQvaOVlpWDYRjMGaqGUF+CbdnuEMVb9/0LBSI+WK/FvKlq+LpR50pLZy4LKKiQPtunD6LFRokyMAyDpFgV/m+nrrnsaqmIs/kC+gdaP7ttmNV2sgMm9rd+vYj8UGtGZsprRZy61DQH+2IbA2xHO2BwcFOAHRlg2QDbUHQvDvOnM/gsWYu6FkNEr5WLWLxeixenq9HDlRpY1qCeNAn89u2ATicpp4XRSFcSRRHJqcbZuz5+FFAozcCAWrja89iQ6YOGFredwsqmgPu5KRqE+9HzAGi6LrackV4XvTwZxATS34cox6BgFr5uDAorb7Vnk1P1Vg+2LxcLSLkizWonDlDBQUPPJdJ+dNeWgYpaEbsyeCzZ0Ii//9SIXw/zdwy0He2AhAgOzyep8cnDdnhsrBr9A7kuDbRvCvNl8cpMDdwdpeUl1SKWrNfiaqlg+oPEohhXV6gSEozKaW9t0pUyrgq4Via9n02NpeydUoV6NeKVuzTwcJKW1zQAH23W4mSube+321Uyrwm4UiK9LqZRVpsoDMsySIyVBtZZ1wXkFlm3Xbj+pLSjy9kemBBNWW3SMRRs26iKOhG7/xdgv/xTI345zONCgYjbhdgOGmBkBIe/TVXjk4fs8Pg46wXYhgI8Wbw6S4MertK6VNYDSzdqcaGAAm5rUE2dCqjVzT+zYWFgQ0KsWCPS3Ww1yGr7uTOI7U2PJiUL9GLxj9l2CPSSPg94PfDVTh22pvAQxbaN3FKqzQZZ7R6uDIaE0HVBlGdEHw5uBsmYZIO1CrpSTqGA9KvSNunUWBXsKatNOoiGkduQyrr/DRHP1ePCjdsH1jc5aJqG4QwJ5RAVwNr0tlreLixeuUuDT7dqcbX01tHVa4Flm7X4y2Q1YoKo57ArsT4+sHvmGVStXg3B0REef/oTZU5Il8ktEpB9wyCrPYCj7aC6AQ8nBq/M1OCrXTpkGDRsVx9v2hrsgQSVTW0D1FUuFpi4LgZyYLvh34Ion5pjMKm/CqtbbBnbtF6BAD/3ru9gMpyr7eIAjI+itinpOAq2rayyTsTpy3qczBGQfUNoW4CtBgYGs4gP49AvgIXahgNsQ26ODF6eqcEXyVpcKLh1tFo98OU2HZ4YDwyzoW0fugNuwACUOjZ1K3t5e1u5NqQ7McxeuDsCw/rQ9d9d2GsY/DVRjZ8P8dh3Tjp8fN85PUprRDw9Ud3tMkqGK5B7ODVl/whRqrFRHLac4VH/v7UcRDTtu/3omK4Nti8UCJLtyAAgKVZF29WSTqFg2wqq6kWcvqTHyVwB528IaMtouZsBdlwoh+he8gqwDTlqGLwwTYOvduqQlnfrpqYXgW9261DXKGJ8NJ2ahChZQYXxtiqTYlSyvreR9uNYBg+NUsHHlcGqY9IgM+OqgCUbm7aK9HDqHufF1VJB8lwEmrYbouuCKJmjhsG4aA5bW2wPeCRbj1lxKrh34bVvOFfbzQEYR1lt0kkU0XSROi2LfZk8TrQjwLZXAwN7Nw0Rj+7FQq1SzsNWo2LwzBQ1/rNXh6MXbzUsRAA/HeJR0wDMGMzRkGZCFGp7ml4yksdBDYzpR42a7ohhGEyNVcHbhcE3e3TgWyS5r5aKeH9dI+ZN1SDQS/lzlrcaZLWd7YAxkXRdEOWb1F+FHen65uufF4Ad6TzmDlff/oNmknVdj6zr0o6uaYNU0Cio7U2sg4JtC6qubxoivj/DG3nldhBx5wUf7FoE2P0VFmAbUrEMnhivhpM9j10Z0iGE60/xqGkUcd8IFc3fJERhKupEHM6WXvNjozg4drPhwkRqSCgHd0cGX27ToqbFVpHltcCSDVo8PUlt9S2BLKmwUsCJXOPRHjSElXQHbo4MRvbhsD/r1rNh3zk9pg9SwdHOsteAKIpGc7U9nKiji5gHBdsW9PVuHTKvCQDsb/s+OzUQG9Q0Bzu6F9utetFYhsH9I1RwtmeMhu/sytCjtkHEY+PUNrGiOiHEPHZl8OBbxBQqtimoICTcj8WC2Rp8nqyT7L3boAM+T9bhoVEixvRT5rmSnKqXjHqzVwPjabsh0o0kxnI4kHVr1FODDth7To9pAy17zWddN16UcNpAlaITXqTrKH9MlhXF3WabDjsVMDSMxTOT1Vj2sB2emqjBoGCuWwXaNzEMg5mDVXggQQXDoz96UcDy7Tpo+e69DQwhSlGvFbE3U5rVHhHRlNEkBAB83VgsmKVBHz/pOSGIwA8HeKw+roOgsK3BymqMR3uMi+LgZOGMHiG2xNeNRVyotO28M52HzoJtQFEUjZI9nk7AKMpqEzOhYNuCBodwaDkCWqMC4kNZ/GWyGp880hRgDw7pngG2KROiVXhyghqG68Ck5QlYtkWLukZlNa4I6Y72n9OjXnvrZwZA4gBq1BApZ3sGL07TYGiYcTNla4oeX+/SWbQB3tW2p/HQtxztwQGTabQH6YamxkrP+6p6GHVEmVPmNQEXC6X3kumDaVFCYj50J7cgFwcGsUEsGuprENmjHpOH9oQdBda3NSycg6MG+L8dOmhb3FsvFIj4cJMWzydp4EYZMEJkSacXsSNdmkEYGMxaZS9VYvvUKgZPTlDD24XHlhRpY/tEroDyWi2eS9TA2V7ez4TqBlEyTxUARvfl6FlHuqVgHxb9Alicu3ar92lbmh6jI82/17yprLa3C4OECOoAJuZDLRwLe3aKGrP7lyGyRz0F2m0UE8ThhekaOGqk5VdLRSzZoEVJtWD6g4QQm3bsoh4VddKyJAvPxSPyxjIM5gxV45ExKhi2sy8WivhgvRaFlfJ+JuzK4KFt0d5nmaa5q4R0V0kG539RlYjTl81/nadfFZBbJM1qzxjEQUVZbWJGFGxbGG1d1TF9/Fi8PFMDNwdpeVGViMXrtbhWJu/GFSHdjSCKSE6VZu8i/BmE9qDHELmzMZEqzJuqhr3BLkCFlSI+WKfFxQJ5PhPqtSJ2G+zGMSychbcLXRek++oXwCLIW9p+3prCQzTjWg2msto+rgyGU1abmBndzYnNCvRi8cosDXxcpDfcijpg6UYtcovk2bgipDtKvSKgoELaUDKcm0fI7fQP5PDKXRp4OEnLaxqBjzZrcTLXcvM6LWVvph51BmsY0GgP0t0xDIMkg+fDlRJRMrS8s1KvCLhSIn0mzRysot1viNlRsE1sWg/XpoA7wEN686ttBD7epMXZfPk1rkjXqm0Use28O35P9UImnS9Wk5wqzSAEeDCICaRHEGmfQC8W/5hth0Av6TOB1wNf7dSZPftlSVreeA2DQcEsenrQdUFIXAgLH1eD7HaqeZ7hgihivcG+2r5uDIaF07VHzI/OKmLz3B0Z/P0uDcJ8pTfdRr5p31U5ZjNI1/l+nw5nrjkjp9QBn23V4UoJjYjoahcKBOQUGme1aZoN6QgPJwavzNSgv4nOmtXHefx4kIdesP2A+9B5ParqpWXTBlFWmxAAYFkGUw12qjh3TcDl4s4/w89cFnC1VHqPuCtOBY6y2sQCKNgmsuBk17QNjGHjSi8A/9qpw75zfCufJN3ZjQpBsqiKXgS+36+TRUNcSZJTjPcwjacMAukEew2DvyaqMbaf8fzKfef0+GKbDg1a273OeUE0Gu0RFcAi2IeuC0JuGhnBwdVg7R7D66a9BFHEBoOstr87g/hQuvaIZdCZRWTDTs3guSlqo31XRQD/PcBjyxn5DB8kXWNXhvGoh7wSETtNlBPLuFYmIDVPmomYPIDmxZHO41gGD41S4Q/DjLPBGVcFLNmoRXmtbT4Tjl8UUFojLZs2iBZmIqQltYrBpP7S6/vUJaFTOxCcviTgWpnBXO04ldm3FSPkJgq2iayoOAZPjldjXJRxo2TNCR6/H6OAmzSpbRRxONt0UL3+JI/iKhpO3hW2pUkzCI52wOhICiqIeTAMg6mxKjw9SQ2VwWl1tVTE++sacbXUtq51QRSx1WC0R5gvg77+1CQjxNC4KE6yC4EoAtvTOtZhLgjGWe2eHgyGUFabWBCdXUR2WJbBgwkqzBhs3GDfnqbHd/vkMV+PWNbB83rJ3rUtaXngx4PUMWNpZTUijl2QBjoTojnYqymDQMxrSCiHl6Zr4GwvLS+vBRZv0CLjqu2MZkm5LOCGwcr80wbSGgaEmOJoxxhNFzmUrUdlXfuf3ydyBVwvl35uVpwKLF17xII6tBJHcXExfvjhB2RmZsLJyQmTJk3CzJkzW31QaLVarFy5EkeOHIFer0dcXBwefPBBODk17d9x4cIFvPPOO9DrTT8MJ02ahCeeeKIjVSUKxTAMZg9Rw9mOwa9HpBHV4Ww96hpF/L+JaqhVdAPtjgRBxJ6z0vuJihXBC7fOh7P5Ao7nCBgWTllWS9mRzkPfol2j5oAJ0bQAFLGMcD8WC2Zp8HmyDoWVt068Rl3TYpoPjhIxtp91zz9RFLHFIKvdy5PBgCDKfRDSmskxKuzK0IP/X98trwd2ZfCYM1R9+w+2oDeR1Q70YjAohK49Ylntfuo0NDRg8eLFCAwMxGuvvYby8nJ8++230Gq1+MMf/mDyMytWrMDVq1fx7LPPQq1W45dffsGyZcvw2muvgWEY9OnTB5988olRsF1cXIwPPvgAffv27djREcWbFKOCkx2D7/bp0DKZnXJFwGfJOjw7RQ0HDQXc3U3KFQEl1dLe67v7l2LHRW9U1N0q+/WwDtG9WDjb0zlibrWNIvZnSe/po/pycHWgvzWxHF+3poD7n9u1uFBw6x4giE1re5RUi7g73nqZrMxrAi4XU1abkPZwd2IwvA+Hg+dvPVP2ZOqRNFDV5jbe8YuCpBMOaFqBnLLaxNLa3Z2zZ88e8DyP5557DqGhoYiLi8NTTz2FTZs2obq62uj9ly9fxpEjR/D8888jOjoaEREReOGFF5Cbm4uUlJTm9/n4+MDPz0/y38mTJ+Hj44Phw4d36iCJso2I4PDMFDXUBgnKrOsCPtqkRXU9DRXubnZmSHuv/Vy0CPVqwAMJ0l7w6gbgt6O0kr0l7M3Uo1F362eGAaYMoFEExPKc7Zt2rzBcTBMAtqbo8fUuHXS8dZ4LW85IO6B6uNJ8UULaYmosh5Zhcb22aeeBttALIjaclj7rg7wZDOxN1x6xvHafZUePHsXw4cOhUt1KisfExMDe3h6nTp0y+f7Q0FD4+/s3l7m6umLAgAE4evRoq/9OVVUV9u3bh2nTpoHjqIFGbm9gbw4vTNPAwWBE0ZUSEUs2aFFaQwF3d5FXIiD7hvT7HtKrBgwDDA7hMChYets7nK3HuWu2M59TCbS8aNThMSSEhY8rNWxI11CrGDw5QY1pA43bDydyBXy8WYvqhq59LlwsEHD+hnQNg6mxHK2CTEgb+LmzRs/vHek8dPo7X8dHLuhRXCV93+whNKKEdI12DSMXBAGXL1/G7NmzJeUsyyIyMhI5OTkYN26c5LVLly6hX79+Rr8rKioK27dvb/Xf2r59O+zs7DB+/PhW33Px4sX2VN9qrly5Yu0qWJStHB8L4L6BavyW4o063a0GVkGliHdX1+L+gSXwcmp/FtNWjs+SlHSMm895AHBq/tlJo4djYxauXGl60I4MYHH2qh+0+lsP7X/vrsefhhYYjY6QE1v6Ds9cc0J1vYekLNrrBi5e1LXyiTuzpeOzBKUfH2CdYxzgCYiRjkg+7wFRvNWwvlgo4p3fazA3thSejuYZ3XKn4/s91QvArU2DnTV69ODyIZOmDJ2jCiD34+vvrcbpy77NP1fWARsO3UBsz6b5YaaOTy8Aa4/5oWXI4++qhUOjfK69luT+Hd6JnI4vPDy8Te9rV5qhrq4OOp0Obm5uRq+5ubmhsrLSqLyysrLV91dUVJj8dxobG7F9+3YkJiZCo9G0p4qkm/Nz0eGhuGK42kkbT9WNKvx42gc3qtq+mAaRnzoti8xCR0nZoIAacMytHm0XOwHjwqT3qop6FQ5ddu2SOiqdIALH85wlZcEeDfBz6XigTUhnxPasw70DSqDhpFnl8no1/nvKB/kVlm9nFNWokVPqICkbGlQNFQ32IKTNerrqEOTeICk7lueC221Ak1HgiMoGaW5xdEglKKlNukq7MtuNjY0AAEdHR6PXHB0dcf36dZOfae39DQ0NRuUAsHfvXuh0OkyZMuW29Wlrj4KtkFt928uWji88VMSnW7WSLR7qdRx+TfXFc1PU6BfQ/hSmLR2fpcj9GDed5qEXbnW0qFjg7oQeKL7eG8Ct4wsNE5FTqUVO4a3z43ieKxKHeCPQS96tX2t/hydz9SivlwbWc0a4ILyXu1l+v7WPz9KUfnyAdY4xPByIDBfwebIW5bW3ypueCz3wp3FqxIeZZ2iLqePbvUsL4Faw72wHzBntC3u1n1n+za5E56j8yfn45tjp8enWW8+Ysjo1qlUhiAu5df3ePD5eL2LF8UbJ58N8GUwe2kv2Q8jl/B22hZKOr12tSjs7OwBNGW5DdXV1JrPQdnZ2Jt9fW1tr8v2CIGDLli2YMGECnJ2djV4npC08nRn8faYGIT7Sm2mjDvhsqw6nL9EcXaXh9SL2ZEpHNMSHsXBzNH6gsgyDR0arwbW4Awoi8P1+HQTao73DRFFEcqrBIjReDPoFyLsDgyhDoBeL12bbIdBLek/g9cC/dumwNYWHKJr/+i+sFHAiV5pVnxijov3mCemA6F6s0TWc3Mq1e/C8HmU10rJZcTRXm3StdrWAHB0doVarUVVVZfRaZWUlPD09jcrd3NxMvr+qqgoeHh5G5UePHkVZWRmmTZvWnqoRYsTZnsH8GRqjhj4vAP+3U4eDWbQKtZKcuiSg0qBfb1JM64N3AjxZJBksnnS5WMTuTOqI6ais68bbGk2lbY2IDXF3YvDKTA1iAo2bP6uP8/jxIA+9mTvctqXq0TIOsFMDE6JlvEAEIVbEMAymxkqf7ZeKRaPFB3W8iM1npO28Pn7U+Uu6XrvOOJZlERwcjKysLEm5IAjIyspCcHCw0WdCQkJw7tw5o/LMzEyEhIQYlW/atAkJCQnw8vJqT9UIMclezWDeVDXiQqSnuigC/9nPY1sqBdxKsTPd+KHa2/v2t7jpA1Xwc5MGgmuP87R6fQclp0o7KrxdGKNrjxBrs9cweC5RjbH9jAPefef0+GKbDg1a89wDymtFHMqWXhfjozg42VEHFCEdNSSUhbeL9BramiK9zg5k6SVTRgBgFq1ATqyg3a2goUOH4tixY9Drb53UGRkZqKurQ1xcnNH7hw0bhpycHBQWFjaXVVdXIy0tDcOGDZO8Nz09HVeuXMGMGTPaWy1CWqXmGPy/iWqMiTRuWP1+jMeqYzqLDB0kXSe3SMAlg4zqxP53XpJCrWLwyBjponmNPPDTQTon2iuvRMDZfGlmIXEAB462NSI2iGMZPDRKhbnDjO8TGVcFLNmoRZkZOt22p/HQt7gsVBww+TYjbgghd8axDKYMkLbpzuYLKKxuep5reRGbU6Qd8JE9WUT2pBElpOu1O9ieOHEiWJbFl19+iUuXLuH06dNYsWIFpk2bBnd3d2RkZOCll15Cfn4+gKbM9ogRI7Bs2TKcPXsWFy5cwLJlyxAUFGQUnG/atAmDBw9Gr169zHN0hPwPyzJ4eLTKaNgw0JSN++8BnubqyphhVtvTCUb7cbYmwp816ohJyxNw0mCOJbm9bWnS78DFHkjoSw0bYrsYhkFirApPT1Ibbft3tVTEB+sbcbW04/eB6gYR+85Js22j+nIm15EghLRPQl8OLvbSsmN5LgCaRqgYTiu7K446uYh1tDvYtre3x6uvvgqe5/Huu+/im2++wfjx43HvvfcCAOrr61FRUQGtVtv8maeeegpRUVH48ssvsXjxYnh5eeGll14Cy9765wVBwPXr1zFr1iwzHBYhxhiGwT1D1SYzGfuz9PjXLh10egq45aa8VsQpg8B4fLSqXRnVe4ap4CrdlQe/HNahtpHOh7YoqRZwIkf6HUzor4JGRUEFsX1DQjm8NEMDZ4OGe3ktsHiDFhlXO7aOw64MHtoWfVAs0zTagxDSeXYqxmgE27lCBxTXqLDFIKsdFcAiwp+mNBHr6FA3j4+PD+bPn2/ytfj4eMTHx0vKNBoNHnnkETzyyCOt/k6WZfHFF190pDqEtEtirApOdsD3B3jJojWnLgmoT9bhmSlqWiVWRvZm8mjZR6LhgNEmpgzcjpMdgwcS1Phq563tRKrqgVXHeDw6hvZmv5PtaXrJPqcaVdO8VELkIsyXxT9ma/DZVh0KK2+dzI064PNkHR4cJWJsv7Y3meq1InZnSIP0YeEsfFypwU+IuYyL4rA1hUfj/2JrEQxWpvigRit936whlNUm1kN3fdItjYpU4S+T1FAZXAGZ1wR8vEmLmgbKaMqBjjcepjm8Dwdn+/Z3lsSFsBgQJD0hDmTpcf46DSe/neoGEQezpN/BmMiOfQeEWFMPVxYLZmnQx0967goi8N8DTet7CG1cy2HfOT3qDBr8SQOpwU+IOTnbMxhjsNBhjVb6c/9AFmG+FO4Q66Gzj3Rbg0M4/C1JDTuDxOWlYhFLN2pRXksBt607dlGPmgZp2cT+HcuoMgyDh0YZnw8/HNBBx9O50JrdGTy0LWJtjgEmD6CggsiTsz2DF6dpMDTMuHmUnKrHil13vh/oeBHbDdYwGBTMoqcHNbkIMbfJMSpwt7m0aK42sTa685NurV8Ah5ema+BsJy2/Xi5i8fpGFFRQVtNWiaKInQbDNPsFsAjw7PhtzdOZwd3x0gdzYaXxXp2kSaNOxJ6z0u9gaDgLL2fKahP5UqsYPDlBjWkmFtQ8mSvg481aVN9m9NPBbD2q6qVl0yirTYhFeDozGBZuupN9QBCL0B4U6hDrojOQdHshPVi8MksDDydpeWkNsGSDFgXVNGfXFp2/ISC/TNrgndTBrHZLE6I4hPYw3r/zWhl1vBg6eF6PmkZpWWIsBRVE/liGwZyhajwyRgXDtRYvFor4YJ0WhZXG9wS9AGwz2G8+KoBFCDX4CbGYqbGmn/00V5vYArr7EwLA353Fq7Ps4OcmbVVVNwC/nPZBXrnGSjUjrdllkNXu4cogJqjzt7SmbeLU4FqcCnqxaTh5W+drdgd6wXiobEwgi16dGFlAiK0ZE6nC35LUsDfocy2qagq4LxRIA+5zhY4oqZbeJ6YNosUCCbGknh4sBvaWPnsGBbPo7U3PI2J9dBYS8j9ezgxeuUuD3t7SgLtRz+K3VB+kXOnY9i/E/IqrBKRcNtxqigPLmGf4cqAXi0SDnvKcQhH7MukcuOlkroDSGmnZVMpqEwWK7sXhVROjn2oagY83a3E8p+m+IIrAkSsukveE9mDQl7YcIsTi5g5XwUHddC26OQD3DqfnEbEN9AQgpAUXBwYvzdAgsqf00uAFBsu365BTSEOJbcGeTD1a5o7s1UBChHmzRzMGq9DDVRq8rz7Oo6yGstuiKCI5VZrVDu3BIMKf5moTZerlyeK12XYI8pKe47weWLFLh60pPLKL7VFaJ02BTxukAmOmTkBCSOt83Vg8PaIADwwqwnv32dE2e8Rm0JlIiAEHDYO/TVUbDUkSRODXwzqINJTYqhp0Ig4YbDU1qi8HB415G7QaFYOHR0t7xht0wC+Hda18ovs4my/gaqn0OkiMpaCCKJu7E4O/36VBTKBx02n1cR6bz3lKygI8GaPtBAkhlmOnEhHkoYW9mdsDhHQGPQUIMUGtYvCXyWqMNMiWXioWcfoSZbet6Ui2HvUt9q9lAIyPtsycyH4BnFHG/MxlAacude/h5MkGC0D5ujEY1JseJ0T57NUMnktUY2w/43uOVi+9BqYNVJltagshhBB5otYRIa3gWAaPjFHBw0GayVxzgodeoOy2NQiiaLQwWkwQC183y93K5g5XwcVeWvbzIR3qtN3zHLhUJCDrurTDKTGWA2u4ZDMhCsWxDB4apcLcYa3PCfVxZTAklJpYhBDS3dGTgJDbULEMxoZVScoKK0UcPN+9M5vWkpkvoKDS/Nt93Y6zPYP7R0rnYVbWAauPdc+9tw3nars5ACNa2eOUEKViGAaJsSo8PUkNtYnTPymWA0cdUIQQ0u1RsE3IHfT1qYe/i1ZStuEUj0Zd98xsWtNOg6x2Tw8G/QIsfxsbGsaiv8E8zX3n9Ebb/ihdYaVgNI1iUowKahUFFaR7GhLK4aUZGji3GP3i585ghJkXbCSEECJPFGwTcgcMA4wNq5SUVdYZB37Esm5UCMi4Kg30JvbnumRRLoZpGjaqMRg1+sN+HXT67tPpsj3NeBV4U3NXCelOwnxZLJxjh6FB1RgaWI0Xp2mg5qgDihBCCAXbhLRJsGcjontJL5fkFB41Dd0n0LK23QadG052wPA+XRfoebuwmD1EGm3fqBCxNaV7dLpU1ok4lC091rH9ODjaUVBBiKczgwnhlZjQpxKeznRNEEIIaULBNiFtdM9QaaBVrwM2n+me83a7Wl2jiMMGgd7oSA52XTx8eWJ/Dr29pf/mljM8rpcrfzj5rgwefIuvgGOByTGtLxBFCCGEENLdUbBNSBsFebMYFi69ZPac1aO0mrLblnbgvB6NLfo1WAaYEN31gR7HMnh0jBot1z3iBeC/B3QQFLz/eoNWxN5MaWfHiD4c3J0og0cIIYQQ0hoKtglph9lDVOBaXDW8AKw7qWv9A6TTBEHEnrPSQG9wCGu1oZpB3iwmx0iHr18oEHEgS7nDyfdn6VEnXSMQibE0V5sQQggh5HYo2CakHXxcWYyLkgYZRy8IyC9T/jBia0nNE1BiMHpgYn/rDl++a4gK3i7SYH/VMR4VdcrLbvN6ETvSpdMlBvZm4e9Ojw9CCCGEkNuh1hIh7TRjkAr2LbZdFgGsOU5zty1lZ7o0Y9zbm0G4r3WHL9upGDw82mAOvxb45ZDyRjkcu6hHea20LGkgzdUmhBBCCLkTCrYJaScXBwaJA6TBRlqegOwblN02t6ulAs4b/F0n9Vd1yXZfdxLdi8OIPtJb6KlLAlIuK2c4uSCK2JYmPZ4+fgzCfOnRQQghhBByJ9RiIqQDJg/g4OIgLVt1TAdRwYtkWcMug+2+XB2AIWG2c9u6d7gaznbSsp8O6VCvVcZ5kJYn4Hq59FimxlJWmxBCCCGkLWyn1UqIjNirGdw1WBp05BaJOHOZstvmUl0v4uhF432d1Zz1s9o3uTgwuG+EWlJWXgusPaGMaQXbUqXH0dODQUwQPTYIIYQQQtqCWk2EdNDofhx6uEoDvzXHeegFZWQ1rW3fOb3Rvs7jomwvqzq8D4uoAOMt4XIK5d3xcrFAwIUC6bmcGKsCawND+AkhhBBC5ICCbUI6SMUymB0vDf4KKkUcOq+cObvWwgsi9mZKs6pDw1i4OdpeoMcwTYulaVosUi8C+GG/Drxevh0vyQZZbQ8nYJgNDeEnhBBCCLF11HIipBOGhLLo7S0NADec4tHIyzfIsgWncgVU1EnLrL3d1+34uLKYGSet37Vy48XF5OJ6uYCUK9LM/OQYFVQ2NISfEEIIIcTWUbBNSCewDIM/DJMGWRV1xgt7kfbZlSHNqob7Mgj2se3b1ZQBHAK9pMHoxtM8CirkN5x8W6r0/HXUAGMiuVbeTQghhBBCTLHt1ishMtAvgDOas7s1hUdNA2W3OyK3SEBukfRvNynGdrPaN3Esg0fHqNFySjOvB/57gJfVKvXltcYL042P5mCvoaw2IYQQQkh7ULBNiBncY5DdrtcCW1KUsSJ1V9uZLv27eToBg4LlcasK9mExqb80A3z+hiCrefw703noWyTjVRwwIdr2OzsIIYQQQmyNPFqwhNi43t4shhosHrX7rB6lNfLJaNqCiloRp3Klw67HR6vAsfLJqs4aooKXs7Tst2M8Kuts/1yoaxSx75y0YyAhgrPJhekIIYQQQmwdBduEmMnd8SpwLa4oXg+sP0nZ7fbYm8mj5QLeGg4YLbO5wvZqBg+Nku69XdcIrDyis1KN2m7vOT0aWlSTYZrmohNCCCGEkPajYJsQM/FxZTG2nzQwOZKtx7Uy+S2QZQ063jirOrwPB2d7+WVVY4I4o5EOx3MEpOXZ7nByHS8aDeGPC2Hh60aPCUIIIYSQjqBWFCFmNGOwCnYtkpoigDXHKbvdFsdy9KhukJZN7C/frOp9I9RwtJOW/XhQhwadbQ4nP3JBj6p6adnUWJqrTQghhBDSURRsE2JGrg4MEgdIA5TUPAHZNyi7fTuiKBptl9YvgEWAp3xvUW6ODO4dLj0XymqAdSdsr/NFEIz3BI/sydr8dmuEEEIIIbaMWlKEmNmUGA4u9tKy1cd1str+qatl3xBxtVT695FzVvumhAgOkT2lt9ldZ/W4VGRbnS9nrggorJT+/ZMGyv/vTwghhBBiTRRsE2Jm9hoGMwdLM5o5hSJSrthWgGVLdmZIs70+rgwGBMn/9sQwDB4erYKqRdwqisAPB3TgBdvofBFFEckG29QFejFGe8cTQgghhJD2odYUIRYwph8HHxfpwl5rjvPQ20iAZUtKqgWjjoiJ0RxYRn4Lo5ni68Yadb5cLRWxI802Fks7f0PApWLpeTk1VgVGIX9/QgghhBBroWCbEAtQcQzujpcGWDcqRBzOto0Ay5bsPqtHyxH29mogoa+yhjAnxnII8JAGrxtO8Siqsv5oh+RU6Tnp7cJgSCg9GgghhBBCOotaVIRYyJAwFkFexgFWI0/Z7ZsadCIOZEmDvYS+HBw0ysqqqlgGj45Vo+VR6fTAfw/wVp3Lf7VUQMZVacA/JYYDxyrr708IIYQQYg0UbBNiISzD4J5h0ux2eS2wO4Oy2zcduaBHvfbWzwyACdHKymrfFNqDxXiDYzt3TcCRC9bLbm9Llc7VdrYDEiKV+fcnhBBCCOlqFGwTYkHRvTj0M1hoamsKj5oGym4LJrb7igli4eum3NvSnHgVPJykZb8d0aG6vuvPh9JqEcdzpIH+hP4q2Kkoq00IIYQQYg7KbdUSYiPuGSrNbtdpmwLu7i4zX0BBhTTInKSA7b5ux17D4MFRaklZTSOw8oiuy+uyPZ1Hy/X6NCrljioghBBCCLEGCrYJsbBgHxbxocZ7LZfVdO/s9k6DrHZPD8ZoFIASDezNGS1AdvSigIyrXTe9oKbBeK78qL4cnO0pq00IIYQQYi7Kb9kSYgNmx6vAtYhjeH3TYmndVUGF8cJcE/tz3Wa7qftHquGgkZb9eJBHo65rOmD2nNVD2+L0YxlgygDKahNCCCGEmBMF24R0AV83FmP6SYOZQ9l6XCuz/tZP1mA4V9vRDhjep/sEe+6ODOYaLJ5XUi12SQdMIy9i11npvxMfxsLbhR4HhBBCCCHmRK0rQrrIjMEq2LWIr0QRWHui+2W36xqN9xsfE8l1u4W5RkVy6OMnPebt6XpcKbFsB8yh83rUNEjLpsaqTL+ZEEIIIYR0GAXbhHQRN0fGaKhuyhUBFwq6V3b74Hk9Gg2GMI+P7n7BHssweGSMGqoWd2FRBL7fr4NesMxwcr0gYnuatKOjfyCLQC96FBBCCCGEmBu1sAjpQlMGqOBiLy1bfUwHUewei6UJgojdZ6XB3qBgFl7O3SurfZO/O4vpg6QdDXklxluimcupXAEl1dJzbWps9xm+TwghhBDSlSjYJqQLOWgYzBgsDa4uFopIvdI9stupecbB3qSY7pfVbilpIIeeHtLOhnUneRRXmfecEEURW1Ol0xaCfRj09afHACGEEEKIJVAri5AuNrYfB28XaXC15gQPwUJDh23JznRpxjbIm0G4b/fMat+k4hg8PFq697aWB346xJt1xEPmNQFXSw2z2qpuswI8IYQQQkhXo2CbkC6m4hjcHS/N5l4vF3H4Qtfts2wNV0sFnL8hzdZO6k/BHgD08WMxLko6nDvjqoDjOebLbienSs8vXzcGg4PpEUAIIYQQYinU0iLECuLDWAR6SYPM9Sd5aHnlZrcN5yG7OjT9HUiTOUNVcHeUlv16WIeahs6fE5eLBZy7Jg3cpwzgwLLU0UEIIYQQYinU0iXECliGwR8M9lkur4XR4mFKUd0g4thF6bGN7cdBzVGwd5OjhsEDCdLh5NUNwG9HO789XLLBXG1XB2BkN9rXnBBCCCHEGijYJsRKogJYRPaUXoJbzvCobVRednv/OT10LWJtjgXGRXXvhdFMGRzCYZDB0O7D2Xqcu9bxTpiiKgGnLhkP31d3s33NCSGEEEK6GgXbhFgJwzC4Z6g04KzTAltTOp/JtCW8IGJvpvSYhoaxcHOkYM+UBxLUcJAmuPHDgY5PMdiepkfLddbs1MDYKMpqE0IIIYRYGgXbhFhRSA8WQ0Kll+GuDD3KapST3T6dK6C8Vlo2sT9ltVvj4cRgjsEUg+IqERtPt78TpqpexKHzxsP3neyoo4MQQgghxNIo2CbEyu6OV6Hl1GWdHthwSjnZ7Z0Z0mMJ82UQ7EO3ntsZ249DmMGWaNtS9bha2r7VyXdn8EbD9ydRRwchhBBCSJegFi8hVubrxmJ0P+mw3kPZelwvN9+2T9aSWyQgt0iapadg785YhsEjo9XgWtyhBRH4fr+uzfuxN+hE7M6UZrWHhXPwdKasNiGEEEJIV6BgmxAbMHOwCpoWMagoAmtPyD+7vcsgq+3hBAwKodtOWwR4skgaKO2EuVxsHEC3Zv85PeoapWVTY2muNiGEEEJIV+lQiqm4uBg//PADMjMz4eTkhEmTJmHmzJlgGNMZE61Wi5UrV+LIkSPQ6/WIi4vDgw8+CCcnp1b/jS1btiA1NRULFizoSBUJkRU3RwZTBnDYdPpWIHXmsoCLBQLC/eQZnFbUijiZI83Oj49WQUV7O7fZ9IEqnMwRUFB5K5u99jiPQcEcvG6ToeYFETvSpR0dsUEsenrI81wihBBCCJGjdre8GhoasHjxYnAch9deew2PPvootm3bhtWrV7f6mRUrViAjIwPPPvss5s+fjxs3bmDZsmUQRdPDIYuLi/H7779j4MCB7a0eIbKVOEAFZ3tp2erjulavE1u39xwPfYuqazhgTCRlVttDrWLwyBjp0uSNPPDTwdufF8cvGi9KN3UgDd8nhBBCCOlK7Q629+zZA57n8dxzzyE0NBRxcXF46qmnsGnTJlRXVxu9//Llyzhy5Aief/55REdHIyIiAi+88AJyc3ORkpJi8t/4/vvvERAQgMTExHYfECFy5aBhMGOQNCC6UCAiLU9+c7d1vIh9BsOdh/fh4GxPWe32ivBnjTop0vIEnMw1fV6IoojkVONF6frIdIQEIYQQQohctbv1dfToUQwfPhwq1a2gICYmBvb29jh16pTJ94eGhsLf37+5zNXVFQMGDMDRo0eN3n/y5EmkpKTgySefBMtS45B0L2OjOHi7SAPS1cf5Ni+KZSuO5+hR3SAtm9ifstoddc8wFVwdpGW/HNahttH4vEi/KuB6ubQ8KZay2oQQQgghXa1d0awgCLh8+TIiIyOlv4RlERkZiZycHKPPXLp0Cf369TMqj4qKMnp/Y2MjfvjhByQlJSE4OLg9VSNEEdQcg9lDpIHR9XIRRy60bVEsWyCKInZmSOvbL4BFgCd1nnWUkx2DBxKkw8mr6oFVx4wX0duaIi3zd2cwoDf97QkhhBBCulq70h11dXXQ6XRwc3Mzes3NzQ3l5eVG5ZWVla2+v6KiQlK2Zs0alJSUYNeuXTh06BD69++P++67D15eXibrc/HixfZU32quXLli7SpYFB2feXkB6OHcA0U1muay1Ucb4IUCqCyUHDbnMeaVa3C1tIekLMqrCBcvNrTyCctTwjnqJgJhXl7IKb2V4j6QpUegww0EeWhx5coVlDS44EJBL8nnBvmVIjenrqura3ZK+A5vR+nHByj/GOn45E/px0jHJ39KP0Y5HV94eHib3teudEdjY9M+Mo6OjkavOTo6or6+3uRnWnt/Q8Otxnd+fj62bNmCsWPHYsGCBfjrX/+K2tpavPHGGyaDeEKUimGAcWGVkrKqRhVOXXO2Uo3a52S+tJ7uDjzCvawXaCsFwwCJfSug4aRztZPPe4D/30CCcxUBktecNXpE+8k/0CaEEEIIkaN2Zbbt7OwANGW4DdXV1UGj0RiV29nZmXx/bW2t5P1r1qxBXFwc/t//+3/NZX379sUbb7yBDRs24NFHHzX6HW3tUbAVcqtve9HxmU9YmIi0Yh2yrt8KrI5ddcfdCb5wtLPcImOdPcaSagEX9mglZYkD7dGnj22cG0o4R+8Bj18O3xoqXlanRlZ1b/h7q5Cf4yl5b9IgO/SNkP8xt6SE7/B2lH58gPKPkY5P/pR+jHR88qf0Y1TS8bUrs+3o6Ai1Wo2qqiqj1yorK+Hp6WlU7ubmZvL9VVVV8PDwaP45PT0dCQkJ0sqxLEaOHImsrKz2VJMQ2WMYBnOGSvvC6hqBranGc3RtyZ6zerTckcpODST0pYXRzGl8FIfQHtIOl60pemzPdgdwq9xBA4zpR397QgghhBBraVewzbIsgoODjYJfQRCQlZVlclGzkJAQnDt3zqg8MzMTISEhzT/r9XowjHHGjlYkJ91VaA8WcSHS839nuh7ltba5MnmjTsSBLOnCaAkRHBw1tN2XObEsg4dHq8G1+LPqBeBKuXST9vFRHBzob08IIYQQYjXtjmSHDh2KY8eOQa+/1ajOyMhAXV0d4uLijN4/bNgw5OTkoLCwsLmsuroaaWlpGDZsWHNZnz59cOTIEclnBUHAkSNHEBER0d5qEqIId8erwLaIl3R6YOMp28xuH76gR12LEeQMaLsvSwn0YpEY2/rfVsUBE/vTdl+EEEIIIdbU7mB74sSJYFkWX375JS5duoTTp09jxYoVmDZtGtzd3ZGRkYGXXnoJ+fn5AJoy2yNGjMCyZctw9uxZXLhwAcuWLUNQUJAkOL/vvvtw8uRJfPvtt8jNzUV2djY+++wzFBUVYdasWeY7YkJkxM+dxehIaVB14LweNyqEVj5hHYIoYpfBdl8xQSx83WhkiqXMGKxCD1fTmeuRfTi4OVJWmxBCCCHEmtrdEra3t8err74Knufx7rvv4ptvvsH48eNx7733AgDq6+tRUVEBrfZWiuupp55CVFQUvvzySyxevBheXl546aWXJEPEQ0ND8eabb6KwsBDvvfceli5dCoZh8M4775icC05IdzEzTgVNiySlKAJrjttWdvvcNQEFFdLh7ZTVtiyNisHDo42z1wyAKQPob08IIYQQYm0dGmfo4+OD+fPnm3wtPj4e8fHxkjKNRoNHHnkEjzzyyG1/b2hoKBYsWNCRKhGiWO6ODCbHcNh85lbm+MxlATmFAsJ8bSNzvDNdmtXu6cEgKsA26qZk/QI4JEQIOJR96+8/OISFnzv97QkhhBBCrI1aZITIQGKsCs520rJVx3QQResvllZQISD9qnRY+8RozuSCh8T87hupQoR/09/a01GH+0eqrVwjQgghhBACULBNiCw4ahhMHywdiHKhQDQKcq1h91lpVtvRDhgeQcOYu4qjhsHfZ9ph3qjr+POwQng4UScHIYQQQogtoGCbEJkYF8XBy1latvoYD0GwXna7TitKhjADwJhIDnYqCvi6mqNGAA0mIIQQQgixHRRsEyITao7B7CHSIcLXykUcvWi97PbBLD0adbd+ZhlgfDRtOUUIIYQQQggF24TIyLBwFr08penLdSd10PFdn90WBNFoCPmgYBZezpReJYQQQgghhIJtQmSEZRnMGSrNHJfVAHsy9a18wnJS8wSUVBtu90VZbUIIIYQQQgAKtgmRnZhAtnn16Zs2n+FRp+3a7PauDGmAH+TFoI8fZbUJIYQQQggBKNgmRHYYhsEfhknnbtc2AskpfJfV4WqpgKzrBtt9xahouy9CCCGEEEL+h4JtQmQotAeLuBDp5bszXY+K2q7JbhtmtV0cgKFhdDshhBBCCCHkJmodEyJTd8erwLZIJGv1wIZTls9uVzeIOHZRGmyP68dBzVFWmxBCCCGEkJso2CZEpvzcWYzqy0nKDp7Xo6DCsluBHTinh65FrM2xwLgoWhiNEEIIIYSQlijYJkTG7opTQdMi3hZEYO0Jy2W3eUHEnkzp748PZeHmSFltQgghhBBCWqJgmxAZc3diMClGmt0+dUlATqFlstunLwkor5WWTYqhrDYhhBBCCCGGKNgmROamDlTByU5atvq4DqJo/sXSdmVIs9phvgyCfeg2QgghhBBCiCFqJRMic44aBtMHSbPL2TdEZFw1b3b7UpGAnEJpAD+pP2W1CSGEEEIIMYWCbUIUYHwUB09nadmq4zwEwXzZ7Z0GWW0PJ2BQCN1CCCGEEEIIMYVayoQogFrFYNYQtaTsWpmIYxfNk92uqBNxMlf6u8ZHqaBiaWE0QgghhBBCTKFgmxCFGBHOIsBDGvyuO6mDTt/57PbeTB76FrG2mgPG9ONa/wAhhBBCCCHdHAXbhCgEyzK4Z5h0DnVpDbA3U9/KJ9pGx4vYZ/A7hvfh4GxPWW1CCCGEEEJaQ8E2IQoSE8giwl8aBG8+zaNO2/Hs9vFcAdUN0rKJ/SmrTQghhBBCyO1QsE2IgjAMg3uGSudu1zQC21L5Vj5xe6IoYle69LORPVn08qRbByGEEEIIIbdDLWZCFCbMl8WgYOmlvSNdj4q69me3LxSIyCs13O6LstqEEEIIIYTcCQXbhCjQnKEqMC1Gk2t5YOOp9me3dxls9+XjwmBAEN02CCGEEEIIuRNqNROiQP7uLEb3lWagD2TpUVDR9q3ASqtFnL4sff+E/hxY2u6LEEIIIYSQO6JgmxCFmhmngrpFvC2IwNoTbc9u7z7LQ2wxgtxODST0pSHkhBBCCCGEtAUF24QolIcTg0kx0uD41CUBuUV3zm436kQcyJJu95UQwcFRQ1ltQgghhBBC2oKCbUIULClWBUc7adnqYzxE8faLpR25oEedVlpG230RQgghhBDSdhRsE6JgjnYMpg9UScrO3xBwNr/17LYoitiVIc1qxwSy8HWj2wUhhBBCCCFtRa1nQhRuQjQHTydp2erjPIRWstuZ1wTcqDDY7iuGstqEEEIIIYS0BwXbhCicWsVg1hBpdvtqqYjjF01nt3emS7Pa/u4MogLoVkEIIYQQQkh7UAuakG5gRB8OPT2ki5utO8lDp5dmsAsrBaRflQbhE/tzYBhaGI0QQgghhJD2oGCbkG6AZRnMGSrNbpdUi9iXKc1iG87VdtQ0BeqEEEIIIYSQ9qFgm5BuIjaIRR8/aYZ60xke9dqm7HYDz+BQtjTYHh3JwU5NWW1CCCGEEELai4JtQroJhmFwz1C1pKymAdiWxgMA0m84oVHX8v3AhGhpNpwQQgghhBDSNhRsE9KNhPuxGNhbetlvT9OjupHFqavOkvLBwSy8XCirTQghhBBCSEdQsE1INzNnqAot1zvT8sBvqd6oaJBmsSf2p6w2IYQQQgghHUXBNiHdTE8PFgkR0kXPims0kp+DvBij+d2EEEIIIYSQtqNgm5Bu6K44FdS3WWR8YoyKtvsihBBCCCGkEyjYJqQb8nRmMLG/6WjbxQEYGka3BkIIIYQQQjqDWtSEdFNJA1Vw1BiXj+3HQc1RVpsQQgghhJDOoGCbkG7KyY7BtEHSRdA4FhgXRQujEUIIIYQQ0lkUbBPSjU2I5hDkfSuLnTiAg7sjZbUJIYQQQgjpLEphEdKNaVQMXpquwfbjN+Co0WPSkF7WrhIhhBBCCCGKQME2Id2cox2D/v51AACWpaw2IYQQQggh5kDDyAkhhBBCCCGEEDOjYJsQQgghhBBCCDEzCrYJIYQQQgghhBAzo2CbEEIIIYQQQggxMwq2CSGEEEIIIYQQM6NgmxBCCCGEEEIIMTMKtgkhhBBCCCGEEDOjYJsQQgghhBBCCDEzCrYJIYQQQgghhBAzo2CbEEIIIYQQQggxMwq2CSGEEEIIIYQQM6NgmxBCCCGEEEIIMTMKtgkhhBBCCCGEEDOjYJsQQgghhBBCCDEzCrYJIYQQQgghhBAzo2CbEEIIIYQQQggxMwq2CSGEEEIIIYQQM2NEURStXQlCCCGEEEIIIURJKLNNCCGEEEIIIYSYGQXbhBBCCCGEEEKImVGwTQghhBBCCCGEmBkF24QQQgghhBBCiJlRsE0IIYQQQgghhJgZBduEEEIIIYQQQoiZUbBNCCGEEEIIIYSYGQXbhBBCCCGEEEKImamsXQFCCCGku6uqqkJRURF0Ol1zmZ2dHXx9feHk5GTFmhFCCCGWdeXKFZw/fx41NTWSck9PT4wbN846lTITCrYtRBRFnD59GllZWaitrYUois2veXl54Q9/+IMVa2c+x44dw4EDB1BYWAitVttcbm9vDz8/P4wZMwZxcXFWrGHnKfkG0B10l++voaHB6F7j6OgIR0dHK9aqc9577z1MnjwZQ4cONXqturoa77//Pj744AMr1Mx8SkpK8O233yI1NdXk6yzLYvDgwXjsscfg4eHRxbUzH6Vch/v27UNpaWmrr3McBx8fHwwePBj29vZdWDPL6g5tmrKyMhw5cgSFhYVGnV7+/v4YPnw43NzcrFjDzqmqqkJOTg5qamok35+HhwdiYmKsWDPzUPLxHT16FMOGDQPDMEav1dfXY8WKFfjb3/5mhZp1niAI+Ne//oVDhw7B19fX6Dnn5eUlq2eEKRRsW4BWq8XSpUtx6dIlhIeHG504giBYqWbm9eWXXyItLQ3jxo3DoEGDUFhYiP379yMmJgahoaG4cOECPvvsM4wcORJPP/20tavbbt3hBnD16lWsWrUKWVlZRo1gX19ffPLJJ1aqWed1h+8PANLT0/HLL7/gypUrRq95eHjgyy+/tEKtzCMzMxPZ2dnIycnB/fffL2lo1NXVIS8vz4q167yKigosXLgQUVFRWLJkCXx9fVFYWIgNGzaAYRg8/PDDuHjxItauXYs33ngD7733nuwa+0q7Ds+dO4eSkhJJWWlpKYqKiuDk5ISePXuiqKgI3377LZ566imTHUVy0x3aNLt27cIPP/yAwMBA+Pr6oqioCLm5uYiJiYFGo8Hx48fx66+/4rHHHsPYsWOtXd12W7VqFTZs2ACWZY3uIT4+PrIPRpV+fF988QVCQ0PRo0cPo9cKCgpa7ayVgy1btiA9PR2LFi1CSEiItatjERRsW8C6detQXl6OpUuXwsvLy9rVsYgdO3bgwoULWLJkieTBO23aNLzzzjuYOHEikpKScPnyZbz//vvYuXMnJk2aZMUat5/SbwD5+flYuHAhYmJi8Oijjxo1oFxcXKxUM/NQ+vcHAFlZWVi6dCmmTJliMvMp56z2TfPmzcPPP/+My5cv469//SucnZ2tXSWzWbNmDcLCwvDcc881l/Xq1QvPPPMMli1bhj179mDmzJno378/3n//faxatQp/+tOfrFjj9lPadWjYcVxSUoKFCxfioYceQmJiIliWhSAI2LVrF/75z3/Cy8sLYWFhVqqteSi9TZOeno6ffvoJ8+fPx4ABA5rLMzIy8M033+CNN96Ap6cntm/fjn//+9/w8vJC//79rVjj9tm7dy+Sk5Mxb948xMXFmcyOypnSj+92iouL8euvv8q6M2Hfvn2YO3euIp4PraFg2wIOHz6Me++9V5EPpZt2796NOXPmGDXu3d3dMXv2bKxatQqvv/46goODMXfuXOzatUt2wbbSbwC///474uLiJA19JVH69wcAa9euxaRJk/Dwww9buyoW06tXLyxatAj//Oc/8Y9//AMvvPCCYr7T06dPtzrqZ/Lkyfjuu+8wc+ZMqFQqzJo1C19//XUX17DzlH4drlq1CkOHDkVSUlJzGcuymDx5Mq5fv45169Zh/vz5Vqxh5ym9TbNx40bMnDlTEmgDQP/+/TFhwgT88ssveO6555CYmIiysjKsX79eVsH29u3bMWfOHAwZMsTaVbEIpR7fCy+8gKKiIsnPpkRERODZZ5/tqmqZXVFRkew7JO+Egm0LKC8vR1BQkLWrYVEFBQWtXhyhoaH4/vvvm3+OjIzEzz//3FVVMxul3wDOnTuH559/3trVsBilf38AkJOTgzlz5li7Ghbn6OiIl19+Gb///jveeecdPPbYY4iMjLR2tTqtpqYG7u7uJl9zd3eXzA328vIymuohB0q/DlNSUlq9jyYkJGDp0qVdWyELUHqbJjc3Fw888IDJ1wYMGIDNmzc3/zx8+HDs2rWrq6pmFjdu3EBUVJS1q2ExSj2++fPno7q6GqIo4r333sMzzzwDT0/P5tcZhoG7uzv8/PysWMvOc3V1RV1dnbWrYVEUbFuAp6cnysvL0atXL2tXxWLs7e1bbfjV1NSA4zjJzw4ODl1VNbNR+g1Ap9PB1dXV2tWwGKV/f0DTokVKGCreVjczpF999RX69etn7ep0mpeXF/Lz800+K/Lz8yVzD/Py8uDj49OV1TMLpV+HjY2NrV6DarUaer2+i2tkft2hTdNyQS3Dcp7n7/g+W2Zvby85BqVR6vG1vN5CQ0MxcOBARe5MMXr0aOzcuVMRHeitoX22LWDKlCnYvHmzLG/KbdWvXz/s27fP5Gv79+9HRERE88/79u1DdHR0V1XNbG7eAJQqLCwMFy5csHY1LEbp3x/QdB2mpaVZuxoWZTj/bsiQIXj77bdx48YN2c/NGzFiBNauXYvGxkZJuVarxbp16xAfHw+gabXZdevWISEhwRrV7BSlX4cBAQE4e/asydfOnj2riABV6W2a4OBgpKSkmHwtNTUVAQEBzT+fOXMGoaGhXVQz8xg6dCgOHTpk7WpYjNKPDwAWLVrUaqAtCAIOHz7cxTUynz59+uDUqVP49NNPsWfPHuzfv1/yX3p6urWr2GmU2bYAe3t7nD9/Hm+++Sb69+8PlUr6Z/bw8MD48eOtVDvzmD17NhYuXAh3d3fcddddcHBwQENDAzZs2ICDBw9i4cKFAJrmBR8/fhzvv/++lWvcfn369MHWrVvx6aefIjY2VpKtB+S/ncQDDzyATz/9FGFhYYocIqj07w8AHnroIbzzzjvo2bMnYmNjwbLK6j/985//DG9vb6PygIAALFq0qNUgRy7uuusunDp1Cv/4xz+QlJTUvApycnIyRFHEnDlzIAgC3nrrLTg6OmLGjBnWrnK7Kf06nDRpEn7++WdER0dL7qNXrlzBmjVr8Nhjj1mvcmai9DZNUlISvvzyS4SFhUnmbZ89exbr169vXpQwLS0NGzdulN0c/NGjR+ODDz6ASqUyeQ26urpKOhTkRunHdyf5+fn4+uuvMXLkSGtXpUM2b94MV1dXXLp0CZcuXTJ6XQmryTOiUrsqreirr74y2hqkJS8vL/zlL3/pwhpZRkZGBr766itUVVXBxcUF1dXVcHZ2xp///GcMGjQIgiDgww8/xN133y3JdMvFu+++i+Li4lZf9/Hxweuvv96FNTKv9957D9nZ2dDr9XB3dzd6QMn9+JT+/QFNc7oKCgpafb1Hjx5YtmxZF9aoaxUXF8tyaHVLDQ0NWLt2LY4dO4by8nK4u7tj6NChuPvuu5uHJx89ehSDBw+GRqOxcm3brztch//+97+xf/9+xMXFNW/fdurUKUyYMAGPPvqotavXad2hTbNu3Tr8/vvvCA0NlWz9NWPGDNx///0QBAH/7//9P8yZM0eyGJ4cvPjiiygsLGz1dbk/J5R4fHv37kVZWdkd36fVanHixAn07t0b8+bN64KakY6gYJt0iiAIyM7Obm4kRkREGAVtxDalp6ejvLy81dfd3d2NVmcltuXatWuoqqpq9XUXFxdFDGM1paioCAsWLMC///1va1eFEKSnp+PIkSMoLy+Hp6cnEhISFLlok5Ll5+fj+PHjze2Z+Ph4yWgFQRAUN3qI2Kbly5e3Kdh2cHBAREQEEhMTZdkZ211QsE06RKvV0oVNCDGrO3Ue3KTT6bBnzx4UFxfj3Xff7YKaWcbx48cRFxen6A5KelYQQgi5nZqaGqxduxYnT55EbW0tPv74Y7i5ueHq1asIDAy0dvU6jeZsm0FpaSns7Ozg7Oxs7ap0mVdeeQULFy402mdbaZR+AwCAqqoqpKamoqamBomJiYrque8O3x/QND/01KlTqKmpwR//+Eeo1WprV6lDPvroI8m+oq2xt7dHRESE7PeI/9e//oUPPvgAPXr0sHZVLKa7PCuUpLu1aT7//HM88cQTij3ehQsX4qWXXlL07iM8z2PHjh04ffo0ampq8Nprr8HZ2Rk1NTWK+15FUURFRYVkpwNHR0fZ7kxSUVGBN954A/7+/njggQewfPly1NXVwc3NDcuXL8f06dMxatQoa1ezUyjYNoM333wTPXr0aF4UrDvMUSsrK0NdXZ2iG1Dd4QawceNGrFq1Cn5+frh+/ToGDhwIf39/rFixAvfccw+8vLysXcUO6w7fHwB8++23OHDgAKKiopCWlobJkyfD398fS5YswYMPPiirYeRym1dnDjU1NYoOtrvLs2Ljxo04f/48ampqJKt2y/F5393aNCdPnsS9996ruKDspsuXL6O2tlaxwXZ9fT0WLVoEnucxduxY/Pbbb81rCC1atAh//OMfMXDgQGtXs9Nqa2vx888/4/Dhw9BqtZLX3N3d8c9//tNKNeucX3/9FcHBwc0LDy5fvrz5tQkTJmDXrl2yb6tRsG0GM2fOlOyHOmvWrDvOhZW7gIAA5OfnK3qFR6XfAA4dOoSNGzdiwYIFiIyMlCzko9frsW7duuZVWOVI6d8fACQnJyMlJQXvv/8+/P39Jd+hr68v1q9fj2effdaKNSS3M2DAAKSnp8tuK6H2UPqzorS0FK+//jq8vLwQHx9v1Kkgx+d9d2vTeHh4oLS0FH5+ftauikX06NEDBQUF8Pf3t3ZVLOL333+HnZ0d3nnnHahUKvz222/NryUkJGDr1q2yD7br6+uxcOFCuLi4YN68ec0LMW7cuBE8z+OFF16wdhU7LDU1FX/9619NvtanTx/8/PPPXVwj86Ng2wwSExMlP8t9ifq2mD17NtasWYOoqCi4uLhYuzoWofQbwObNm3HfffchMjLS6LVRo0ZhxYoVVqiV+Sj9+wOAXbt24d577zXZiBo2bBg+//xzK9TK/A4ePIhDhw6hqKgIPM83l8s9ozZr1ix89NFHcHZ2RnR0tNGWSnIeGniT0p8VK1euRFBQEF555RXFTMHpbm2a8ePHIzk5GdHR0dauikUkJSVh48aN6N+/v2ynGN3O8ePH8ec//9no/gkA0dHRWL9+vRVqZV7r1q2Ds7MzFi5c2Hyfubnl56JFi3D06FHZrZJ/U2NjIxwcHEy+ptVqFXHOUrBtYaWlpaiurkZwcLC1q2JWJ0+eRElJCZ5//nkEBgYa3eQ8PT3xzDPPWKl25qH0G8CNGzfQp08fk6+5u7u3aaEqW6b07w9o2vqqtT3SnZyc0NDQ0MU1Mr/PLrnWswAAexxJREFUP/8cGRkZGDt2LIYMGYLCwkLs27cPvr6+sm1c3LR06VJUVlbi22+/Nfn6zSkPcqb0Z0VaWhqeeeYZxQTa7aXVarFt2zbMnDnT2lXpMBcXF5w7dw5vvfUWoqKiFLePeGlpKfLy8vDSSy8hIiLC5PHde++9Vqpd59XW1rY6uoJhGDAM07UVsoBjx47h4YcfNrrPsCyLGTNm4Ndff5Xt8zAoKAjp6ekICQkxek0pI78o2LaQrKwsfP/998jLywMAfPrpp/Dx8cGePXuQkJAg+9VZIyMj4evr2+rrch9WBij/BuDk5ITy8nKTwVpBQYGs52sDyv/+gKZgrLCw0OR3ePXqVdnPBd6xYweys7PxwQcfSM7HqVOn4q233pJ9gPPhhx+irq6u1ddb6yySE6U/KxoaGuDp6WntalhNXl4e1q1bJ+tg+/z5880JkezsbKPX5R5sA8CQIUOa/99wEyJBELq6Ombl7++P7Oxs9O7d2+i1rKysVjuk5aS8vLzV+6ivr+9t11SwddOnT8fy5cvRo0cPDB8+vLk8PT0dW7ZswYsvvmjF2pkHBdsWcPHiRSxZsgR33XUXFixYgL/+9a/NQx8PHz6MyspKzJ4927qV7KQJEyZYuwoWp/QbwODBg7Fu3Tr0799fsvWQIAjYvHkzhg4dasXadZ7Svz8AGDFiBH7//XdERUXBycmpubyhoQEbNmxAQkKCFWvXeXv27MEf/vAHo44fT09PzJkzBxs2bMCgQYOsVLvOc3JyknxvSqT0Z0WvXr2Qn58vq4UI72TVqlUoLS294/t0Oh0yMjJkv/aFnEdWtIWcs9ZtMXnyZPzyyy8IDg6WjNbLz8/Hhg0b8Pjjj1uxdubh4eGBwsJCk/eZwsJCWU/RiY+Px9y5c7F8+XL8+OOP4HkeH330EcrKyvDII48oYnoHBdsWsGrVKkyZMgV333230WsTJ07E6tWrZR9sdwdKvwHMnTsXr7/+Ol5//XVMmTIFQNOQyBMnTqCurk7256jSvz8AmDNnDjIyMvDKK69gzJgxEEURe/fuxenTp+Hm5obp06dbu4qdcuPGDYSHh5t8LSwsDD/88EMX18gyTp482bxlzTPPPAN7e3uIoqiI4Y83CYKA7OxsVFdXIz4+3trVMZt7770X33//Pfr16ydZVEzORFE0yn6a4uLigsceewzDhg3rgloRc1Di1Mbx48cjLy8Pb7/9NsLDw6HX6/Hvf/8bOTk5SEpKUsT5GR8f39y53HJElyAI2LRpEwYPHmzF2nXetGnTkJCQgJSUFFRWVsLd3R0DBw5UzAr6FGxbwIULFzB37lyTrwUEBLRpH1lbt3fvXpSVlbX6uqenJ8aNG9d1FbIQJd8AXFxc8N5772H16tVYu3YtAGDLli0YOnQo5syZA3t7eyvXsPOU/P0BgEajwVtvvYVt27bh9OnT8PHxQU5ODiZNmoRJkyZJRizIkYODA6qrq02+VltbK/t59zzP45NPPsHly5cxdOhQpKSkoLy8HP7+/njttdfw2GOPISIiwtrV7LQjR47g+++/B8/zaGhowMcffwxfX1+sWrUKU6dOlfWWS4cPH0ZZWRlefPFFBAUFGV1zXl5e+Mtf/mKl2nVMa+0Xpbp27dpt1yhxc3NDz549u7BG5qf0qY2PPvooxowZg1OnTiEwMBDu7u545JFHFDGEHADuvvtuvPbaa3jnnXcwe/Zs+Pr6oqioCOvXr0dpaakiRuq5ublh7Nix1q6GRVCwbQEcx0Gn05l8rbKyUtYNi5syMzONgm2e53HlyhUATSshKyHYBpR9A3B2dsajjz4q2TJKaVr7/oqLi+Hj42OFGpmXSqXC9OnTZZ/FNiU6Ohp79+5Fv379jF7bu3evyZX05eRmQ2np0qVwdnbGnj17ml+LjY3Fpk2bZN+ISk1Nxddff40nnngCI0eOxOOPP948RzQvLw8bNmzAAw88YOVadlxkZORt7yNKmM/9008/4Z577lFEB6wpH3300W2TIH5+fvj444+7sEbm1R2mNgJASEiIyTValMDR0RGLFi3Cjz/+iGXLloHneahUKsTHx2PevHmyHkZ+k06nw5kzZ1BYWCiJoezs7ODn54fY2FiTK87LgTxrbeMiIyNx4MABkw3BgwcPon///laolXm1NsepvLwc7777LkaOHNnFNbKM/fv3SzKhW7duRWZmJgYOHIiJEydauXako4qKirBgwQL8+9//tnZVOq22tlYy77e0tBS5ubmIiIiQ/bDW2bNn44033oC7uztmzZoFR0dHNDQ0YN26dTh69Cjefvtta1exU/bv34+HHnrIZAfsoEGDsGvXLivUyrzWrVuH2bNnm5zXO3bsWPz444+yDraV0ql8O9u3b8ekSZMUG2wvW7bMqEyv1+PMmTP49ttv8fe//90KtTKf7jC18ezZswgLC2s+R0+cONHcVouNjbVy7czD2dkZTz/9NJ566ilUV1fDxcVF9ouE3nTmzBl89dVX4DgO3t7eKCkpQWVlJUJCQqDX63H9+nU4OTnhL3/5iyy3IqRg2wLuuecevPXWW+A4DtOmTQPDMKitrcVvv/2GkydP4r333rN2FS3Gw8MD99xzD3777TcMGDDA2tXplP379+O7775rfhBv3rwZmzZtwogRI7By5UpwHCf7hlZVVRUOHTqE69evS/YvBpoyMnIaTninoYA36XQ67Nmzx+Te1HJz7do1vP3223j99dcRFBSE7OxsLF68GCzLgmEYvPnmm7JeuCkgIACvvvoq/u///g9bt26Fi4sLqqur4e7ujpdfftnk6rNyUllZ2eoKsxqNxuialKPLly+3OnKmR48et52ORGzDzZ0rbreqvNJwHNe81eCPP/6I+fPnW7tKHab0qY1nzpzBp59+io8++gj29vbYv38//vOf/yA6OhqffvopnnvuOcTFxVm7mmbDsqzsO9Jbys3Nxeeff46HHnoI48ePB8uyzevPbN++Ha+//joYhsHatWvx0Ucf4a233pLdCAYKti2gd+/eWLBgAb777rvmG/Sbb76JkJAQvP7664p/YAUFBSE/P9/a1ei05ORkzJkzp3lrmp07d+LJJ59EXFwcgoODsXXrVlkH25cvX8b7778PJycnhIaGGs1/bcsCObbkTkMBb7K3t0dERASee+65LqiVZf3222/o169f87y0mxmM+++/H9999x1Wrlwp60YiAEREROCTTz5BdnY2ysrK4OHhgYiICEX06Ht7e+PKlSsm5xXm5ubKfp4o0HS91dbWmnyttLRUEY1GnuexadMmHDx4EEVFRdDr9c2v9ejRw2TmVE4SEhKwf/9+2U/b6IiYmBisWbPG2tXoFKVPbVy/fj2SkpKap3Ns2bIFjz/+OEaPHo3k5GRs3LhRMcH2lStXcP78edTU1EjK5bxO0tq1azFp0iTJaFGGYTB+/HgUFBRg5cqVeOKJJ/Dggw+itrYWa9askV27hoJtC4mIiMAHH3yA4uJiVFRUwN3dXRHzQ9uivLxcEcPNrl+/3rxidUVFBcrKypqHI4WGhuLGjRvWrF6n/fDDDxg4cCCefvppRQQucm/QdsS5c+cwb948AIBWq0VWVlZzJ8KYMWOwZMkSa1av3f7zn//ggQceaF6s58SJExgyZAgYhkHfvn2tXDvzGzt2LH7//Xf07dtXsid6eXk51q9fj7vuusuKtTOPmJgYJCcnm1z9f+fOnbLeug1oCrTfe+89VFRUICkpqXnhoq1bt8LZ2RlPPPGEtavYaREREVixYgUaGxuNtooEmvZKl/tIttY0NDTIflcApU9tzMvLw4MPPggAqKmpwbVr15pXII+KisLKlSutWT2zEAQB//rXv3Do0CH4+vrCw8ND8rqXl5dsg+3s7GzMmjXL5Gvx8fH45JNPmu+j48ePx4cfftiV1TMLCrYtzMfHxyjIrqqqUsxqyKZs3bpVlnMqDNnb2zcv5JOdnY2wsLDmxRmqq6tlu1DDTZcuXcJDDz2kiEC7u9LpdM0jLy5fvgwfH5/mewvHcdBqtVasXfsdPHgQw4cPb24Ufvrpp1i2bJkkEFWS6dOnIzs7GwsWLMDgwYMhCALWrl2LjIwM9O/fXxHrQsydOxevvfYali5diqSkJADA1atXsXbtWly6dAlPPfWUlWvYOZs3b0ZNTQ3ef/99ODg4NJePGjUKb731FvLy8mS/zdLWrVvh6OiIixcv4uLFi0ave3l5KTbYPnbsGEJDQ61djU5R+tRGlUrV3B67cOECgoODmztsGxsbFdHG2bJlC9LT07Fo0SLZDaG+E51O1+pq+BqNBvX19ZKfW44ckgt5Rws26sMPP8Szzz4LR0dHo9fKysowf/58fPfdd1aomflkZGQYzbWrqKjAyZMnUVxcjEWLFlmpZuYTFRWFjRs34p577mmeq33TuXPnEBYWZsXadZ6zs7PRUCQlOnjwIA4dOoSioiLJHFgfHx+8/vrrVqxZ5wUEBODs2bPo1asXjhw5Iske5ufny27KSkxMDFauXIm//e1vzZ0ISsayLObPn4/jx4/j9OnTiI6OBsuyePLJJ2W/b+pNPj4+WLRoEf773/9i6dKlEAQBX3zxBeLi4vDOO+/IvuP54MGDmDNnjiTQBpq2rZs9ezY2bdqEMWPGWKl25rFw4UJrV8Gi6urqUFdXJymrqKjA8ePHsXPnTrz66qtWqpl5KH1qY1hYGHbv3o0//vGP2LZtm2S0zMWLFxWx/de+ffswd+5cxQXaANCrVy+cO3fO5Pd07tw5+Pn5Nf+cmZmJwMDArqyeWVCwbQEpKSmorq42GWzn5ORIVg6Wq3Xr1qG4uFhS5uTkhL59++L5559XxHYn999/P5YsWYIFCxagf//+mDx5MoCmlaw3bNiAv/71r1auYeeMGTMGP//8M/z8/BSbOfz888+RkZGBsWPHNi92s2/fPvj6+jZn2eRs5syZWL58Ofbt24fCwkK8//77AJqGlG/YsKF5KJ1cPPbYY/jss8/w3HPPNc/lXbRoUauZCSV0mADA0KFDMXToUGtXw2J8fX3x0ksvQa/XN6+iK/c94G8qLi5utfEXGBiI69evd3GNSHu98sorJhfqCwwMxIsvvmhy60G5UfLUxvvuuw/vv/8+du/ejV69emHq1KkAmqbjrF27tnmIuZwVFRXJPsHTmgkTJuDnn39GVFSU5F6an5+PNWvWYM6cOQCapgusWbMGjz/+uLWq2mEUbJtJeno6ysvLm38+efKk0b53xcXF2LZtmyLm4SmhgXsnPXr0wMcff2y0tZKzszP+9Kc/yX7BjTlz5iAtLQ0vvPAC3NzcjBZIk3sgs2PHDmRnZ+ODDz6Al5dXc/nUqVPx1ltvKWJo2bBhw+Du7o7c3FzExsY2ZyhKSkrg5uYmu7233dzcsHDhQly+fBkFBQX44osvMGXKlFYX0TKctyZnZWVlKC8vh6enp6KOa/ny5ejXrx9Gjx4NlUqluBELzs7OKC8vN7nqf3l5uVHGW65qamqwdu1anDx5ErW1tfj444/h5uaGq1evyjLT1NLixYslmW2GYeDs7KyItWcMmZraKHfBwcH4/PPPUVBQgF69ejUPKWdZFlOnTsXYsWOtXMPOc3V1NRp9oRTjxo3DhQsX8PrrryMuLq553YtTp05hyJAhSExMhCAIeOeddzB27FhZbi3MiHJbcthGLVq0CCUlJQCaGroeHh6SnnuGYeDu7o6xY8di/Pjx1qomIc3279+PFStWYOTIkejbt69RsC33RW/+8Y9/YMqUKSYXDdm7dy/27duHN998s+srRtps3rx5ePfdd2U/1Ph2rl+/jhUrVuDChQvNZf369cOf//xn2Q/vBIBNmzZh8+bNYBgGU6dOxcSJExUxuuumb775BuXl5Xj55ZeNXvvoo4/g6OiIZ555xgo1M5+Kigq88cYb8Pf3x8SJE7F8+XIsXrwY/v7+WLBgAaZPn25yH3ViWy5fvowbN24YrUzu4eGhiHV2lOy3335DUVGRInZRaU1KSgqOHz+O8vJyuLm5YejQoZLpVJWVlbLdvYKCbQt48MEHFb2oT0sZGRk4cuRIc0YmISFBEUOuDDU0NKC2tlayHZajo6PJqQJy8dJLL2HUqFGYPXu2tatiEY8//jgWLVpkMuN09epVvPnmm/j222+tUDPzMhx5UVpaitzcXERERMj2wSQIQvPe7z179mx18RS5KykpwT/+8Q/ExMTg7rvvhq+vLwoLC7FmzRpkZmbigw8+UESWW6fTYf/+/diyZQsqKiowfvx4JCUlSUacyFV5eTkWLFiAqKgo3HPPPc3f4dq1a5GWlob33ntP9pnEr776CrW1tc3zfR999NHmYHvHjh04fPiwIjou6+rqcPr0aZSXl8PLywuDBw9WRHa7urq6eftEJY5iUyLDdZF4nsd///tfxMbGIjY21mgaDnWY2DYaRm4Bjz32GLy9va1dDYv797//jf3792Pw4MEICgpCYWEhFi9ejMmTJ+Ohhx6ydvXMIj09Hb/88guuXLli9JqHhwe+/PJLK9TKPIqLixWzCJMpDg4OqK6uNvlabW2tUYNDjq5du4a3334br7/+OoKCgpCdnY3FixeDZVkwDIM333zTZGeDLTt69Ch++OEHVFZWAmjaFWDWrFmKmH5jaPXq1QgPD5es/9CrVy/MmzcPS5cuxZo1a/CnP/3JijU0D7VajYkTJ2LixIk4ceIEtmzZghdeeAHDhw/HjBkzZL2AkYeHB9566y18/fXX+Pvf/95cHh4ejoULF8o+0AaA1NTUVtco6dOnD37++ecurpH5HT58GN988w3s7e3h7e2NkpISfPvtt3jqqadkv57Cf/7zH2i1Wnz66aeKOB9NuXr1KlatWoWsrCyjhV99fX3xySefWKlmHWNqXSRXV1dcunQJly5dMnq/j48PBds2jIJtC5g8ebIis00t7du3D8eOHcOiRYskDaXLly/jvffeQ2hoqCznVbSUlZWFpUuXYsqUKXjssceMMkxyzmoDTXPSr1+/LuuG7u1ER0dj7969Jkda7N271+Seo3Lz22+/oV+/fs3f4apVqzBlyhTcf//9+O6777By5crmbJQcpKenY/ny5Zg7dy7Gjh0LjUaDU6dO4T//+Q/s7e0xZcoUa1fRrFJTU/GXv/zF5GtTp07FihUrurhGlhcfH4/4+Hjs2rUL3333HQ4dOoSYmBjMnDnT5F7ccuDn54c33ngDZWVlKCsrg4eHhyKy9jc1Nja2Ovdcq9XKvuMyKysL//rXv/Dwww9jwoQJYFkWgiBg165d+Oc//wkvLy9ZL06VkpKCl156SbGBdn5+PhYuXIiYmBg8+uijRm01w/WT5KC7jTSoqKjAxo0bcf78edTU1EhGkSph5AUF2xagxGyToR07duDuu+82CtSCg4Nx9913Y9u2bbIPtteuXYtJkybh4YcftnZVLOK+++7D999/Dzc3N0RERChmdeCbZs+ejTfeeAPu7u6YNWsWHB0d0dDQgHXr1uHo0aN4++23rV3FTjt37hzmzZsHoKnRm5WV1Tyna8yYMViyZIk1q9du69evx7Rp0zBz5szmsoSEBLAsi59++klxwXZdXV2rC4Z5enoqcmu+ixcvYv369UhNTcWIESMwZswYHD16FB9++CF69uyJ2bNnyzaT6OnpKdmJQxAEHD16VPbPwqCgIKSnp5vcdig9PV32+1CvX78eEydOxKRJk5rLWJbF5MmTcf36daxbt05WnZaGOI6TfYfI7fz++++Ii4tT9HxmJSstLcXrr78OLy8vxMfHG3WWKGFRTQq2LUBp2SZTrl271moWIjo6GqtXr+7iGplfTk5O85YDSvTLL7+grKwM7777rsnXe/TogWXLlnVxrcwnICAAr776Kv7v//4PW7duhYuLC6qrq+Hu7o6XX34ZvXv3tnYVO02n0zU/iC5fvgwfH5/mxcQ4joNWq7Vi7drv0qVLJqegxMfH48svv0R5ebki5jDf1LNnz1ZXc87Ly1PUdKSzZ89i3bp1yM7ORkJCAj788MPmBeBiYmJw3333Ydu2bdi5c6dsg21D+fn5+Prrr2UfbE+fPh3Lly9Hjx49MHz48Oby9PR0bNmyBS+++KIVa9d5Fy9exD333GPytYSEBCxdurSLa2ReAwcOxKZNmzBv3jxF7MJh6Ny5c3j++eetXY0uodfrcePGDaPsr6urKwICAqxYs45buXIlgoKC8Morryjy/AQo2LYIpWWbTLGzs2t1GwKdTqeILKkoirIfKn47L774Iqqqqlp9XY5DrwxFREQ0Lwxzc3hnRESEYm7oAQEBOHv2LHr16oUjR45IOsDy8/Nlt5p1Q0ODyeGqKpUKKpUKDQ0NVqiV5UyePBmrV6/GwIEDJfea+vp6rF27VvZBGtA0VH716tW4evUqxowZg6efftrkEGtXV1fMnTvXCjVsn71795rck9mQVqvFiRMnMGjQoC6olWXFx8dj7ty5WL58OX788UfwPI+PPvoIZWVleOSRR2Q7/P8mQRBabbOo1Wro9fourpF5Pfjgg1i0aBHmz5+PsLAwoyy3p6enLK691uh0OkXvWHHT3r17sXLlSpPtNjknR9LS0vDMM88opl1mCgXbFqC0bJMpsbGxOHr0qMl5r4cPH0ZERIQVamVe/fr1Q1pamuz3EG1NQECAbHtCTfnPf/6DBx54oHnl6hMnTmDIkCFgGAZ9+/a1cu0sY+bMmVi+fDn27duHwsJCvP/++wCaGvobNmzAsGHDrFxD0tKNGzdQUVHR/LOfnx+cnJzw2muvITExEb169cKNGzeQnJwMJycnRSwKt3LlSkRHR2P+/PmKWK8kMzOzTcG2g4MDxo0bh8TExC6oleVNmzYNCQkJOHPmDKqqquDu7o6BAwcqIsgJDw9HZmamyWHymZmZsp/2V1xcjPLycri6ukIURRhuQiT3TYnCwsJw4cIF2X9Pt3Pq1Cl89913uP/++zF8+HBFjfBqaGiQTL9RIgq2LUBp2SZT5s6di4ULF8Lf3x+TJ08Gy7IQRRE7d+7Erl27ZL+YAQA89NBDeOedd9CzZ0/ExsYqttftypUrOHXqFGpqavDHP/5RtnO7Dh48iOHDhzd3AH366aeK34Jv2LBhcHd3R25uLmJjY5vvLSUlJXBzc8P06dOtXMP2O3nypMlRFYIg4OTJk5KAzcvLS1ZZtY8++ggFBQUmX/vvf/8LlmXh7e2NhIQE3HXXXVCp5P+IvtkBpBRy3zO7M9zc3DBy5Ejs2bMHOTk5qK+vx5gxY1pdPE0u7r77bixbtgz9+vWTzD+/cuUKVq9ejccee8x6lTODn376CYMGDVJs9vCBBx7Ap59+irCwMMUu+Lpx40bMnDkTSUlJ1q6K2fXq1Qv5+fmK7iyhfbYt4NixY1i+fDkCAgKas02+vr7QarV4/fXXMWzYsFbnB9mqf/3rX0bbEJSWlqKoqAjOzs7o2bMnCgsLodVq8eSTT0rmdcnF/PnzW20ImyLnYTs3ffvttzhw4ACioqKQlpaGpUuXwt/fH0uWLMGDDz4oq5vfZ599hoqKCvztb3+Du7t7t9rvXineeecdlJaWtvn9SliltLs4f/48Dh48iKKiIsmwXG9vbzz99NNWrFnnJCcnY8KECYrbCz43NxcbNmzAtWvX4O3tjVmzZiE8PBzvvPMOqqur0bt3b+Tm5kKtVuPNN9+UVYZ7//79KCkpkZSdPn0aV69eRWxsLHr16oWCggKcOnUKEyZMwKOPPmqlmprHY489hoULF8p+Ibub3nvvPRQVFUnKKioqoNfr4e7ubjQlQAnPiSeeeAKvvfaarFfFb01aWhq+//57LFy4UBGjn0yRf7e5DVJitqlv3763XayH4zh4e3tj8ODBsp3nfKc5zIbkPqc5OTkZKSkpeP/99+Hv7y9pUPj6+mL9+vV49tlnrVjD9nnsscfw2Wef4bnnnmu+YS9atKjVnnwlPIBvqqqqQmpqKmpqapCYmCjb7MXChQvb/ZmioiLqULFxP//8M7Zt24ZBgwYhJCQERUVFOHXqFAIDA2XfeFy5ciUGDRqkiBFrN507dw5LlizBqFGjMGXKFFy/fh0ffvghRo4cCY1Ggw8//BAqlQparRZLlizBqlWr8MQTT1i72m2WmZlpFGzb29ujT58+qKurw8WLF+Hj44NXXnkFUVFRVqql+Tg5OaG+vt7a1TCbu+66C+Xl5W1+vyJWs1apFLEWkimHDx9GWVkZXnzxRQQFBRkdp5eXV6tbZMoFBdsW0rdvX6N5oj179sRrr71mpRp1zrhx46xdBYtT2hzmO9m1axfuvfde+Pv7G702bNgwfP7551aoVce5ublh4cKFuHz5MgoKCvDFF19gypQprfaUKmXO08aNG7Fq1Sr4+fnh+vXrGDhwIPz9/bFixQrcc889itrv15RXX30VS5YskfUesqIooqqqCjqdTlLu6Ogo287Lm44cOYI9e/bg7bffRnBwcHN5Xl4e3n//fdnvCqBWq1FdXa2oYPu3337DnDlzJGsG9O3bF1988QVefvnl5ukNGo0GM2fOxDfffCOrYFvOIyk6YvLkyVi1ahVCQkJkfz8BmnYv6G5iY2Nx8uRJyT1UKSIjI2/7/FbCfG4KtrtYTU0Nli9fjr///e/Wrgppg/Lycjg4OMDe3l5SzvO87OdTFhcXtzq/ycnJSbYrPwcHByM4OBg///wzxo4dK6vhje116NAhbNy4EQsWLEBkZKRkdIJer8e6devwpz/9yYo1tDydTgee561djQ4RBAGrVq3Czp07UVtba/S6h4cHvvzySyvUzHy2bduGOXPmGDUSg4KCMHv2bKxZswavvvqqdSpnBvHx8Thx4gTCw8OtXRWzyc3NNQqehwwZApZljRrFvr6+kkX/iO25du0asrOzMW/ePPTq9f/bu/OoqK70e/ibElFmihkBRUVEAUEw4oCz4hQRp2ii0WgnaWPHdJxjVBwQjRqjMdHWmI5tvhkMIgpEgzgnIRoRUDCKA5jggBTKIIOAUL5/5LV+llU4UnW5t/ZnrV6ruef2WttWqu5zzznPcdN4dpHCzGF1dTWMjY1Fu6rrSUaMGIElS5bAysoK/v7+GrO/Yn4xawiTeeKuFkTo9OnT+PPPP4WOUS/u3LmD5ORk3LhxQ+NhV+xHSQB/L/uPiIjAP/7xDwQFBamNzZw5E9OmTdPajV0srK2tkZ+fr7Xgvnr1quiX5j5pZv7+/fswMjLSUxrd2Lt3L8aOHav132FISAi++OILAVLR04qJicHhw4cxfvx4tGnTRqM5oVgfnh529erVOmc927dvj5iYGD0nql8hISFYv349jIyM4OPjo1HIiPH825qaGo096A8KmUeLmQfNUaXgzp07yM7O1jjDWC6Xi3o21cfHB87OznWOi33msLS0FEuWLMErr7yicQLH/Pnz8c4774i+cdqKFStQXl6O7du3ax2XwotZKWOxXQ+WL1+u0TxMm3v37qG8vByTJ0/WQyrd+vPPP7FixQqYm5ujVatWGg+JUvjyjY6Ohre3t0ahDfz9gBUbG4sPP/xQgGT1o2vXrti5cyfat28Pc3Nz1fXKykrEx8eje/fuAqZ7cdu2bcP48eO1Ni4qKSnB/PnzsWnTJgGS1Z+8vDy0adNG65iNjc0z9SAg/Tt69CjeeOMNUTaUfFoP9vZqI4VjMLds2YKysjIkJCQgISFBY9ze3h6ffvqpAMnoWcTExCA+Ph4ymUxj65GDg4Ooi22pzxzGxMTAzs4OnTt31hjz8vLCzp07MWvWLAGS1Z/Vq1drXf30gJhezD44ceTBVtuKigpUVFTUeb+YZ+0fYLFdD8LCwp5qGZWpqSlat24t+reIAPD1118jICAAU6dOleyynYyMDLz//vtaxwIDA7F//379BqpnI0eOxNmzZzFv3jz07NkT9+/fx9GjR5GWlibaRn4PO3jwIIYMGaJ1L2Vubq5aR2SxMjc3R1FRkda39jdv3pT8fm2xu3v3rtaeCVLi5eWF48ePa11mfeLECdE3SFu/fr3QEXRC7Kt+nsXRo0eRmJiI9957D0FBQQb1Z5eC1NRUTJ06VevfW9euXbF27VoBUtWvJxWcVVVVekzzYr766ivY29tj2bJlAIC5c+c+tuGdFGbtWWzXgw4dOggdQe+uXLmCCRMmSLbQBv7+8LKwsNA6JtazqB9mYmKCJUuWYP/+/UhLS4ODgwOys7PRv39/9O/fX5SdL69fv642m5udnY3CwkK1ewoKCrBr1y5JvO0PDAzEnj174Ovrq/b3pVQqsXfvXq1v+qnhaN26NVJTU0XfJOxxhg8fjsjISDg7O6N///6qB+JDhw7hwIEDmDdvnsAJ6VEymUzrSQ41NTWIiopS+6ypra0Vff+SpKQkjBw5Ep06dRI6is5IedtfWVlZnR3Hzc3NRdvT40nu3buH5ORkJCUlobi4WDQr9WbOnKn24kBKs/Z1EfcnZAN39+5dpKWlobCwEHK5XNTHYj3KwsICZWVlQsfQKVdXV1y4cEHrWdNnz56VxAOysbExhg4dKvpZ7AfWrFmjtqVj48aNGvfI5XL07NlTdGfdazNmzBgsXLgQCxcuRGhoKIC/V2SkpKSgoqIC4eHhwgakx3rttdewYsUK5Ofnw8vLS+Mlntj3igKAp6cnpk2bhq1bt2L37t1wdHREQUEBKioq8Oabb0riaCXg7+036enpGueI29raiu7F3rx58zReUj6O2Ffr5eXlSebfoTZS3/bn5OSEv/76S+uz2qVLl0TXM+FJbt26hQMHDuDo0aOorKxE586dRdVh/9FVTlJYJv4kLLZ15Pfff8cXX3yBJk2awN7eHrdu3cK2bdvw5ptvomvXrkLHe2E9e/bEd999B2dnZ9E30qrLwIED8c0336Bly5Zo1aqV6npWVhZiY2NF9eGmTWJiIvr27at1T7NYPbykc/z48fjkk08kdSTPoywtLREVFYVdu3Zh9+7dAIB9+/ahc+fOGDlypEYXfWpYbG1tIZfL8euvvyIzM1PjIVjse0UfCA4ORocOHZCamqr28vnhXhFidurUKWzevBmNGzeGg4MDbt26hZKSEtjb26N169aiK7Z9fX2FjqBXTZs2lezsJyD9bX+9e/dW9dh5eOvUzZs3ERMTI+pZ+4dlZmYiKSkJp0+fhqWlJSoqKrBkyRLRb8WR4rPoo1hs68DFixexadMmTJw4EX369FF16zxy5Ag2b94Me3v7OpsaicXIkSORkZGBGTNmwNraWutD4sKFCwVKVz969OiBa9euISIiAp6ennBwcEBBQQGys7MxevRovPTSS0JHfCE//PADOnbsKNli9OWXXxb9jMvTsLCwwKRJk9SO/TIkjo6Ooi3avv76azRu3FjyL4WAv3uWdO7cGUeOHMHly5dRUVGBnj17wtTUVOhoLyQnJweff/45xo8fj379+qm+7w8fPozdu3djwoQJQkekJ+jcuTOSk5MldXzbw6S+7W/QoEG4fPky5s6di8DAQDg4OEChUCA1NRUhISHo06eP0BGfW2VlJX7++WccOHAAN27cgK+vL6ZPn47AwEC8/fbbdW51FBOpP4sCLLZ1Ii4uDqGhoejXr5/qmpGREfr27YubN29iz549mDNnjoAJX1xycjKuXLmC7t27o23bthrFdl37Z8Tm1VdfRffu3ZGSkoLi4mJ06NABb731liSWJTVu3BilpaWS/YB79dVXNa5VV1fjxo0bcHV1FeW++z/++AO3b99+6vvt7Ozg4+Ojw0T16+7du4/du9WoUSPY2NioNcIRc/ObM2fOYObMmZL7HczJyUF8fDyuX78Oe3t7DB8+HJ6enli+fDlKS0vRokULpKenIykpCYsXL4aVlZXQkZ/b7t270bdvXwwYMEB1zcjICP369cPNmzcRHR0t+lVQUtejRw+sXLkSxsbGWs8wFuPxbQ+T+rY/IyMjTJ8+HampqUhJScGVK1cgl8sxY8YM0fZUysvLw/79+/HLL7/AxMQEvXr1wuzZsyX3XQFI/1kUYLGtE5cuXcKIESO0jnXu3BmrV6/Wc6L6Fx8fj9GjRxvEntDmzZuL/oxGbV566SWkpKRI9m1+YWEhli1bhpkzZ6J58+a4fv06VqxYgeLiYjg4OGDRokWi69a9Z88eKBQKjeu3bt2CXC7XeEh0dHQUVbE9Z86cx3YlBf7+Yu7atSvGjx8v+rf6RkZGop/ZfdT58+exatUqhISEIDQ0FDdu3MCaNWvQrVs3mJiYYM2aNarjwFatWoWYmJg6z+EWg4sXL2L48OFax4KDg0X9MshQbNq0CZWVldi3bx/27dunMe7o6Ih169YJkKx+GMK2PwAICgrSelSrGEVGRqKkpAQdOnTAu+++K9rVW09D6s+iAIttnaipqalz74GJiYkkjhwqKChAYGCg0DH05vLly1AoFGr7usTevCgkJATr16+HkZERfHx8NDrKiv1tfnR0NGxtbVUvSnbs2IEOHTpgwoQJ+PLLL/HDDz9g2rRpAqd8NgsWLNB6fdKkSViwYIHoj5F6tCtpbW2tqsPqsGHD4O7ujry8PMTHxyMiIgLLly8XdWOVTp064dChQ2o9IcQuOjoaI0eORFhYmOpa27Zt8dlnn2HOnDmqzxkTExMMGzYMX375paiL7Sd931dWVuo5ET2rTz75ROgIOmUI2/4eKC4u1mhSKMZnmaVLl2L//v34+eef8e9//xvdu3dHv379JDnxI/VnUYDFtk64ubnhjz/+0PpLce7cOdH/owH+ftN748YNSf7iP+zy5cvYtGkTCgoKYGlpidLSUiiVSpiamsLV1VXUxfaWLVtQVlaGhIQEJCQkaIzb29vj008/FSBZ/Th9+rRq+WZtbS0yMzOxZs0amJubY+DAgZI9H1fMHu1KunfvXiiVSixZskT1Bezs7Aw/Pz9ERkZiz549eO2114SK+8Lc3Nzw/fff4+bNm2jbtq3GQ4ZcLhfdfsOcnByN4rlTp06QyWRwcHBQu+7k5ITi4mI9pqt/T/q+F/sLMBI/Q9j2V1BQgC+++ALnzp3TGBPjs4yDgwMmTJiAV155BcnJyThw4AAOHjyI1q1bo3///ujSpYvQEeuN1J9FARbbOtGvXz98++238PHxUfsCzs3NRWxsrCQapowdOxbbt2+HtbU1vLy8RHkm85Pk5eVh5cqV6NevH8LDw2FmZoaKigrEx8cjNTUVc+fOFTriC5F6sVlZWQl7e3sAwF9//QUrKyvVw76ZmRnu3r0rZDx6CkePHsUrr7yiUYQaGxtj2LBh+Oabb0RdbF+7dg3t2rUD8Pdy5EfZ2dmJrtjWNtNrbGwMmUym0aDpQTMxMQsNDcX//vc/tG/fXu04yAff9+PGjRMwHT2tmpoaHDhwAGlpaSgrK8OCBQtUe53Fvl1F6tv+iouLsXjxYnh7e2PVqlVwcnJCfn6+atvVhx9+KHTE52ZiYoI+ffqgT58+yMrKQlJSEr788kt8/fXXuHfvHkpKSkS/11nqz6IAi22d6NWrFy5fvoxFixYhKChI9YuflpaGkJAQ9OzZU+iIL+z7779HYWEhli9frnVc7HucgL8b3wQFBak9zJuZmWHcuHEoKSnBrl27MHHiRAET1p/q6mocOXIEN27cQLNmzSTRJdjJyQlXrlyBm5sb0tLS1M5RzcvLE91+bUOkUCjqnBl0dnZ+4v7uho6Ns8Sve/fuyMnJQUREBAIDA+Hs7Kz6vu/evTv69u0rdER6grt37yIyMhI1NTXo1asXoqOjUVpaCgsLC0RGRuLVV19FQECA0DGfm9S3/cXGxsLDwwPvvfee6pqbmxveffddrF27Fj/++CNGjx4tYML64e3tDW9vb5SUlODgwYM4cuQIIiMjERQUhLCwMEltR5IaFts68o9//AOdO3fG8ePH8eeff6o6I/r7+wsdrV7MnDkTd+7cqXPc0tJSj2l04+zZs2of3g/r1asXNm7cKLpi25C6BPfv3x//+9//cOrUKWRkZGDx4sUAAKVSicTERMk0UpEya2tr5Ofnw83NTWMsPz9fEssfH1Aqlbh7964kGuE83C3eELz++usICgpCcnKy6vt+5syZou2EbGh27tyJJk2aYNmyZTA2NkZ0dLRqrHv37vjpp59EXWxLfdtfWloa/vnPf2odCw0NxVdffSWJYvsBa2trjBo1CiNGjMDJkyeRlJSETz75BO+++y68vb2FjvdcpLyyBGCxrVN+fn6i3tP7OK6urpLYe/44j3vwNTc3R2lpqZ4TvRhD6xI8YMAAmJubq87f9PDwAABcv34dRUVFGDZsmLAB6YmCgoKQkJCAjh07qi1Brq2tRUJCgujPugeAmzdv4ttvv8WZM2egVCqxYcMG2Nra4syZM/Dz8xPd2bgymQyRkZEauWtqahAVFaW25ai2tlZji4BYtW/fXm31DInHyZMn8dZbb2n9t+jj44O4uDgBUtUfqW/7Kysrg1wu1zoml8tRWFio50T6IZPJ0KVLF3Tp0gVKpRJTpkxRLaMXE6mvLAFYbFM9kEr3x0e5uLggOzsb7u7uGmPZ2dkazX4aOkPrEgwA3bp1Q7du3dSuubu7G8QeISkYNWoUFixYgMjISISHh8PR0RH5+fmIi4tDSUkJRo4cKXTEF5KXl4dFixahc+fOWLJkCZYuXYqqqioAwK5du5Cfn4/Q0FCBUz6befPmPdPDra2trQ7T6JdUvwulrry8vM5VMkZGRqJfqSH1bX8ODg64evWq1hVQ165dk9RnTF1kMhlqa2uhVCqFjvLMpL6yBGCxXS9iYmJw+/btp77f3t4eo0aN0mEi/ZBa98dH9e7dGzExMejQoYPah3VRURFiY2MxYMAAAdM9O0PrEvyAUqnExYsXUVpaKomZUENiYWGBZcuW4f/+7//wySefoKamBsbGxujatStmzJgh6mO/gL+PowsODsZbb72lMda/f38kJiaKrtj29fUVOoLeSf27UOpcXFxw8eJFtQZ3D2RlZYl++bXUt/1169YNsbGx6NixI5o2baq6XllZid27dyM4OFjAdPQkUl9ZArDYrhdGRkZaO6omJycjMDBQ9I2mtJFy98cHBgwYgD/++AMffPABevfurWp8c+zYMbRs2RJDhw4VOuIzMbQuwQBw/PhxbN++HTU1NaisrMTatWvh5OSEmJgYDBo0SHR7gaKioqBQKDSua1uiC/w9Y1HX2dxiYW1tjXfffRdKpRKlpaWwtLQU3dLqupw/fx6zZ8/WOubh4YEbN27oORE9K0P4LpS6AQMG4Pvvv4eHhwfatGmjun7t2jXEx8dj8uTJAqZ7cVLf9jds2DCkp6dj/vz5GDJkiOpZ7aeffkKTJk1EvwJK6qS+sgRgsV0v6pqlPn78OMaNGyfJczYNofujkZERZsyYgWPHjiE5ORlpaWmQy+UYM2YM+vTpI5kHfqk6c+YMtm7diilTpqBbt26YPHmyaolVbm4u4uPjRXds1PDhww12ia5MJoO1tbXQMeqVUqms83OkoqJCbZaGGiZD+C6Uuj59+iA3NxdLly6Fp6cnamtr8d///hfZ2dkYPHiwpGZGi4qKUFhYCLlcLpnvB2NjYyxatAhxcXHYt2+f6s/XpUsXjBgxQmOSgRoWqa8sAVhs03MypO6PvXr1Qq9evYSOUS+k8Ibwae3Zswfh4eEICQnRGOvVq5coz2g2xCW6wN/npF+4cAFlZWVq121tbdG7d29hQtWDVq1aISUlBZ6enhpjKSkpou0sa0gM6btQyiZNmoSePXsiNTUV7u7usLGxwcSJEyXxoA/83Yhx69atyMrKUl3z8vLC22+/LYkJocaNG2P06NH8XRMhqa8sAVhs03MylO6P5eXlah3Jb9++jZycHHh5eYluls3QugT/+eefmDRpktYxR0dHyfwblTKlUoktW7YgOTkZTk5OGp85dnZ2oi62R4wYgY8++ggWFhYIDQ2FkZERlEoljhw5gsOHDyMiIkLoiPQEhvJdaAhatmyJli1bCh2j3hUWFmLx4sXw8/PT2OqwZMkSrFy5UnSz3Lm5ufjtt98wbtw4tetxcXE4dOgQSktL4e7ujrFjx8LHx0eglPQ0DGFlibifpkkwhtD98fr161i6dCkWLlyI5s2b4+LFi/joo48gk8lgZGSExYsXa/3zN1SG1iW4adOmKC8v1zp2+/Zt0b0sMUT79u1DZmYmIiMjJfkQ3K5dO0ybNg3btm1DTEwMampqEBERgSZNmuDf//63JP/MUmMI34Ukbrt27YKXlxfeffdd1bUHWx3WrVuHXbt2aW3S2FApFAosW7ZM40VrTEwMEhISEBYWhpYtW+Ls2bNYvXo1IiIi0Lp1a2HC0lOR+soSFtv0XAyh+2N0dDTatWun+mWPiYlBaGgoxo0bh23btuGHH37ArFmzBE759AxtCbKfnx8SExO1vtU+ePAgOnbsKEAqehbHjh3DmDFjJF10BgcHIygoCBcvXkRxcTHkcrkkz8KVKkP4LpSauhpNPmBsbAx7e3t0794dPXv21GMy3Thz5gymTp2qdSw0NBT/+c9/9JzoxcTGxiIgIAATJkxQXausrMTevXsxceJE9OvXDwAQGBiI2tpa7NmzR1TPas+rffv2sLKyEjrGc5PqyhKAxTY9J0Po/nj+/HlV05vq6mpkZWWp3gz37NkTq1atEjIePcGYMWOwYMECrF69GoMHDwYAXL16Fbt378aVK1fw9ttvC5yQnkShUBjEjISxsTHat2+vcf3+/fsG1WdBjAzhu1BqwsLCUFRUpHbt4MGDuHnzJrp3747mzZsjLy8P33zzDdLS0vD+++8LE7SelJWV1dnt2draWqMXRkOXkZGB6dOnq117sBf90dnurl27ivoM8UfduXMH2dnZKCsrUzsxRi6XY/78+QImo8dhsU3PxRC6P967d0/1BfXnn3/CwcFB9dawUaNGqK6uFjAdPYmDgwMiIyPxf//3f1i9ejWUSiU+++wzBAUFYdmyZaJ+A2worKysUFFRIXQMndm2bRvGjx+v9fOypKQE8+fPx6ZNmwRIRk/LEL4LpcbPz0/t51OnTuH27duIioqCg4OD6vrAgQOxePFiJCUlie68+4fZ2dk9dquDnZ2dAKmeX3l5ucbZ4FeuXEGrVq00VgRZWFigqqpKn/F0JiYmBvHx8VpP5nBwcND4dy0Wy5cvR0FBQZ3jUjjClMV2Pbh7926de0OLiorQuHFjtWtmZmYwMzPTRzSdknr3R1dXV/zxxx9wc3PD8ePH1ZYjX7t2DU5OTgKmo6fh5OSE2bNno7a2VnVGM5fnikePHj1w8OBByXblPnjwIIYMGaL1syQ3Nxe1tbUCpKJnJfXvQqnbu3cvRo0apVZoA38XqaNGjRJ9sd21a1fs3r27zq0OXbt2FTDds7O1tYVCoVB7eXDu3Dm0bdtW416FQlFnA0MxOXr0KBITE/Hee+8hKChIUiuewsLCUFxcrHattrYW6enpOHv2LN544w1BctUnFtv1YN68ebh9+7bWsaioKI1rdnZ22LBhg65j1as//vijzj+jNnZ2dqLvADls2DBs2rQJx44dQ35+PlasWAHg7yXl8fHx3IvXwBw8eBBt2rTRelZjo0aN6lxGRw1XmzZt8NNPP2H9+vXw9/fXeFEil8tF9zb/+vXruHPnjurn7OxsjcaFBQUF2LVrl6g7rUsZOyFLy59//lnn8UKenp74+uuv9ZyofoWFhSEtLQ0LFizA4MGDVd3If/rpJzRt2hRhYWFCR3wmQUFBSEhIgJ+fHxo3boy0tDRcvHgRU6ZM0bj3yJEjCAgI0H/IepaUlISRI0eiU6dOQkepdx06dNB6vU+fPvj8889x+fJl0ffYYbFdDz766KM6Z7a1efgoKbHYs2eP1oYit27dglwu13gIdnR0FP1DRnBwMGxsbJCTkwN/f3/V7NOtW7dgbW2NoUOHCpyQHpaVlYVvv/0Wpqam8Pf3R0BAAPz8/CSxisRQ7d27F1ZWVrhy5QquXLmiMS7GpXNr1qxRWzK3ceNGjXvkcjl69uyJUaNG6TMaPQV2QpaeJk2a1PkMV1ZWBlNTUz0nql8mJiZYsmQJdu/ejb1796q2OgQHB4tyq0N4eDiWLl2K6dOnw9bWFlevXsXYsWPVzgtXKpXYvn07Lly4IImZ0by8PK19PaSuf//+2LRpE8aMGSN0lBdidP/hHfakN7Nnz0ZERITo941OmjQJH330kdqHHJFQqqurce7cOZw5cwanT5/GrVu30KZNGwQEBCAgIEAyx0iQNIwfPx6ffPIJt6SIyObNm1FTU6N2jFJlZSXeeecdTJgwQdUJGfh7T35hYaFBdEIWs/Xr16NJkyZ45513NMb+85//oLa2Vu3vm4RXXV2NEydOoKSkBD4+PmjVqpXaeElJCdasWYPJkydL4mXXO++8g1mzZsHT01PoKHqVm5uLRYsWYfv27UJHeSGc2RZIfn4+ysvLRV9sS1liYiL69u0rure+hszExERVWE+aNAl5eXmqwjs2NhYWFhbw9/eHv78/OnTooLZ/jUjfXn75ZZ7DLDKG3AlZqkaOHImIiAjI5XIMHz4cpqamuHv3Lvbs2YOUlBRERkYKHZEeYWJi8thj2aytrbF8+XI9JtKtzp07Izk52eCK7ZycHI1eCmLEYpuoDj/88AM6duzIWScRc3FxgYuLCwYNGoTq6mocPHgQu3fvxtGjR0XZO8FQFRQU4Pjx41AoFGpNw+zs7ETdlGrs2LGQyWRax+7fv4+0tDQEBQXpORU9jqF2Qpay5s2bY86cOdiyZQv27dsHS0tLlJaWws7ODvPmzYOrq6vQEV9YTU0N4uPjkZycjMLCQtjY2KBr164IDw/nhIII9OjRAytXroSxsbHW/iVWVlaS+Hf6sNzcXOzatQsDBgwQOsoLY7FNVIfGjRujtLSUxbaIVVRU4OzZs8jMzERGRgYKCwvRunVr+Pr6SrLRiBQdOHAAX3/9NVq0aAEnJycoFArk5OTAzc1N9CuD/vnPf+Ljjz/WOMYFAG7evIlPP/1U9M2ZpMYQOyEbAh8fH6xfvx4XL15EUVERbG1t4eXlJYmuzzU1NVi+fDlKSkpUDdIUCgUSExNx5swZLF68mAV3A7dp0yZUVlZi37592Ldvn8a4o6OjaFfRbN68Gbdu3VK7VlxcjPz8fAQHB+Pll18WKFn9YbFNVIeXXnoJKSkpBrdsR8yUSiUuX76MjIwMZGRk4MqVK3B2doavry8mTpyI9u3bi77ZjSHJzMzEd999h5kzZ6p1Iz1z5gz+85//PHYZoRhUVFTUOfOZmprKXhgNkCF2QjYUMplMkscM7t27F+Xl5VixYoXa919ISAiWLFmCPXv24JVXXhEwIT3JJ598InQEnfH29lY77cjIyAjm5uZo27YtPDw8hAtWj1hsE9UhJCQE69evh5GREXx8fGBsrP7rIsVlO2L2xRdf4OTJkzAxMYGvry/69+8PPz8/ziyJWEJCAoYOHapx7Ie/vz9CQ0MRHR2NGTNmCJTu+URHR6OoqEj183fffafxAqigoACXLl3CzJkz9R2PnsAQOyEbitraWuTl5aGsrAwP9w4W+3f9r7/+ihEjRmh8zpiamiI8PBzR0dEstkkwhnDEJYttojps2bIFZWVlSEhIQEJCgsa4vb09Pv30UwGSkTbW1tawsrJCYWEhSkpKUFJSguLiYhbbIpaTk4PXXntN61hgYCASExP1nKh+PHoIyMM/y2QyeHl54Y033lBbqkwNg4WFBaKiolSdkN98802NTsilpaXIzs7GvHnzYGdnJ1BSehZHjx7FDz/8gDt37miMiXmJLvD3y7u6TuJwd3dHYWGhnhPR86ipqcGBAweQlpaGsrIyLFiwABYWFigrK4OFhYXQ8egxWGwT1WH9+vVCR6BnMHbsWIwdOxYFBQXIyMhAZmam6iVJ+/bt4evrC19fXzg7OwuclJ5FXadT3r9/X61Zmlg8PIOUnJyM119/nQWZyBhaJ2SpS01NxbZt2zBu3Dh06dJFci9oLSwsUFRUpPXl3e3bt2FjY6P/UPRM7t69i8jISNTU1KBXr16Ijo5GaWkpLCwsEBkZiVdffVXUW1aqqqpw5MgRZGVloby8XO17397eHlOnThUw3YtjsS2Qxo0bayxLbsiioqKgUCg0rtfU1CAqKkqjM6KjoyMWLFigr3hEKg4ODujXrx/69esHpVKJ7OxsnD17Fr/99hu+/vpr2NjYwNfXF8HBwfD39xc6Lj1Gy5YtkZ6ejpYtW2qMpaenw93dXYBU9ScqKoqFNpHAEhISMGzYMAwePFjoKDoREBCAxMRE+Pn5aYwlJiaia9euAqSiZ7Fz5040adIEy5Ytg7GxMaKjo1Vj3bt3x08//STaYrusrAxLly5FVVUVOnTooPG9LoXjMcVT7YnUlStXkJ+fj+rqatW1pk2bYsmSJaI6O2748OHPtNRICr8cAJftiJ1MJkObNm3Qpk0bhISE4Pjx44iPj8exY8dw6dIlFtsN3Msvv4x169ahVatWag8SGRkZiI+Px7Rp04QLVw/27NmDKVOm8LOESEC5ubl4/fXXhY6hM6NGjcL8+fOxYcMGjBo1Ci4uLrh69Sp2796N8vJyjBgxQuiI9AQnT57EW2+9pXWSzsfHB3FxcQKkqh8PXiRERkaiadOmQsfRCRbbOpKTk4PNmzcjLy9PdWajUqmEnZ0dKioqcPfuXbRo0QJTp06tcy9NQ+Lr6yt0BL2T+rIdqautrUVWVhZOnz6N06dP48aNG3Bzc0O/fv3QsWNHeHl5CR2RnsDf3x9jx47F2rVr0aJFCzg7O0OhUODKlSsYNWoUOnfuLHTEF3Lq1Cm88sorLLaJBGRsbKyxOk9K5HI5lixZgq1bt2Lu3Lka44920ndxccHHH3+sr3j0FMrLy+tc7m9kZCTqI+pSU1MxefJkyRbaAIttncjLy8OKFSvQv39/hIWFwczMDHfv3kVCQgIuXbqEuXPnQqFQYOfOnYiMjERkZCT3kTZAUl62I1VFRUWq4vrs2bOora1Fu3btEBoaioCAAFGtJqG/DR48GB07dsSJEydw+/ZtBAQE4J///KeouwM/IJfLcfv2bX7+EwnI398fp06dkswxQ9o4Oztj0aJFKCwsREFBAZRKZZ33WllZ6TEZPQ0XFxdcvHgRLVq00BjLysoSxaRdXUpLS+Hk5CR0DJ1isa0DsbGxeOmllzBu3DjVNVNTU7zyyivYunUrdu3ahXHjxuH999/H2rVrsWvXLvzrX/8SMDFpI+VlO1K0fPlynD9/HnK5HAEBAZg2bRr8/PxgYmIidDR6Qc7OzggPD9e4fu/ePTRu3Fj/gepJnz59kJiYCB8fH6GjEBmsESNGYMmSJbCysoK/v7/GLLeZmRnMzMwESle/bG1tJbPNz5AMGDAA33//PTw8PNCmTRvV9WvXriE+Ph6TJ08WMN2LcXZ2Rn5+vqRP32CxrQN//PEH3nvvPa1jPXv2xMaNG1WF+ODBg/HZZ5/pMx49JSkv25GiwYMHY8KECc80OzF79mxERETwTb4IFRUVYd68efjiiy+EjvLcLC0tcf78eSxZsgTt27fXeLEnl8vRp08fgdIRGYYVK1agvLwc27dv1zoul8vx+eef6zlV/fn2228xatQoSS/Tlbo+ffogNzcXS5cuhaenJ2pra/Hf//4X2dnZGDx4MIKDg4WO+NyGDRuG3bt3S3pyhMW2Dty9exfm5uZax8zMzNTOcbS0tERlZaW+otEzkPKyHSkKCgp65v9Nfn4+ysvLWWw3EBUVFaioqHjifffu3UNSUhKsra31kEp3Lly4oHo5dPHiRY1xFttEurd69WqUl5fXOS72We2kpCT079+fxbbITZo0CT179kRqairc3d1hY2ODiRMniu5ZNCYmBrdv31a7dv36dcyePRve3t4aK0tsbW0xZswYfUasdyy2dcDJyQk5OTlaj6XJycmBvb296ufLly/DxcVFn/HoKUl52Q5RQzR37lwUFRU91b3NmjXDO++8o+NEuiX2bupEUiClZeLamJubo6ioSPL7Yg1By5YttR6FKTYPn6MNQG1m/tExKWCxrQM9e/bErl274O/vr7YMuaSkBLGxsejVqxcAoLCwELGxsQgLCxMoKT2OlJftEDVET5phesDU1FRyHbyVSuVjV0URke5dvnwZCoUCNTU1qmtyuVzrGdVi0b17d/z888/w9vYWOgq9gD/++AOtW7dWrVBISUnBuXPnEBAQIKpjTK2trTFy5EjIZDKho+gNi20dGDRoEDIyMjBv3jz07t0bTk5OUCgUOHbsGFxcXBAWFgalUolFixahTZs2GDBggNCRqQ5SWbZDJAZSn2HS5ubNm/j2229x5swZKJVKbNiwAba2tjhz5gz8/PwM6oGESCiXL1/Gpk2bUFBQoHZcq6mpKVxdXUVdbHt5eeGLL75AVVUVfH19NZbp2tjYoEOHDgKlo6eRnp6O9evX4+OPP0bTpk3x888/43//+x98fHywfv16vPvuu8+1lU4I//vf/+Dv7w9HR0eho+gNi20dkMlkmDt3Lg4dOoSTJ08iNTUVNjY2CA8PR//+/VUfdDNmzECrVq0ETktPIpVlO0RidefOHWRnZ6OsrExtiZnYZ5zy8vKwaNEidO7cGUuWLMHSpUtRVVUFANi1axfy8/MRGhoqcEoiacvLy8PKlSvRr18/hIeHw8zMDBUVFYiPj0dqaqrWs6nF5KeffoKZmRkuX76My5cva4zb2dmx2G7g4uLiMHjwYNXxpfv27cPkyZPRo0cPJCYmIiEhQTTFNiDNpeKPw2JbR2QyGQYMGPDYWWtPT089JiIiEp+YmBjEx8dDJpNpNERzcHAQdbG9Y8cOBAcH46233tIY69+/PxITE1lsE+nY7t27ERQUhNdee011zczMDOPGjUNJSQl27dqFiRMnCpjwxURERAgdgV5Qbm4uxo8fDwAoKyvD9evXVVsZ27dvjx9++EHIePQELLaJ/n9RUVFQKBR1jhsbG8Pe3h7du3dHz5499ZiMyDAdPXoUiYmJeO+99xAUFCS54/bOnz+P2bNnax3z8PDAjRs39JyIyPCcPXu2zuNae/XqhY0bN4q62CbxMzY2Vh0NeenSJXh4eKiOyaqqqhLddiOpfZc/CYvtepCUlAQbGxt07twZwN8t7B8+3utRVlZWcHV11Vc8ekphYWEanZAPHjyImzdvonv37mjevDny8vLwzTffIC0tDe+//74wQaneNG7cWONsY2o4kpKSMHLkSHTq1EnoKDqhVCrrfEiqqKjgUT1EevC4xoTm5uYoLS3VcyLdyM/Px/Hjx1FUVAS5XI7g4GCehiMSrVu3xuHDh/Hqq69i//796Nixo2rs8uXLousjNGPGjKe+18XFBR9//LEO0+genzLrQXx8PBwdHVXF9tq1a5Gfn1/n/Y6Ojli3bp2+4tFTenQ56qlTp3D79m1ERUWp9skAwMCBA7F48WIkJSVxiafIrVy5Uu3vlhqWvLw8tG/fXugYOtOqVSukpKRo3VKUkpLC7sFEeuDi4oLs7Gytx7VmZ2dL4jti3759+P7779GiRQvV8bS7du3C2LFj8fLLLwsdj55g7NixWLFiBQ4fPgw3NzcMGjQIAFBUVITdu3erlpiLxbRp02Bra/tU9z66fUyMWGzXg8WLF6NJkyaqnz/55BMB01B92bt3L0aNGqXxRWtnZ4dRo0ax2BaBq1evIiYmBllZWSgrK1Mbc3Jy4u9qA9e0aVO1I3ikZsSIEfjoo49gYWGB0NBQGBkZQalU4siRIzh8+DD3WhLpQe/evRETE4MOHTqoFQBFRUWIjY0V/Ykx6enp2LlzJ+bMmaPWCC0zMxOffPIJ3NzcEBAQIFxAeiIPDw9s2LABN2/ehJubm2pFnkwmw6BBg1RHCouFp6enQZ37zmK7HkjhrSdp+vPPPzF58mStY56envj666/1nIiexbVr1xAREQE/Pz9MmjQJcrlcbdzS0lKgZPS0OnfujOTkZMk2k2zXrh2mTZuGbdu2ISYmBjU1NYiIiECTJk3w73//m6cgEOnBgAED8Mcff+CDDz5A79694ezsjPz8fBw7dgwtW7bE0KFDhY74Qvbu3Yvhw4drdBz38/NDeHg49u7dy2JbBJo2bQoPDw+1aw/OrKaGjcW2DixcuBDOzs7o2rUr/P39uSdUpJo0aYLy8nKtY2VlZTA1NdVzInoWO3fuRFBQEN59912ho9Bz6tGjB1auXAljY2P4+/trnA8rhf4XwcHBCAoKwsWLF1FcXAy5XA4vLy+NPysR6YaRkRFmzJiBY8eOITk5GWlpaZDL5RgzZgz69OkjuuZTj/rzzz8xYcIErWP+/v5ISEjQcyIiw8IqUAcmTpyIX375BV9++SXu3buHwMBAdOnSBR06dGDhLSLe3t44evQo2rVrpzF29OhRSe8llYLz58+ziZ3Ibdq0CZWVldi3bx/27dunMS6V/hfGxsb8PCESWK9evUS3HPdp1XWusaGddyxmUtkWFxwcLIl92M+ClZ8OeHl5wcvLC5MnT8b58+fx+++/Y+vWrbh37x46deqEXr16aS3gqGEZOXIkIiIiIJfLMXz4cJiamuLu3bvYs2cPUlJSEBkZKXREeox79+7ByspK6Bj0AsTy8PC8KioqUFFRUee4mZkZzMzM9JiIyPAkJiaib9++qqOUpMbDwwPp6elat6Wkp6drLE2mhkdK2+LqOmZPylhs65BMJoOPjw98fHzQo0cPfP/99/jll19w7tw5bNiwQeh49ATNmzfHnDlzsGXLFuzbtw+WlpYoLS2FnZ0d5s2bJ/rlq1LXunVrXLp0CW5ubkJHIdJq7ty5GscNPszW1hafffaZHhMRGZ4ffvgBHTt2lGzDpsGDB+Pzzz9H69at4e/vr7qekZGBhIQETJ8+XcB09DS4LU7cWGzrSHV1Nc6ePYu0tDSkp6dDJpMhICAAYWFh8PX1FToePSUfHx+sX78eFy9eRFFREWxtbeHl5QUjIyOho9ETvPbaa1i/fj1at24tujMoyTCsWrVKY2a7trYW6enpiI2NxYcffihQMiLD0bhxY5SWlkq22A4KCsKIESOwZs0atGzZEk5OTlAoFLhy5QpGjRqFwMBAoSPSE3BbnLgZ3eeGjXq3adMmpKSkwNnZGUFBQQgMDESrVq2EjkVkUKKionDx4kXU1tbCxsZGo+GUg4MDFi5cKFA60mbx4sVwcnLCtGnTAAAxMTG4fft2nffb2tpizJgx+oqnVzExMVAoFKr/L4hIN7Zu3QoLCwu8+uqrQkfRqevXr+PkyZMoLCyEXC5HcHAwV+iJxOTJkxEZGcmVeiLFmW0dcHJygrW1Ne7cuYOSkhKUlJSgpqaGzdFEqKysDLt378apU6dQXl6OtWvXwtraGlevXoW7u7vQ8egxwsLCHrtE18bGRn9h6KnY2dlp/L0Y6vvgTp06YcWKFULHIJK8kJAQrF+/HkZGRvDx8dF4VhPbqQdVVVVo0qSJxnVXV1eMGDFCgET0orgtTtw4s61Dubm5SE1NRWpqKvLy8uDr64ugoCB07NhRVM0MDFVxcTEWLVoEFxcX9OvXD5s2bcJHH30EFxcXzJ8/H0OHDkVISIjQMYlIgrKzsxEVFYWvvvpK6ChEkvb++++joKCgznF7e3t8+umnekz0YqZNmwY7OzsMHDgQXbp04USPBOTk5GD9+vWYPXs2t8WJEIttPcnLy8NXX32Fc+fOwcbGBhs3bhQ6Ej3B5s2bUV5ejlmzZgEAJk2apCq2Dxw4gN9++w2LFy8WOCURSVFsbCzOnDmDpUuXCh2FiEREoVDgwIEDOHbsGIyNjdG3b1/069dPo4M1NVxRUVFQKBRq14qLi7ktTqT4ukuHqqqqkJ6ejhMnTuDMmTOwtLTkbKiInDlzps4unW3atMF3332n50T0OElJSbCxsUHnzp0B/L0/7c6dO3XeL7algYbK0LZylJSU4OTJk0hISOB+bSI9q66uxpEjR3Djxg00a9YMPXv2hKmpqdCxnomjoyPGjx+PMWPGIDk5GQcOHEB8fDw6d+6MgQMHok2bNkJHpCd40ja4R3FbXMPGYlsH0tLScOzYMWRkZMDc3BzBwcFYsGABPD09hY5Gz6CqqqrOL9nq6mo0btxYz4noceLj4+Ho6KgqtteuXYv8/Pw673d0dMS6dev0FY+ew8NbOV577TVs2rQJFRUVsLa2xqZNm0T/8nLWrFm4efOmxnVLS0tMmDABL730kgCpiKQvJycH8fHxuH79Ouzt7TF8+HB4enpi+fLlKC0tRYsWLZCeno6kpCQsXrwYVlZWQkd+ZiYmJujTpw/69OmDixcv4sCBA1i+fDnc3d0xcOBAdO3alUvMGyg/Pz+hI1A94m+ZDuzfvx/NmjXDvHnz4O3tLXQcek7NmzdHZmYmWrZsqTGWmZnJDvMNzOLFi9WawnzyyScCpqH6sGPHDnh4eKi2cmzatEk11rdvXxw6dEjUxfbMmTM1Vl+Ym5ujWbNmfAgm0pHz589j1apVCAkJQWhoKG7cuIE1a9agW7duMDExwZo1a2BsbIzq6mqsWrUKMTExmDJlitCxX4iXlxe8vLzw+uuv4/Dhw9i5cye+/fZb9OvXD/379+cScxGorq6GsbExZDKZ0FHoGfFvTAfmz5+PSZMmaRTaZWVlAiWi5zF06FDs3r0bJ06cULuemZmJffv2YdiwYQIlI20cHBxEOftAdTtz5gwGDx6sdaxNmzb4888/9Ruonrm6uqJdu3Zq/2nevDkLbSIdio6OxsiRI/Hmm29iwIABmDRpEt566y0cPnwYL7/8sur3z8TEBMOGDUNaWprAieuPlZUVwsPDsW7dOgQFBWHPnj1YsGCB0LHoCUpLSzF//nykpKRojM2fPx+5ubkCpKKnxW90HSgvL8e6deswefJkuLq6orCwEKtXr8bVq1fh6emJOXPmwMLCQuiY9AQvvfQSxowZg02bNuGbb75BTU0NPv74YxQWFmLixInw8fEROiI9hb/++gupqakoKyvDq6++yuX/IiK1rRzTp0+Hh4cHAgIC4O/vD3t7e6EjERmcnJwcjZnqTp06QSaTwcHBQe26k5MTiouL9ZhOtyoqKnDs2DEcOHAAJSUlCA0NxaBBg4SORU8QExMDOzs71Ta5h3l5eWHnzp2qFWDU8LDY1oGYmBiUlpbCxcUFwN9LIe3s7DB16lR8++232LlzJyZPnixwSnoaQ4YMQffu3XH69GmUlJTAxsYGAQEBnEEVia+++gq//PIL2rdvj4yMDAwYMAAuLi5YtWoVxo8fzzMrGzipbeWYM2cOUlJScOzYMWzbtg3NmjWDv78/AgIC4O3trdFhlojqX01NDUxMTNSuPVie++gSXZlMBikc2pObm4v9+/fjt99+g62tLQYOHIhevXqhadOmQkejp5CamoqpU6fCyMhIY6xr165Yu3atAKnoabHY1oGUlBRMmjQJMpkMSqUSqampWLZsGVxdXTF8+HBs3ryZxbaIWFtbo1evXkLHoGeUmJiI06dPY8WKFXBxccGkSZNUY05OToiLi8O//vUvARPSkwwdOhSbNm2Co6MjunTporr+YCvHzJkzBUz37Jo3b47mzZtj1KhRKC0txZkzZ3D69Gls2LABNTU18PX1hb+/P/z9/WFnZyd0XCISsdraWvz+++84cOAALl26BD8/P7z//vvw9/cXOho9o7Kysjo7jpubm6Ompka/geiZsNjWgYdnta9fvw4TExPVEUM2NjYoLS0VMh6RQTh06BBeeeUV1e/iw4KDg7FhwwYBUtGzkPJWDktLS4SEhCAkJAT379/HpUuXkJGRgcOHD+Orr76Cm5sbunXrhrCwMKGjEkmOthlCqSgqKsKhQ4dw+PBhVFVVoWfPnnj77be1fheSODg5OeGvv/7Suhrv0qVLPMa0gWOxrQN2dnbIy8uDm5sbMjIy1Bql5efnw9raWsB0VJfFixfDyclJdbZtTEwMbt++Xef9tra2GDNmjL7i0TMqKChA8+bNtY6Zm5ujsrJSz4noeRjCVg4jIyM4OjrC0dERzs7OuHnzJvLy8vDXX38JHY1IcmQyGSIjIzWWjNfU1CAqKkptO0dtba3oGhYuWLAApqamGD58+FMvFVcoFHB0dNRDOnoevXv3RnR0NLy9vdVWPd28eRMxMTF8Fm3gxPUJIhI9evTA9u3bkZWVhWPHjqktdTx69Cg6dOggYDqqi52dncYyHSns1TJU1tbWyM/P11pwX716lQ8WIiLFrRz37t3D+fPnkZmZiYyMDNy4cQPu7u7w8/PDv//9b7Rt21ZjXykRvbh58+ahsLDwqe+3tbXVYZr699FHHz3zy8gPPvgAq1at0mgQRw3DoEGDcPnyZcydOxeBgYFwcHCAQqFAamoqQkJC0KdPH6Ej0mOw2NaB8PBwyGQyXL58GW+88Qbat28P4O+uyOfPn8fKlSsFTkjavPfee2o/jx49WqAkVB+6du2KnTt3on379jA3N1ddr6ysRHx8PLp37y5gOnpWlZWVKC8vV3sBZmZmBjMzMwFTPZu8vDykpqYiMzMTFy5cgLW1NXx9fTFixAj4+PjA0tJS6IhEkufr6yt0BJ16nlU/9+7d477fBszIyAjTp09HamoqUlJScOXKFcjlcsyYMYMTeCJgdJ9Td3pVWVnJ7o9EelBdXY1ly5ahuLgYPXv2xI8//ojBgwcjLS0N1tbWmD9/Prs/i0BmZia+//57rUuq5XI5Pv/8cwFSPZ9//etfKC4uhr29PUaNGoWQkBCNpaxERPr2+uuvY/Xq1dzXTaQDLLZ17Pbt2ygtLYWHh4fQUegJZs2ahZs3bz71/S4uLvj44491mIheVE1NDfbv34+0tDQUFxdDLpfjpZdeQv/+/Vloi0BWVhaioqIQGhqK4OBgyOVytXEzMzO1VQsN3Z07d5CZmYnMzEycPXsWd+/ehbe3N3x9feHn58ej6IhIECy2xaO4uBgKhQK1tbWqa1ZWVmyS1oCx2NaRrKwsbN++Hbm5uTAyMsK6devg4OCAI0eOoHv37tyL1wDduHEDJSUlj72nuroaO3bsQH5+Pt58801069ZNT+mIDM/KlSvRrFkztWPbpOTq1auq4jsrKwumpqbw8fGBr68vfH19efwXEekFi+2Gr6CgAF988QXOnTunMWZvb49PP/1UgFT0NLhnWwcuX76MVatWISwsDPPnz8f06dNVe2F+++03lJSUIDw8XNiQpKFZs2Zo1qxZneMKhQLr169HbW0tIiMj+RaRSMeys7MxcuRIoWPojLu7O9zd3TFkyBDU1NTgwoULyMjIwDfffIOKigq0bdsWERERQsckIiIBFRcXY/HixfD29saqVavg5OSE/Px87NmzBwqFAh9++KHQEekxWGzrQExMDEJDQzFixAiNsX79+mHXrl0stkUmJSUFW7ZsQWBgIP7xj3+gSZMmQkeip1BVVYUjR44gKytLo7mWvb09pk6dKmA6epL79++LqgHa86qoqEBGRgZOnz6N06dPo6qqCu3bt0dISIjQ0YiISGCxsbHw8PBQa+Tr5uaGd999F2vXrsWPP/7Ipr4NGIttHbh06VKdZ965urpCoVDoORE9L6VSie+++w4HDx7EhAkT0L9/f6Ej0VMqKyvD0qVLUVVVhQ4dOsDd3V1tXGzHuRiidu3aISMjQ+PvTgpyc3NVxfWlS5dgYWEBf39/TJkyBX5+fjA1NRU6IhERNQBpaWn45z//qXUsNDQUX331FYvtBozFtg40atQI9+7d0zpWUlICCwsLPSei51FUVIRPP/0UxcXFiIiIQKtWrYSORM9g586daNKkCSIjI3kCgEhNmDABy5YtQ7NmzeDv7y/6zt1nz57FiRMncObMGRQWFqJFixbo2LEjXnvtNXh6egodj4gMlKOjo6iaTRqasrIyjQahD8jl8mc6N570j8W2Dnh7e+OXX36Bt7e3xtivv/4q+TMepSAzMxMbN25EmzZtMGfOHH4JiVBqaiomT57MQltE6joRoK6u/46Ojli3bp2uY9Wb6OhoWFtbY+TIkQgICKjz4elhycnJ6NatG4yMjPSQkIikqrCwEMePH0d+fr7ahFCTJk0QGhoK9ktuuBwcHHD16lWtJ1Zcu3aNK/UaOBbbOjBq1CgsWbIEjRo1wpAhQ2BkZITy8nJER0fj1KlTiIqKEjoiPUZMTAzi4+MxevRohIWFCR2HnlNpaSmcnJyEjkHPYObMmbhz585T329paanDNPVv2bJlz/y/2bJlC1q1asUuwUT03A4dOoSvv/4a7u7ucHJygkKhQE5ODvz8/GBiYoKTJ09ix44deOONN9CrVy+h49IjunXrhtjYWHTs2FFtAqGyshK7d+9GcHCwgOnoSVhs60CLFi0wf/58bNu2DbNmzQIALF68GC1btsTChQtZADRQd+7cwcaNG3H9+nV8+OGHWlcmkHg4OzsjPz+fZxeLiKurK1xdXVXnUN+7dw8tW7ZEt27dNM5FP3DgAH755ZfnKmDFhLNNRPQiMjMz8e2332LWrFno0KGD6vrZs2fx5ZdfYtGiRbC1tUVSUhL++9//ws7OjiswG5hhw4YhPT0d8+fPx5AhQ1TPNz/99BOaNGki6VM7pIDnbOtYQUEBiouLYWNjAwcHB6Hj0GPMmTMHN27cgLm5+VM1J3J0dMSCBQv0kIyex6+//orExERERETwXHuRUCqV2LBhA9LT09G+fXs0bdoU58+fh1wuxwcffABra2vVWaM5OTl47bXX0K9fP6Fj6xTPvyWiF7FixQq0a9dO6wk58fHxyM3NxbvvvgsA+P7775GTk8Nnmwbo3r17iIuLQ3JyMgoLCyGXy9GlSxeMGDGCJ+Q0cJzZ1jEHBwe1IlupVOLEiRPo1q2bgKlIm0mTJj1Tk4mn2W9J+hMTE4Pbt2+rXbt+/Tpmz54Nb29vjZlRW1vbOk8NIGHs3bsX2dnZWL16tWoF0N27d/Hxxx9j27ZtaN++PXbs2IGWLVti5cqVcHR0FDgxEVHD9uDFpDYdOnTA3r17VT936dIFhw4d0lc0egaNGzfG6NGj2XVchFhs69m1a9ewdetWFtsNEJdNid+jC3Ue3sfERTwN37FjxzB27Fi1rTampqaYNGkS5s+fj4yMDIwdOxYDBw4UMCURkbjU9f13//591NTUPPE+0r/c3Fz89ttvGDdunNr1uLg4HDp0CKWlpXB3d8fYsWPh4+MjUEp6Giy268HRo0efaka0uroaKSkp6Nixox5SERkWvu0VP4VCofWIvebNm0Mmk+GDDz6Al5eXAMmIiMTJw8MDp0+fRsuWLTXGzpw5A1dXV9XP6enpPOa0AVAoFFi2bBl69+6tdj0mJgYJCQkICwtDy5YtcfbsWaxevRoRERFo3bq1MGHpiVhs14Nz5849VbFtamqK3r17c1aGSA8uX76M1q1b88gkEamtrdVY7v+ATCYTXfdxIiKhDR48GJ9//jlat26t1iDtjz/+QFxcHP7xj38AADIyMpCQkKBq7EvCiY2NRUBAACZMmKC6VllZib1792LixImqXiWBgYGora3Fnj17+PfWgLHYrgfTpk0TOgIRPWL16tWIiopiY0KR4csRIqL6ExQUhOHDh2PVqlVo1aqV2tFfL7/8MkJCQqBUKvHZZ59h7Nix8PPzEzqywcvIyMD06dPVrmVlZQGAxmx3165dsW7dOn1Fo+fAYpuIJOnevXu4e/eu0DHoGchkMkRGRkImk2mM1dTUICoqSm3m28HBAQsXLtRnRL3r1asXmzES0QsJDw9Hp06dcPLkSRQVFcHf3x9vvvkmmjdvDuDvz94tW7Zo/ewl/SsvL9dYyXXlyhW0atVKY/WXhYUFqqqq9BmPnhGLbR2pqqrCkSNHkJWVhfLycrWmE/b29pg6daqA6Yikr23btsjKylI9TFDDN2/ePIM8EeCvv/7ChQsXUFZWpnbd1tYWb775pkCpiEhK3Nzc4ObmVuc4C+2Gw9bWFgqFQu3v69y5c2jbtq3GvQqFQjLfhVLFYlsHysrKsHTpUlRVVaFDhw5wd3dXG7e1tRUoGZHheO2117Bu3To4OTnB19e3zr3A1HAY2okASqUSW7ZsQXJyMpycnDQemOzs7DSWDBIRPYsNGzZgypQpsLCwEDoKPaWgoCAkJCTAz88PjRs3RlpaGi5evIgpU6Zo3HvkyBEEBAToPyQ9NaP77PNf77Zt24bs7GwsXLgQTZs2FToOkUGaMWMGFApFneP29vb49NNP9ZiISN2PP/6Iffv2Yc6cOVo7BRMRvaiJEydi9erVcHZ2FjoKPaUHk3alpaWwtbXF1atXMXbsWLz88suqe5RKJbZv347jx49j5cqVsLOzEzAxPQ5ntnUgNTUVkydPZqFNJKBZs2ahtLS0znG+5SehHTt2DGPGjGGhTUQ6I5fLcfv2bRbbImJhYYGoqCicOHECJSUlePPNNzWOZCstLUV2djbmzZvHQruBY7GtA6WlpXBychI6BpFBe9zeNKKGQKFQ8GxUItKpPn36IDExET4+PkJHoWdgYmKCnj171jlubW2N5cuX6zERPS8W2zrg7OyM/Px8PuwTEVGdrKysUFFRIXQMIpIwS0tLnD9/HkuWLEH79u1hbKz+6C+Xy9GnTx+B0hFJH4ttHRg2bBh2794NPz8/mJiYCB2HyCBs3rwZt27dqnO8UaNGcHBwQPfu3dGuXTs9JiPSrkePHjh48CC8vb2FjkJEEnXhwgV4eHgAAC5evKgxzmKbSLfYIK0exMTE4Pbt22rXTpw4AUtLS3h7e2t0Qba1tcWYMWP0GZFI8o4eParxe5ieno6rV6+qTgXIy8tDWloaBgwYgAkTJgiUlOhv6enp2LBhA/z9/eHv76/xXSGXy+Hn5ydQOiIiInpRnNmuJ4++swgODq5zjIjq36NHJGVlZWH//v2IiIhQ2xf7559/IioqCq1atUK3bt30nJLo/9m7dy+srKxw5coVXLlyRWPcwcGBxTYREZGIcWabiCTpo48+gp+fH4YOHaoxtm/fPvz+++9YunSpAMmIiIj04/r167hz506d49bW1mjWrJkeExEZFs5sE5EkXbp0CWPHjtU65uvri127duk5ERERkX59/PHHUCgUdY47Oztj7dq1ekxEZFhYbOuAUqnE5s2b0a1bNwQEBKiNbdu2DaNHj4alpaUw4YgMhEwmQ21trdaxqqoqjf2xREIoKyvD7t27cerUKZSXl2Pt2rWwtrbG1atX4e7uLnQ8IhK5devWaVyrra1Feno6vvrqK8ydO1eAVESGQyZ0ACnau3cvLl++jDZt2miM3bp1CzExMQKkIjIsnp6eOH78uNax48ePw8vLS8+JiNQVFxdj/vz5uHr1Kl577TXcu3dPdRTYpk2b8OuvvwqckIikqFGjRujUqROGDh2Kb775Rug4RJLGYlsHjh07hjFjxsDc3FxjbMCAAUhNTRUgFZFhGT58OA4cOIBDhw6pmhTev39fdW348OECJyRDt2PHDnh4eODDDz9Ua6oJAH379sWhQ4cESkZEhsDPzw/nzp0TOgaRpHEZuQ4UFBSgefPmWsfs7e1RWlqq50REhsfb2xtvv/02vvrqK+zatQuOjo5QKBSorq7GO++8o3XlCZE+nTlzBtOnT9c61qZNG3z33Xd6TkREhqSyshJGRkZCxyCSNBbbOmBtbY3bt2/D1dVVY+zmzZuwtbUVIBWR4QkJCUFgYCDS0tJQWFgIW1tbBAYGwszMTOhoRKiqqoKpqanWserqajRu3FjPiYjIkPz+++9o1aqV0DGIJI3Ftg506tQJcXFx8PX1hUz2/1bq19TUIC4uDl27dhUwHZFhMTMzQ0hIiNAxiDQ0b94cmZmZaNmypcZYZmYmH4KJ6IVVVFSoekE8UFxcjJMnT+LgwYP44IMPBEpGZBhYbOvA6NGjsWjRIixcuBADBgyAvb09CgoKsH//fjRq1Ajh4eFCRySSvIiICMyePRtWVlZCRyHSaujQodi0aRMcHR3RpUsX1fXMzEzs27cPM2fOFDAdEUnBvHnzUFhYqHHd3d0dM2fORLt27QRIRWQ4jO4/6BxE9aqiogKxsbFISUlBcXEx5HI5unTpghEjRqBJkyZCxyOSvIkTJ2LVqlVwcXEROgpRnfbt24cdO3bAysoKRUVFcHZ2RmFhISZOnIg+ffoIHY+IRK68vFxtZtvIyAgWFhZo2rSpgKmIDAeLbSKSpNmzZ2P8+PHo2LGj0FGIHqukpASnT59GSUkJbGxsEBAQwBUZREREEsBiu57k5ubit99+w7hx49Sux8XF4dChQygtLYW7uzvGjh0LHx8fgVISGY5Dhw4hOTkZ8+fPZ6MpIiIyaBUVFUhLS0NRURHs7OwQGBjI2W0iPWCxXQ8UCgU+/PBD9O7dGxMmTFBdj4mJQUJCAsLCwtCyZUucPXsWhw4dQkREBFq3bi1gYiLpi46ORlJSEszNzeHl5QVjY/UWFXK5HK+88opA6YiIiPTjt99+w5dffommTZvC3t4et27dQnV1Nd5++2107txZ6HhEksYGafUgNjYWAQEBaoV2ZWUl9u7di4kTJ6Jfv34AgMDAQNTW1mLPnj2YNWuWUHGJDEanTp1U//3R94pKpVLfccjAzZo1Czdv3qxzvFGjRnBwcED37t0RFham8YKIiOhZZWVlYcuWLXj99dfRt29fyGQyKJVKHDp0CBs3boSdnR0ngIh0iN/k9SAjIwPTp09Xu5aVlQUA6N27t9r1rl27Yt26dfqKRmSwOGtNDc3MmTNx584d1c/379/Hjh07cOfOHYSGhsLd3R15eXlITExERkYGFi5cyIKbiF5IXFwc+vXrh/79+6uuyWQyDBgwADdu3OAEEJGOyZ58Cz1JeXk5LC0t1a5duXIFrVq1QqNGjdSuW1hYoKqqSp/xiIioAXB1dUW7du1U/1EoFCgvL0dUVBSGDBkCPz8/hIaGYvny5SgvL8ePP/4odGQiErnLly+jW7duWse6d++OCxcu6DkRkWHhK/N6YGtrC4VCATc3N9W1c+fOoW3bthr3KhQKyOVyfcYjMmg///wzkpOTUVhYCLlcjm7dummsOCESwoEDBzBy5EiYm5urXTczM8OIESMQGxuL8PBwYcIRkSQolUqNiZ8HGjdujNraWj0nIjIsnNmuB0FBQUhISMC9e/cAAGlpabh48SJ69Oihce+RI0cQEBCg54REhuf+/ftYu3YtvvnmG7Ro0QKDBg1Cy5YtsWPHDqxdu1ZjDzeRvl2/fh3NmzfXOta8eXPcunVLz4mISGo8PT1x7tw5rWPnzp1TmygiovrHme16EB4ejqVLl2L69OmwtbXF1atXMXbsWLi4uKjuUSqV2L59Oy5cuIA33nhDuLBEBmL//v3466+/sGrVKrXVJIMGDcKSJUuQlJSEgQMHCpiQDJ2ZmRmKi4vh7u6uMVZYWAgLCwsBUhGRlIwYMQLr1q1Du3bt0KpVK9X1v/76C7t27eIzKZGOsdiuBxYWFoiKisKJEydQUlKCN998U+0DDQBKS0uRnZ2NefPmwc7OTqCkRIbj2LFjGDVqlMa2DblcjlGjRuGnn35isU2C6tChAxITE+Hn56cxtn//fvj7+wuQiojE7Oeff9ZYFePg4IClS5fC398fbm5uuHnzJlJTU9G3b1+EhIQIlJTIMPCcbSKSpMmTJyMyMlLrErlr165h0aJF2LZtmwDJiP5269YtfPjhh+jQoQNGjBgBJycn5OfnY9euXTh37hxWrFgBW1tboWMSkYhs3rz5sVtQZDKZ6ojB9u3b6zEZkWHizDYRSVLTpk1RWlqqdaysrAxNmzbVcyIidfb29oiIiMCXX36JuXPnqq57e3tj8eLFLLSJ6JlNnTpV6AhE9BAW20QkSe3atcPRo0fRrl07jbFjx45pvU6kb25ubliyZAlu376NoqIi2NrassgmIiKSCBbbRCRJ4eHhWLx4MeRyOYYPHw5TU1NUVlZiz549OHHiBCIjI4WOSKRiZ2fHfh5EpDN37txBdnY2ysrK1E7jkMvlWvtGEFH94J5tIpKsc+fOYfPmzSguLoalpSVKS0thbW2NqVOnwsfHR+h4RACACxcu4Ndff4VCoVA789be3p5LQonohcXExCA+Ph4ymQzW1tZqYw4ODli4cKFAyYikj8U2EUmaUqnExYsXUVRUBLlcDi8vL8hkMqFjEQEAvvvuO+zfvx8dO3aEs7MzFAoFUlNT4e7ujl69emHAgAFCRyQiETt69Ci++eYbTJ06FUFBQTAyMhI6EpFB4TJyIpI0mUwGb29voWMQaTh+/DiOHDmCpUuXwsPDQ3U9NzcXK1asQIsWLYQLR0SSkJSUhJEjR6JTp05CRyEySCy2iUgSZs2ahZs3bz71/S4uLvj44491mIjo8fbv34+RI0eqFdoA0Lx5c4SHhyM2NhYffPCBMOGISBLy8vJ4xBeRgFhsE5EkzJo1CyUlJY+9p7q6Gjt27EB+fj5Gjhypp2RE2l29ehVTpkzROta+fXvExMToORERSU3Tpk1RU1MjdAwig8Vim4gkoVmzZmjWrFmd4wqFAuvXr0dtbS0iIyPh6uqqx3REmoyNjVFdXa11rK7rRETPonPnzkhOToanp6fQUYgMEottIpK8lJQUbNmyBYGBgfjHP/6BJk2aCB2JCF5eXjh+/LjWh+ATJ06gdevWAqQiIinp0aMHVq5cCWNjY/j7+6NRo0Zq41ZWVnz5TKRD7EZORJKlVCrx3Xff4eDBg5gwYQL69+8vdCQilcuXLyMyMlL1b/NBl+BDhw7h66+/xrx587jXkoheyMyZM5Gfn1/nuKOjI9atW6fHRESGhcU2EUlSUVERPv30UxQXF+O9995Dq1athI5EpOH333/H1q1bYWJiAkdHRxQUFKCiogJTpkxBjx49hI5HREREL4DFNhFJTmZmJjZu3Ig2bdpg6tSpMDc3FzoSUZ3u3r2L1NRUFBYWQi6XIzAwkP9miYiIJIDFNhFJSkxMDOLj4zF69GiEhYUJHYfoqVRXV+PIkSO4ceMGmjVrhp49e8LU1FToWEQkATU1NThw4ADS0tJQVlaGBQsWwMLCAmVlZbCwsBA6HpGksUEaEUnCnTt3sHHjRly/fh0ffvghvL29hY5EpCEnJwfx8fG4fv067O3tMXz4cHh6emL58uUoLS1FixYtkJ6ejqSkJCxevBhWVlZCRyYiEbt79y4iIyNRU1ODXr16ITo6GqWlpbCwsEBkZCReffVVBAQECB2TSLJYbBORJERGRuLGjRswNzfHf/7znyfe7+joiAULFughGdHfzp8/j1WrViEkJAShoaG4ceMG1qxZg27dusHExARr1qxRHQe2atUqxMTE1HkONxHR09i5cyeaNGmCZcuWwdjYGNHR0aqx7t2746effmKxTaRDLLaJSBImTZqEwsLCp75fLpfrMA2RpujoaIwcOVJte0Pbtm3x2WefYc6cOTA2/vsr2cTEBMOGDcOXX37JYpuIXsjJkyfx1ltvqT5fHubj44O4uDgBUhEZDhbbRCQJvr6+QkcgeqycnByN4rlTp06QyWRwcHBQu+7k5ITi4mI9piMiKSovL4eNjY3WMSMjI9WRg0SkGzKhAxARERmCmpoamJiYqF0zNjaGTCaDTKb+dSyTycD+pUT0olxcXHDx4kWtY1lZWWjevLmeExEZFhbbREREREQSNGDAAOzcuROXLl1Su37t2jXEx8dj4MCBAiUjMgxcRk5ERKQnXLJJRPrUp08f5ObmYunSpfD09ERtbS3++9//Ijs7G4MHD0ZwcLDQEYkkjedsExER6cHrr78OGxsbjSXjt27dglwuR6NGjVTXamtrUVpaiu3bt+s7JhFJ0JUrV5CamoqSkhLY2NjgpZde4hJyIj1gsU1ERKQHZ8+efaaO+ba2tmz8R0Q6de/ePTRu3FjoGESSxWKbiIiIiMjAFBUVYd68efjiiy+EjkIkWdyzTUREREQkARUVFaioqHjifffu3UNSUhKsra31kIrIcLHYJiIiIiKSgLlz56KoqOip7m3WrBneeecdHSciMmxcRk5EREREJAEVFRUoLy9/4n2mpqawsLDQQyIiw8Zim4iIiIiIiKieyZ58CxERERERic3333+PkpISrWN//fUXtm7dqudERIaFxTYRERERkQQVFhZizZo1qK6uVruekpKCJUuWsEEakY5xGTkRERERkQTV1NRgxYoVMDU1xaxZsyCTybBnzx7s2bMHb7zxBnr37i10RCJJY7FNRERERCRRZWVlWLp0Kby8vFBdXY0zZ85gxowZaNeundDRiCSPxTYRERERkYQVFBQgIiICRkZGWLx4MZycnISORGQQuGebiIiIiEjCHBwcMHfuXFRVVeHKlStCxyEyGJzZJiIiIiKSgJkzZyI/P/+p73d0dMS6det0mIjIsLHYJiIiIiKSgOvXr+POnTtPfb+lpSXc3Nx0mIjIsLHYJiIiIiIiIqpn3LNNRERERCRRRUVFqKys1LheU1MjQBoiw8Jim4iIiIhIgm7duoUFCxbgjz/+0BibOXMmsrKyBEhFZDhYbBMRERERSVB0dDS8vb0RFBSkMRYSEoLY2FgBUhEZDhbbREREREQSlJGRgdDQUK1jgYGByM7O1nMiIsPCYpuIiIiISIKqqqpgYWGhdaxx48Z6TkNkeFhsExERERFJkKurKy5cuKB17OzZs2jRooWeExEZFhbbREREREQSNHDgQERHRyMnJ0ftelZWFmJjYzF48GCBkhEZBp6zTUREREQkUd9//z327t0LT09PODg4oKCgANnZ2Rg9ejSGDx8udDwiSWOxTUREREQkYbm5uUhJSUFxcTHkcjmCg4Ph6uoqdCwiyWOxTURERERERFTPjIUOQEREREREunPq1CmkpaWhrKwM06ZNQ9OmTXH//n0YGRkJHY1I0tggjYiIiIhIgmpqarB69Wp89dVXMDExwenTp1FUVAQAWLBgAS5evChwQiJpY7FNRERERCRBcXFxuH37NlavXo033nhDbSbb398fP/74o4DpiKSPxTYRERERkQT9/PPPGD16NCwsLDTGOnbsiKysLAFSERkOFttERERERBJUUlICJycnrWMmJiaoqanRcyIiw8Jim4iIiIhIguzt7fHXX39pHcvJyUGzZs30nIjIsLDYJiIiIiKSoF69emHnzp1QKBRq14uKihAXF4c+ffoIlIzIMPCcbSIiIiIiCVIqlVi3bh3OnTuHwMBAnDhxAl27dsXZs2fh6+uLadOmCR2RSNJYbBMRERERSdjJkyeRlpaG4uJi2NjYoHPnzggMDBQ6FpHksdgmIiIiIiIiqmfGQgcgIiIiIqIXt2vXLty6deup77e3t8eoUaN0mIjIsLHYJiIiIiKSgIKCAvz666+4f/8+2rZtC0dHR6EjERk0LiMnIiIiIpKI69evIy4uDr///js6d+6M4cOHw83NTehYRAaJxTYRERERkcQUFBQgPj4ev/76K/z9/REeHg4PDw+hYxEZFBbbREREREQSVVhYiB9//BFHjhxBu3btEB4eDi8vL6FjERkEFttERERERBJ3584d7Nu3DwcPHoSHhwdGjBgBHx8foWMRSRqLbSIiIiIiA1FRUYGffvoJe/bsQbt27fDhhx8KHYlIsmRCByAiIiIiIt27f/8+0tLScPz4cTRp0gS+vr5CRyKSNB79RUREREQkYUqlEr/++ivi4uJw584dDBw4EIMHD4a5ubnQ0YgkjcU2EREREZEEKZVKHDt2DPHx8SgvL8fgwYMxcOBAmJmZCR2NyCCw2CYiIiIikpCamhocO3YMcXFxqKqqwpAhQzBw4EA0bdpU6GhEBoXFNhERERGRBNTU1ODw4cNISEhATU0NhgwZgtDQUDRp0kToaEQGid3IiYiIiIgkYNasWbh58yYAwMrKCiYmJo+938nJid3IiXSIxTYRERERkQScPXsWhYWFT32/ra0tO5IT6RCLbSIiIiIiIqJ6xnO2iYiIiIiIiOoZi20iIiIiIiKiesZim4iIiIiIiKiesdgmIiIiIiIiqmcstomIiIiIiIjqGYttIiIiIiIionrGYpuIiIiIiIionv1/nx3PTNb9WZIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAALqCAYAAADHBFwZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb1fk/8M+5kizvvVecxHYmmWRByihhBcL6BtpAC3RRuigtFL4tFEohBTpIaSk/Rku/LaXQQCFsmgIhBLIgIQkJSRwnTrz33pLu+f1hrOjeK9mSLdmS/Hm/Xn0VHV1dn2tJjh6d5zyPkFJKEBEREREREZFfKeM9ASIiIiIiIqJwxICbiIiIiIiIKAAYcBMREREREREFAANuIiIiIiIiogBgwE1EREREREQUAAy4iYiIiIiIiAKAATcRERERERFRADDgJiIiIiIiIgoABtxEREREREREAWAe7wkQEVFg/O1vf4OUEtdff71Xx9tsNmzcuBHbt29HTU0NHA4H0tPTsWzZMlxwwQWIjIzUHH/48GE8+uijePDBBzX3/fa3v8Xu3budt4UQSEpKwpw5c3DppZciIyPD6/n/5z//0YxFR0cjPz8f559/PpYsWeLVeSg4SCnx1ltv4d1330VDQwNuvPFGLF26dLynhZqaGvz3v//Fp59+ioaGBgBAUlISZsyYgRUrVmDKlCnjPMPQtXPnTrz77rs4fvw4enp6kJiYiHnz5uHiiy9GWlraeE+PiGhMMOAmIgpT5eXlXh/b09ODtWvX4sSJE1i0aBEWLVoEi8WCEydOYMOGDdiyZQvuuOMOJCcnOx9TW1uLhoYGdHR0aALu8vJyFBcX48wzzwQAqKqK+vp6bNmyBTt37sRtt92G4uJir+aflZWFiy++2DnW2dmJTz75BA8//DDOP/98XHfddV5f40Rz6NAhKIri1e96LPzjH//Am2++iYULF+Lcc8/FrFmzxntKeOONN/Dss8/CYrFg8eLFOOOMMxAREYH6+nrs3r0b7733Hs455xx8/etfhxBivKcbUv7yl7/gnXfewfTp03HuueciLi4OdXV12LZtGz788EPcfPPNmD17tuYxgXrNbtq0CYsWLUJsbKxfz0tE5A0G3EREhJdffhnl5eW44447MH36dM19F198Me6991786U9/ws9//nOvzpeZmYmzzz7bcJ61a9fikUcewe9+9ztYLJZhz5OYmGg4z6pVq7B+/Xps2LABM2fOxKJFi7ya00Tz73//GwBwxx13jPNMgIaGBrz11ltB9SXJ//3f/2Hjxo0466yzcPXVVxuCsWuuuQavv/46Pv74Y9hsNkRERIzTTEPPvn378M4772DNmjVYtWqV5r7LL78cv/nNb/Dwww9j3bp1mt97IF6zTU1NePLJJ2E2m/GFL3zBb+clIvIW93ATERH27duH6dOnG4JtAMjNzcVtt92GU089dVQ/Iy4uDtdffz0aGxuxa9euUZ1r9erVyMrKwsaNG0d1nnCmqipUVR3vaQAA9u/fDyklzjvvvPGeCgBg69at2LhxIy6//HLccMMNblc+FUXBqlWrcM899zDY9tHevXsRERGBlStXGu6LjY3Fj3/8Y6xYscLwew3Ea3bwfMHyXiCiiYcBNxERweFwDHn/1KlTceGFF47650yfPh1WqxXHjh0b1XkURcHs2bNx4sSJUc+JAq+1tRUAkJ6ePr4TAdDX14e//e1vmDFjBv7nf/5nvKcTlob7e5KQkIAvfelL/CKDiCYEppQTUUioq6vDL3/5S9x555347LPPsGnTJlRVVcFkMmHSpEk499xzhyzA9Omnn2Ljxo04evQouru7kZKSgoULF2LlypVITEzUHNvT04Nbb70V3//+99Ha2oo333wT5eXlMJvNWLNmDc455xwAwO23345Vq1ahsbERmzdvRnNzM5KTk3H22Wfj4osvRn9/PzZs2IBt27ahtbUVqampWLFiBS644AK3+0Hb29vx2muv4aOPPkJzczPi4+Mxd+5cXHbZZUhNTXV7XVu3bsU777yD8vJyOBwO5Obm4uyzz8ZZZ53l0+/3lFNOwcaNG/HZZ59h5syZPj3WV1arFX19fX45j81mM4x/9NFHePvtt3HixAn09fUhPT0dp512Gs4//3xD4beamhr88pe/xF133YX9+/fj7bffRm1tLaKionDDDTdgwYIFzmPtdjv++9//4oMPPkBtbS0URUFeXh7OPvtsLF++3PCcbt26Fa+88gpuvPFGrF+/HocPHwYw8KXDl770JeTn5+PAgQPYsGEDjh07BiEEZs6ciTVr1iArK8vtNe/atQtvvfUWTpw4AYfDgZycHJx33nlYvny585jBvbODrr76agDARRddhGuuuUZzvvLycrzyyis4dOgQOjs7kZqaitNOOw0XX3yxJhjy9j2ht337dvzxj3+ElBIA8NWvfhUAEB8fj0ceeQRm88mPITt27HC+lgeftyVLluCCCy5AdHT0iJ83vY8//hgdHR247LLLoCgjW3dwOBzYuHEjtmzZgpqaGlitVkydOhWXXnqpYf/xhg0bcPjwYdx44414/vnnsXv3bnR0dCA3Nxe/+MUvYLVaA/JaOX78ON544w0cPHgQ7e3tzoJlF110kdsvPm6//XZcdtlliIuLw+uvv44jR47A4XAgIyMDp512GlauXKl5voYy+Pfk1VdfxWWXXTbs8b68Zgdffx9//DGampoQHR2NoqIiXHjhhZoMnb6+Pnz/+99HV1cXAODxxx/H448/DovFgrvvvttQDO/999/Hu+++i8rKSgghMGnSJFx00UWYP3++Yb7l5eXYsGEDSkpK0NHRgcTERCxYsACXXXYZEhISvPodEdHEIeTgv4JEREHss88+w3333YesrCy0trbitNNOQ25uLtrb27Fnzx6UlZXhggsuwLXXXmt47LPPPotXX30V+fn5zsI51dXV2Lp1K0wmE2655RYUFRU5j29oaMAPf/hDTJ48GZWVlVi+fDlyc3MRGRmJGTNmIDMzE8DAh0Kr1QohBM4++2ykpKRg//792LNnD0477TTU1dWhqqrKcJ+7D5E1NTVYu3Yturq6sHz5cmRnZ6O5uRkffPABpJT46U9/ikmTJjmPV1UVf/rTn7Bt2zYUFxdj3rx5ziJn27Ztw5w5c9DV1QWTyeTVvuvOzk784he/QF1dHU4//XQsWLAAU6dORUpKisfHbN68GY8//jgefvhhTcXhm266CTNnzsSNN95oeExLSwu+//3v4+qrr8ZFF1005JzuvfdeAPA4/1/96ldoa2vDgw8+CGCgCvYTTzyBzZs3o7CwEAsWLIDVasXx48exfft2pKam4vbbb9cEG4Ovq8mTJ6Ourg5f+MIXkJWVhYiICMydOxdJSUkABr4M+fWvf43jx49j4cKFKC4uhqqqOHDgAPbt24f58+fj5ptv1uxLf+GFF/Diiy/CarVi8uTJmD9/Prq7u/HOO+/AZrPh0ksvxfPPP49p06Zp7pNS4oEHHjD87gdfx1OnTsW8efMQERGBgwcPYs+ePTj77LPxrW99C8BAMHD06FG89tprAOAsOldcXIycnBzn+T766CM88sgjiI+Px9KlS5GcnIyKigp88MEHyMvLwx133OEMdL19T+i1t7dj9+7d+Pjjj7F7927nHGNjY51771VVxaOPPoqtW7c6X8uRkZE4ceIEtm/fjsTERNx2222awNLb582dJ598Ejt27MCTTz45okJo/f39ePDBB3Hw4EEsWrQIhYWF6Ovrw65du1BZWYlvfetbOOOMM5zHP/bYY9i9ezeioqIQExODBQsWIDk5GdHR0c4vCf39Wnn33Xfx17/+FcnJyVi2bBmSkpLQ0NCADz/8EP39/bjpppswd+5czWOuvvpqZGZmoq6uDqeeeiqmTZsGu92OI0eOYNeuXSgsLMSdd97p9ar0H/7wB2zfvh0zZ87E8uXLUVRUhKysLLdfcnj7mi0tLcXvfvc79Pf3O/8N6OzsxM6dO1FZWYnVq1fj8ssvdx6/c+dO1NbW4rnnnsOZZ56J4uJimM1mLF68GFarFcDA341HHnkE27Ztw+zZszFz5kxIKbFv3z4cPnwYV111leZLgxMnTuCuu+5CcnIyvvCFLyAuLg6VlZXYsmULYmJi8Mtf/nLI1x8RTTxhs8I9+OF527ZtWLZsGVavXj3ic3V3d+OOO+7At771rYCv9BCRb/r6+vDAAw9oArz/+Z//wTPPPIM333wT8+fPxymnnOK87/3338err76KSy65BF/60pc0H7Avv/xy/PrXv8a6devw4IMPIi4uTvOz6urqcP/99yM7O9vjfFRVxdq1a5GbmwsAWLlyJZ588kls2rQJZrMZv/rVrwz3vfHGG7jgggucH5JVVcUf//hHOBwOPPDAA5q2WZdccgnWrl2LP/3pT3jggQecH1YHV86/9rWv4dxzz9XMadWqVVi7di3a29sxY8YMr36vsbGxuO+++/DSSy/hv//9L95//30AA0XLFi1ahFWrVnlcZffFv//9byiKMuqWXgcPHsSBAwdw1VVXOcdeffVVbN68Gddeey0uuOACzfGrVq3CAw88gN///ve49957YTKZNPd3dHTgd7/7ncfVqUcffRQ1NTX4+c9/jmnTpmnOu3PnTvzxj3/EM88847YF2+LFi3HjjTc6X3tnnXUWbrvtNqxfvx7Lly/Hd77zHcN9L774ojM4BQaC41dffRUXX3wx1qxZ4zx+1apVePfdd/HnP/8Zs2fPxrJly5Cfn4/8/Hx88MEHAGAoOgcMFJJ67LHHUFRUhFtuuQVRUVHO+8477zzcc889ePbZZ/GNb3xD8zhv3hOu4uPjcdZZZ6GxsRG7d+92O5eXXnoJW7dudftavuSSS3D//ffj97//PdauXWtYYR3ueXOnsbERaWlpHoPt7u5u9Pf3O29HRkZqMiOee+45HDp0CLfccgsWLlzoHL/88svx5JNP4qmnnsL06dM1X+x0dnZi2bJluP7664cM8v3xWjl8+DCeeuopLF26FN/+9rc1XwJdfvnlWLduHf7whz/g/vvvN6x0NzQ04Cc/+QnmzZunGf/oo4+wbt06vPTSS/jSl77kcf6ufvCDH2DOnDl44YUX8MQTTzh/l3PmzMHKlSs1mQDevGY7Ozuxbt06xMfH4/bbb9d0TLj88svx7LPP4vnnn0dOTg4WL17s/H02NDTgueeew/Tp052dE1y99dZb2LZtG66//npNjYHLL78c69evx/PPP4+ZM2c65/v+++9DCIF7771Xs/f/ggsuwN///ne0tbUx4CYijbDYw33ixAnceuut+PDDD6GqKhobG0d1vn/961+w2WzsvUkUhC699FJD/1ZFUbBmzRokJibivffec45LKbFhwwZMnz4dX/7ylw0fdBMTE/GDH/wAbW1tePfddw0/65xzzhk2sFi8eLEzoB40uDpz6qmnur1vcPVk0IEDB3D8+HFcd911hh7VcXFx+OY3v4nKykocOHAAwMCXDm+88QaWL19uCFAAIC8vD9/5zneGnLc7kZGRWLNmDZ588kncc889WLNmDSZNmoS3334bt99+Ow4dOuT1ufr7+9Ha2orW1la0tLTg8OHDePjhh/Huu+/i8ssv9zp4t9vtzvO0traiqqoKr7/+On79619j0qRJzn3l/f39ePXVV509w/Vyc3PxrW99C8ePH8fHH39suP+SSy7xGLQdOXIE+/btw9VXX60JtgctXrwYK1euxDvvvIOWlhbD/ZdffrnmtZeRkeFc3b300kvd3rd3717NOV5//XXk5+e7fR1/8YtfxNy5cw09y4fyzjvvoL+/H9/73vc0wTYAFBQU4PLLL8f777+P7u5uzX3evCd8MdxrOSsrCzfccAMqKiqwc+dOw/1DPW+eDBXw1tTU4Fvf+ha++93vOv934403On8P3d3d2LRpE1asWKEJtgHAZDLh+uuvh9VqxaZNmzT3Df6NGm5F3R+vlZdeegkpKSm44YYbDJ0AYmJicNNNN0FKiddff93w80899VRDsA0AixYtwuLFi7F58+Yh5+9KCIGzzjoLjzzyCH7zm9/gG9/4BhYsWIB9+/bhnnvuwRtvvOH1uYCBVfvW1lbcdNNNmmAbGPj9Xn311SgqKnJWOveGqqp48803MW/ePLcF/VavXo2cnBxNcUar1QoppWGfelZWFm6//XYUFBT4dF1EFP7CYoU7Pz8fDz30EDIzM/HYY4+N6lzHjh3D22+/jR//+MeGvX5ENP48fdg3m82YNGkSqqurnWMNDQ2ora01tKVxlZWVhaKiInz66ae49NJLDfcNx91eyMExd2m2g/cNFpECBlZrzWYzpk6dqhkflJqaipiYGBw8eBCnnHIKSktL0d3drUlb1ZszZ45hb7q3TCYTioqKUFRUhFWrVqGkpAS/+c1v8Mgjj2DdunVetfPavn07tm/frhmLjo7GV7/6VZ+Krx05cgTf/e53NWNmsxmnn346vvrVrzrTW48ePYqurq4h967PnTsXycnJ2LNnj2GFfajnet++fTCZTEO2FDrrrLPw6quv4tNPPzU8L0O9Rtz93PT0dM3vbjCt98ILL0R7e7vbnz9t2jQ8//zzsNvtXu2zPXjwICZPngwhhNvX3NSpU2Gz2XDs2DFNr2Rv3hO+KC0tRU9Pz5Cv5dmzZyM5ORn79u3DaaedprlvJPNJTU1FaWkppJSGADgzMxN33XUXent7AQzUfnjjjTfQ1dWF6OhoHDt2DH19fZg1a5bb3xsw8LvTfzmVnJzs1WeK0b5WBrc56Pfgu4qPj8eCBQuwZ88ew32u6dt6U6dOxc6dO9Hd3W3YUz+cnJwc5OTk4JxzzkFTUxPWrVuHZ555BrNnz0Z+fr5X59i3bx+Kioo8zlEIgTPPPBN//vOf0djY6NWXeg0NDWhsbMSFF17o8fmcNm0aPvnkE+ftFStWYPPmzfjZz36GM888E9OnT8fUqVMRExPj1XUQ0cQTFgG3EMLj/jFfqKqKv/zlL1i0aJHhm2siCg5DrRAlJCRoAu62tjYAMKyG6KWkpLitdu3N/k53xwymK7vbqzh4n+vqSHt7O+x2O374wx8O+bN6enoAeHddQgikp6cbUqdHori4GF/+8pfxl7/8BSUlJZg1a9awj5k9e7Zmj/ZTTz0FRVHcpooOJS8vz1lACRgI2rOzsw0fbgdXlofacw4M/M6am5sN40M9162trYiLixty7+rgh3t353b3Ohgc83Sfawujjo4OSCnxxhtvDLsq2Nvb67bFlV57eztqamoMX2boDb7mBo1kz/NQvH2PJicnO48d7XxmzpyJd999F/v379dsPxk8n2sWgz4IG/zC4/e///2QP8PbIFJvtK+V9vZ2OByOYYPN1NRU7Nixw6e5xcfHA4Dzy4eRSklJwfe+9z3ccsst2Llzp9e/q5aWlmFXjwff/83NzV4F3IOvqaeffhpPP/20x+Ncs0CSk5Px4IMP4o033sAnn3yCl19+GcBAgbsrr7zSbWtFIprYwiLgHoqqqnj99dfx3nvvobGxEYmJifjCF76Ayy67zLAKMFjl9NZbbx2n2RLRaLnWgRz8gOguCHI1WBF8vMTHxyMyMnLYgHvq1KkA4Nwf2NTUNGR6b2Njo2Z1cjQGi8q5C3rcSU5O1hRluvHGG3Hffffh2Wefxde+9jWvf25sbKyhuJM7g2nFzc3NQ/5OmpubDWn7w4mPj0dHRwf6+/s9Bt2DrzG73e7Tub0RFxcHIQS++MUvDtkLPTY21qtgGxi4ptjYWFxxxRUejzGbzW5T6P3Jl+fNX6vrp556KhISEvDKK69g9uzZPgXtg38nvva1rw3Z4swfiwAjERsbC0VR0NTUNORxzc3Nw7buCqSsrCzExsZ6/fcEGHitePO3HPD+fTj4+rviiis0hTP19F8IxcbG4qqrrsJVV12Fzs5OHDx4EC+//DLuv/9+3HvvvSP+woWIwlNYB9xSSqxbtw5lZWW48sorUVBQgLq6Orzwwgs4evQobrvtNuc/tG1tbVi/fj1sNht+8pOfID09Heedd57PrXWIKHikp6cjPT0dW7Zs8biyWlNTg5KSknHtxztr1ixs2LABkZGRXgU4g+mLmzdvNqzQDfr000/R3NyMOXPmDHu+iooK/OEPf8APfvADjx8UGxoaAAy/EunJjBkzcP755+M///kPlixZ4veClFOnTkVUVBTef/99j18y7N+/f0QB9+zZs/HSSy/hww8/9Pg68mVvq68GA9+6ujqvvnwYFBUV5TFAmTlzJjZu3Iji4mLDHu6x5Mvz5k1mhTciIiJw3XXX4Q9/+AM2bNigqWrtzXytViu6urp8ei7GitlsxvTp07Ft2zZcccUVbrcXdHZ2YteuXQGbg6qquPPOO3HBBRd43CrQ3d2Nrq4uw9+ToV6zs2bNwosvvoiamhqPX75s2bLFMDb4+tZnawBAWloaUlNT0dLSMuLnc7Di/imnnILvfOc7+PDDDxlwE5FGWBRN8+Sjjz7C/v37ceedd+LMM8/EpEmTsHjxYtx5550oKyvTFM55+umnERkZiRtuuAF33nknzj77bDz99NN44YUXxvEKiGg0hBC49NJLcejQITz33HPQd0FsbW3FH//4R8TGxnrsIzwWZs6cialTp+LRRx9FfX294f6amhpUVVU5b0dERGDVqlXYunWrppjPoKqqKjz++OPIy8tzVusdSlpaGmw2G9atW6dJyR/U3d2N9evXIy0tzdBj2Bdf/vKXkZmZiccff9y5R9ZfIiMjcf755+ODDz7Af//7X8P91dXVePzxx0d07hkzZmD69Ol45plncOTIEcP9u3btwquvvjqic3tr1apV2L9/P1588UVNCjEwsJq3b98+w3hRUREqKipQU1NjON8555zjbIfk7rk4fPgwOjo6/HsRbgz3vNXU1OCJJ55AZmams4WWPyxduhQXXnghnn/+eTz11FOG4nDAQCG+wX7Yg1szoqKicO655+LFF180FCsDBtL/Bx8zXi699FLU19fjiSeeMKz0dnd3449//KPb4NNfFEVBZmYm/vKXv2j2Pg9SVRV///vfAcDwnA71ml2xYgViY2Pxhz/8wZDqL6V0Vo/Xi42NRVZWlttiiYqiYNWqVXjvvfc0BTcH9fb2Yv/+/c7bdrsd69atc3ZxcNXd3Q273e6XbTxEFF7CeoV7165dWLhwoSG1Kz4+HkuWLMGuXbuwaNEiVFVVYdu2bbj//vud30oWFBQgKSkJDz/8MM4991yfq6ASUXA4++yzUVlZiVdeeQV79uxx9uGuqanBhx9+CCEEfvSjH43re1wIgR/+8Ie4//778ZOf/ATLli1DXl4ebDYbysrKsHv3bpx11lmaFk2rVq1CTU0N/u///g9bt27F/PnzYbVaNb2Lf/SjH3lVQCsyMhI//vGP8dBDD+GnP/0p5s+fjylTpiAiIgJ1dXX48MMPYbfb8dOf/tTtPlJvRURE4Nvf/jbuuece/POf/8TXv/71EZ/LndWrV6O6uhp//etf8eGHHxp+J3PmzBnx1oEf/OAHuP/++/HLX/4Sp556KoqKijR9uK+88kqsX7/er9fjav78+bjqqqvw/PPPY+fOnZg3bx6SkpJQX1+PXbt2obW1Fb/5zW80FfzPOeccvP3221i7di3OPfdcZGRkYMmSJRBCIDk5GTfddBMefvhh/OhHP8LSpUuRkZGB9vZ2fPbZZygpKcH3v/99Q5GyQPD0vJWXl2Pbtm2Ii4vDj3/8Y6/7P3vrq1/9KtLT0/GPf/wDH374IRYvXozs7GxERESgsrISH330Edrb27Fy5UrNSuxVV12FqqoqPPjgg5g7dy6KiooQGRmJyspK7Ny5E4mJifjtb3/r17n64pRTTsE111zj/IJo6dKlmj7cUVFROOOMM9wGjf7yjW98A11dXfjNb36D6dOnY/bs2YiNjUVzczM++ugj1NbW4tprrzWsVA/1mk1ISMAPf/hDPPTQQ7j11ltx+umnIzs7G11dXdi5cyfq6+tx6aWXOvdUu7rqqqvw8MMP48EHH8T8+fNRXFzs3A9+7rnnory8HE888QTee+89zJ49GzExMaitrcVHH30Eu92OP/7xj7BarTCZTOjr68Njjz2G999/H3PmzEFUVBQaGxvxwQcfICYmZly/vCWi4BTWAXdraysOHDiAjz76yHCfqqrO9KFPP/3U2QPS1cKFC2G1WlFSUuJsy0FE4yM5ORkJCQlDpjRnZ2e7reL81a9+FXPmzMHGjRvx9ttvo7u7G8nJyTjjjDOwcuVKQ6Gt2NhYJCYmDrlHExiovOtpr2Zubq5P96WmpuK+++7DW2+9hR07dmDHjh1QFAUFBQX45je/aaiQLYTAt7/9bSxYsABvv/023njjDfT39yM9PR2rVq3CBRdc4FNho/z8fPzqV7/Ce++9h+3bt+PgwYPo7e1FUlISli5diksuucRQhCgzMxNpaWmG/uW5ubke9+MWFxfjsssuM1QwdycnJ8en/bWKouDmm2/GBx98gHfffRevvvoqVFVFbm4urr/+epxxxhl44oknNIFbUlLSsK+rweN++ctf4j//+Q+2bt2KPXv2wGKxoLi4GD//+c9RXFyMLVu2aK47MzPTY0XlrKwsn++77LLLMG3aNLz11lt4//330dnZiaSkJMydOxcrV640tMuLjY3F3XffjaeffhqvvPIKTCaTM/ABBirZ/+pXv3IWf2ppaUFUVBSmTZuGO++8U5P27+17wpPs7Gzk5eW5vW/wedu6dSs2bdqE119/HTabDampqVi5ciUuvPBCw950b5+34Zx//vmYN28eNm7ciH379mHr1q0QQiApKQnz58/HihUrnLUTBpnNZtx6663YsmUL3nvvPbz11lvo6+tDVlYWVq5caWhLl5mZ6bECtusx/nytrFy5EoWFhXj99dexefNmdHV1IS0tDV/84hdx8cUXY/v27SgrK9M8Zqi/Z8DAFp2UlBTD+92dmJgY3H777di+fTu2bNmCd999F+3t7YiNjUVxcTFuuOEGt9tnhnvNzpw5E/fffz9ee+017NmzB++99x7i4uIwd+5c3HLLLejv78fmzZsNf9OXLFmCm2++GS+99BKefvppnH766bjxxhud93/jG9/A3Llz8c477zj/jUhLS8Py5cuxcuVKWK1WAAN/d2+77TZ88MEH2LJlC1577TX09PQgKSkJCxYswKWXXjps4UYimniE1OdYhrjBtmA33ngjHnvsMdjtdo/7s5KSkhAdHY3XX38dH3zwAe6//37DMd/85jfx7W9/mwE3ERERERER+SSs93AvWrQI+/fvR1RUlLMHpOv/Bld/ioqKUF5ertkjCQCffPIJ+vr6UFhYOB7TJyIiIiIiohAW1inlCxcuxPbt2/GLX/wCl156KaZOnYq+vj7s2bMHe/bswdq1a6EoCoqLi7Fo0SI8+OCDuOaaa5CTk4MjR47gn//8Jy6++GJnCx4iIiIiIiIib4VdSvlgVfHVq1cDGKhc+c477+Ddd99FTU0NTCYTZsyYgYsvvlizf8hut+Pll1/G+++/j9bWVqSlpeH888/HueeeOy7XQURERERERKEt7AJuIiIiIiIiomAQ1nu4iYiIiIiIiMYLA24iIiIiIiKiAGDAPUZKS0tRWlo63tMIGF5f6Av3a+T1hb5wv0ZeX+gL92sM9+sDwv8aeX2hL9yvMRyvjwE3ERERERERUQAw4CYiIiIiIiIKAAbcRERERERERAHAgJuIiIiIiIgoABhwExEREREREQUAA24iIiIiIiKiAGDATURERERERBQA5vGeABERERERUbhzOByw2WyjPgcA9Pb2+mNKQScYrs9iscBkMvntfAy4iYiIiIiIAkRKidraWrS2to76XIMBe1lZ2ajPFYyC5foSExORmZkJIcSoz8WAm4iIiIiIKEAGg+309HRER0ePKojr6+sDAFitVn9NL6iM9/VJKdHd3Y36+noAQFZW1qjPyYCbiIiIiIgoABwOhzPYTklJ8dt5IyMj/XauYDSe1xcVFQUAqK+vR3p6+qjTy1k0jYiIiIiIKAAGU6Sjo6PHeSbki8Hna7R77gEG3ERERERERAHlj73ANHb8+Xwx4CYiIiIiIiIKAAbcRERERERERAHAgJuIiIiIiIgCZv369Xj++edHdY777rsPn376qZ9mNHZYpZyIiIiIiIgCprm5edTnqK+v98t5xhpXuImIiIiIiIgCgCvcRBT21OZmxG/cCJhMkGlpEAkJ4z0lIiIiIpoAGHATUViTUqJv3TrEVlcDAPpaW2G97Ta25yAiIqIxp0qJrt6RP763b+D/bVL6Z0IuYiIBxcfPRzabDa+99ho+/PBDNDQ0IC4uDvPnz8cVV1yBpKQkr86xd+9evPbaaygrK4OUEgUFBbj00ksxZ84cw7F2ux3r16/H+++/j46ODqSlpeHMM8/ERRddBEXRJm93d3fjpZdews6dO9Ha2orExEQsXboUl1566Zj2RWfATURhTdbWQn4ebAOAWlIC2doK4eU/AkRERET+0tUL/OjpPj+cyR/n0Fr3VSviorw/vr+/H/fddx+6u7tx+eWXIz8/H83NzXjrrbfws5/9DL/4xS+QkZEx5DnefPNNPPfcc1i1ahXWrFmD/v5+7NmzB7/73e/w5S9/GRdeeKHm+H/84x9YsGABvve97yE6OhpHjx7FCy+8gIqKCnz3u991HtfR0YG77roLcXFx+MpXvoLMzEzU1dXhlVdewccff4x77rkHsbGxPv1+RooBNxGFNVlfbxyrqAAYcBMRERGN2CuvvIL29nb86le/cq4Y5+XlYe7cuXj44Yfx5z//GXfccYfHx9fW1uKf//wnfvSjH2HBggUAgN7eXhQUFGDatGl46KGHsGDBAk3QPmfOHPzgBz9w3p40aRIKCgrw85//HCtXrkRBQQEA4JlnnkFcXBzuuusumM1m59zmzZuHe++9F//85z9xww03+PtX4haLphFRWFMbGoxjFRXjMBMiIiKi8PHhhx/iwgsvdJuefcUVV+DAgQNoaWnx+Pht27YhPz/fGWy7mj9/PvLz87Ft2zbN+Ny5cw3HTpkyBRkZGTh8+DAAQFVVbNu2DZdddpkz2B5kNptx6aWXYuvWrVBV1avrHC0G3EQU1iQDbiIiIiK/a25uRmZmptv7Blel691kGg5qaGhAVlaWx/szMjLQ1NSkGTOZTG6PTUpKQmdnJwCgvb0dNpttyLn19/ejtbXV48/2J6aUE1FYc7vCXV4+DjMhIiKiiS4mcmCv9Ej19g3s3Y60jvwcnsRE+nZ8YmKix4B6cNzhcHh8vKqqqKys9Hh/fX2929VvT+TnheTi4uJgNptRV1eH7OzsEc3NnxhwE1FYc7fCLevrIfv6IALwjxURERGRJ4oQPhUm07N8XkQ8MnL8u60sW7YMb775JpYvX46oKO1FbdiwQXM7KioKbW1thnOUl5fj448/xqmnnqoZ37t3L8rKyvCd73zH53mZTCYsWrQIr7zyCubMmaNZFXc4HHj11Vd9PudoMKWciMKWVFW3ATekhDrEN6pERERENLTLLrsMVqsVd999N7Zt24bKykp8+umn+O1vf4u6ujrNscXFxdi/fz+OHDmC/v5+53heXh6eeOIJPP/88zhy5AiOHz+OV155BevWrcOVV16JnJycEc3tK1/5ChobG3Hvvfdi165dqKysxK5du3DvvffCZrON6rp9xRVuIgpbsq0N8PBHVa2ogGnq1DGeEREREVF4iIyMxN13342XXnoJzz33HFpaWpCUlITTTz8dq1atwu233474+HgAwJIlS3Dw4EHcf//9uOyyy3DJJZcAACZPnozvfve7eP755/Gf//wHDocDeXl5+O53v4vFixdrfl5qaioSExPdziUlJQUpKSnO20lJSVi7di1eeOEF/PWvf3X27D777LNx2mmn4Y477hizXtwMuIkobLld3R68j/u4iYiIiEYlMjISa9aswZo1awz3/eEPf3D+t6Io+PrXv46vf/3rhuMmTZqEW2+9FcBAW7DB8+rdddddHufh2oN7UHx8vMef+eijj3o8l78xpZyIwpa7HtyDWKmciIiIiAKNATcRhS21sdHzfZWVkGPUf5GIiIiIJiamlBNR2BpqhRv9/ZD19RAeejQSERERUeCkpqaO9xTGBANuIgpbQ+3hBgb6cSsMuImIiIjG3OrVq8d7CmOCKeVEFLZUXcAtzdrvGLmPm4iIiIgCiQE3EYUl2dMDdHRoxnonT9bcZsBNRERERIHEgJuIwpJ0UzCtt7hYewxbgxERERFRADHgJqKwpOoKpjni4tCfk6MZk21tkO3tYzktIiIiIppAGHATUVjSF0yzJybCkZQERERoxplWTkRERESBwoCbiMKSPuB2JCUBigIlN1czzoCbiIiIiAKFATcRhSV9Srk9MREAoOTlaY/jPm4iIiIiChAG3EQUlvRF0xyfB9xCH3BzhZuIiIiIAoQBNxGFHelwQDY1acY8rXDL2lrI/v6xmhoRERFR2Hjvvffw2GOPjfc0ghoDbiIKO7K5GXA4NGOOpCQAGNjDLcTJO1QVanX1WE6PiIiIKCw0NjaiQVc3Z7S6urrwve99D52dnX4973hhwE1EYUdfMA1RUVCjogAAIjISIj1dezzTyomIiIiCQk9PD1paWtDT0zPeU/EL83hPgIjI3/QF00RqqmZVW8nLg6Ou7uTxLJxGREREY0CqKtDVNfLH9/YO/L/N5q8pnRQTA6FwPdbfGHATUdjRr3AruhVtJT8fjo8/dt5m4TQiIiIaE11d6Ln55lGfJhBrv1G//z0QFzeixzY0NOCFF17A3r170dfXh+zsbJx77rk466yzNMedOHECL7zwAg4fPgyHw4HCwkJceeWVKCwsBAA8+uij+Pjzz2g//OEPAQBr1qzBqlWrnOcoLS3Fyy+/jMOHD8NutyMvLw/nn38+TjvttBHNPdAYcBNR2NEH3CItTXPb0BqsogJSVfmtLhEREZGPmpqacNddd2Hx4sX44Q9/iKioKHz22Wf4xz/+gaNHj+Ib3/gGAKCkpAS/+tWvsGzZMvzoRz+CxWLBRx99hLVr1+K2227DjBkz8LWvfQ3nnHMOHnzwQfz85z9HUlISUlJSnD9rx44d+NOf/oRzzjkHq1atgtVqxYEDB/DUU0+hrKwM11xzzXj9GjxiwE1EYUcdJuDWtwZDby9kU5PhOCIiIiIaWn19Pb761a/iwgsvdI4VFBRg1qxZ+PnPf47FixfjlFNOwVNPPYXly5fjm9/8pvO4wsJCWK1W/O1vf8MDDzyAqKgoZ4CdmpqKNJfPZt3d3XjiiSdwzTXX4Pzzz3eOT5o0CTNnzsRdd92FhQsXYvr06WNw1d7jcg4RhRUp5bAp5SIxEYiN1YxxHzcRERGR72JjY3HeeecZxidNmoQFCxZg27ZtqK+vR3l5OS666CLDcStWrEBFRcWw1c53794Ni8WCc88913BfQUEBFixYgA8++GDkFxIgXOEmovDS2QnoqlqKtDSgre3kbSGg5OdD/ewz55haUQEsXDhm0yQiIqIJKCZmYK/0CPV+XjQtMjLSTxNyERPj80NMJhOys7NhMpnc3p+RkYHy8nK0trYCAP73f//X7XFSSnR2diJuiD3kzc3NSE9Ph+JhC2BGRgbKysp8u4AxwICbiMKKPp0cigKRnKwJuIGBftyuATdbgxEREVGgCUUZcWEyABAWy8D/ByLgHoG0tDTU1dVBVVW3gXBdXR2Sk5ORlJQEALjjjjsQ4yawN5vNyMjIQG9vL4RLZxlXiYmJaGxs9Piz6uvr4XA4RnlF/seUciIKK4aCaSkpEG6+dVXy8zW3mVJORERE5JsFCxagv78f77zzjuG+48ePY/fu3TjttNOQlpaGgoIC7NmzBzk5OYb/ZWRkOB8XGxsLk8mEel2b1wULFqCnpwebNm0y/Kzy8nLs3r3b/xfoB1zhJqKwMlyF8kH6SuWyuRmysxNCt7ebiIiIiNyLjo7Gt771LTz66KOorq7GaaedBovFgs8++wwvvvgiVqxYgVmzZgEAbrjhBtx7771oamrC8uXLkZCQgOrqarzzzjtYunQpzjnnHACA1WrFkiVL8I9//APXX389srOzERcXh9jYWHzta1/Dk08+ierqaixduhQRERE4ePAgNmzYgJycnPH8VXjEgJuIwoqq+zZUXzBtkMjMBMxmwG4/+djKSpiCrLIlERERUTBbunQpkpOT8fLLL+PXv/61szf29ddfj+XLlzuPKygowH333YeXXnoJ/+///T90dnYiPT0dp512Gk4//XTNOb/5zW/ib3/7G379618jMzMTa9euBQCcccYZSElJwYYNG/Dee+8BGKh0fvPNN+PEiRM4evTomF23txhwE1FY8XaFW5jNEDk5kCdOOMfUigoG3EREREQ+Ki4uxk9+8pNhj8vKysJ3v/vdYY+LjIzEt7/9bXz729823Ddr1iznqrmrYGsHNoh7uIkorHgbcAPGtHLu4yYiIiIif2LATURhQ9pskJ+3nRikDBVw6wunsVI5EREREfkRA24iChuysRGQUjM25Ap3bq728dXVkC57uomIiIiIRmNUe7irq6uxdetWbNu2DcuWLcPq1asNxxw4cAAPPPCA255oK1aswNe//nXn7f7+fvzrX//Ctm3b4HA4sHDhQlxzzTVue7UREelJXcE0xMZCREV5PF6fUg6HA7KmBkI/TkREREQ0AiMOuE+cOIGf/vSnzp5pjY2Nbo9rbGxEQkIC7rzzTsN9ycnJmttPPPEEKioq8L3vfQ8WiwXPPvss1q1bhzvuuMNjA3QiokGqbv+2pwrlg0R0NERq6sDK+OA5ysuNgTgRERER0QiMOODOz8/HQw89hMzMTDz22GNDHqsoCjIzM4c85vjx49i2bRt++9vfIisrCwDwox/9CDfffDP27NmD+fPnj3SqRDRB+FIwbZCSnw+Ha8DNfdxERETkZ1K35Y2Cmz+frxHv4RZCDBtE+2L79u2YMmWKM9gGgPj4eMyZMwfbt2/3288hovClX+H2KuDW7eNmwE1ERET+YrFYAADd3d3jPBPyxeDzNfj8jUbQ9OEuKyvDjBkzDOMzZ87Exo0bPT6utLQ0kNPymxMuvX7DEa8v9IXDNaZVVcH1z2KDlOj5/G+Ep+uLtFjgurnFfvw4So8cAUJsG0s4PH/DCfdr5PWFvnC/xnC/PiD8r5HXNz4cDgeqq6ths9kQGRk5qq2yNpsNANDX1+ev6QWV8b4+KSV6e3vR0NAAIQTKyso8HltYWOjVOQMecEdHR6OxsRHXXXcdAMBqtWLSpEm4+OKLMXfuXOdxbW1tSEhIMDw+ISEBrbo2P0REBlLCrPtb4UhMHPZhts/rUAxSentham+Hw83fIyIiIiJfWa1W9PX1oa6ubtR1qQYLUZtMJn9MLegEw/VJKWEymWC1Wv1yvoAH3IsWLcK6detg/7zVTn9/P/bt24ff//73WLNmDc477zwAA99iREdHGx4fHR2N3t5ej+f39puFYBFq8/UVry/0heo1qi0t6NW19MqdPx9KUpJmTH99Ukr0REcDLqleeSYTzCH6ewjV588X4X6NvL7QF+7XGO7XB4T/NfL6xofD4XCu4I7U4Cr+pEmT/DGloBMM12exWPwa8I9JSnmGbgVp8uTJSEtLwxNPPIFly5YhLi4OVqvV7d6Grq4uREREjMU0iSiE6QumwWKB8GKVWggBJS8P6uHDJ89VUQHMm+fnGRIREdFEZjKZRh3IDT4+MjLSH1MKOuF4fSMumuatl156CZ2dnYbxZcuWwWQyoaSkBMBA6nh7e7vhuPb2diTpVqiIiPT0PbhFaiqE4t2fOH0bMLW83G/zIiIiIqKJK+AB9+uvv46DBw96vH+w5PrkyZPdHvfZZ59h8uTJAZsfEYUH1aW1FwCIYXpwuzIE3KxUTkRERER+EPCAe9asWdi8ebNhfMeOHbDZbCgqKgIALFmyBEePHkVdXZ3zmI6ODuzbtw9LliwJ9DSJKMTpV7iV1FSvH6sPuGVDA2RPj1/mRUREREQTl98D7r/+9a/43e9+57z95S9/GYcOHcLvf/97HDx4EOXl5Xj11Vfx+OOP48orr3RWJp88eTKWLVuGdevW4cCBAzhy5AjWrVuH/Px8LFy40N/TJKIwo9/D7csKt8jOBnR7qtTKSr/Mi4iIiIgmLr8UTUt1WUlqa2vTtPHKysrC2rVr8a9//Qvr1q2DzWZDXl4evv3tb2Pp0qWa89xwww147rnn8Mgjj6C/vx8LFizAddddB8XLfZhENHGpuoBbSUvz+rHCYoHIyoJ0CbLV8nKYPs/AISIiIiIaCb8E3KtXr3b+980332y4PyMjAzfddNOw54mIiMC1116La6+91h/TIqIJQvb0AB0dmjHhQ8ANDKSVO1wDbu7jJiIiIqJR4tIxEYU8qSuYBows4NackwE3EREREY0SA24iCnmqviVYUhKExeLTOZT8fO05KyshHY5Rz42IiIiIJi4G3EQU8gwF03xc3QaMK9yw2yFra0czLSIiIiKa4BhwE1HI80fALWJjIZKSNGPcx01EREREo8GAm4hCnj6l3JcK5a6EPq2cATcRERERjQIDbiIKefqiab704HalTytXy8tHPCciIiIiIgbcRBTSpMMB2dSkGRtJSjngJuCuqICUcsRzIyIiIqKJjQE3EYU02dwM6KqJjzSl3FA4raMDaGsb6dSIiIiIaIJjwE1EIU1fMA1RUUBs7IjOJdLSAKtVM8Z93EREREQ0Ugy4iSikGXpwp6ZCCDGicwlF4T5uIiIiIvIbBtxEFNL0K9zKCAumOR/vZh83EREREdFIMOAmopDmjx7crhhwExEREZG/MOAmopBmSCkfZcCt78Ut6+og+/pGdU4iIiIimpgYcBNRyJJSGnpwjzqlPCcHcN0DLiXUqqpRnZOIiIiIJiYG3EQUujo7gZ4ezdCoV7gjIiAyMzVjLJxGRERERCPBgJuIQpaqbwmmKBDJyaM+r6JPK+c+biIiIiIaAQbcRBSyDAXTUlIgTKZRn1fJzdXcZuE0IiIiIhoJBtxEFLKknwumDdKvcKuVlZCq6pdzExEREdHEwYCbiEKWPqV8tAXTnOfRtQZDX58huCciIiIiGg4DbiIKWf7uwe08T0ICEB+vGWNaORERERH5igE3EYWsQAXcgJu0cgbcREREROQjBtxEFJKkzQbZ2qoZU/wZcOvSytkajIiIiIh8xYCbiEKSbGgApNSM+XWFWxdwszUYEREREfmKATcRhSR9Ojni4iCiovx2fkPA3doK2dHht/MTERERUfhjwE1EIclQodyPq9sAIDIzgYgI7c/kKjcRERER+YABNxGFpEAWTAMAoShQcnI0Y9zHTURERES+YMBNRCFJv8Lt74AbAIS+cBpXuImIiIjIBwy4iSgk6Ve4/Z1SDripVM6Am4iIiIh8YB7vCRAR+UqqqjGlPD3d7z9H34tb1tRA2mwQFovffxZROJOqisiDB2GprYVDUWCaMmW8p0RERDQmGHATUciRbW2AzaYZC0RKuZKTAwhxsv2YqkJWVUEUFPj9ZxGFK8eRI+h/5hkkf54h0rdjByLvvRdKVtY4z4yIiCjwmFJORCHH0BLMYoFISPD7zxFRUYZAnmnlRN6Rra3oe/JJ9D3wgLaPvZSwf/DB+E2MiIhoDHGFm4hCjqyv19wWqakQSmC+P1Ty8uBw+XkMuImGJu122N9+G7ZXXgH6+tweo1ZVjfGsiIiIxgcDbiIKOWpjo+Z2IPZvD1Ly8+HYtevkz2ZrMCKPHPv3o//ZZyFra4c8TlZWjtGMiIiIxhcDbiIKOfoV7kBUKHeeW1+pvLISUkoIIQL2M4lCjdrYCNu//gXH7t3uD7BYNHUXZEsLZFcXREzMGM2QiIhofHAPNxGFHEOF8gAG3Ppe3OjpgdStsBNNVLK/H7aXX0bvnXd6DLZNy5cj8v77IXXbPtTq6rGYIhER0bjiCjcRhRx1DHpwDxJJSUBsLNDZefLnV1QE9GcSBTspJRyffALbv/7l8QsoZfJkWK6+2tkCzJ6SAovLe1etrISpqGhM5ktERDReGHATUUiRPT1AR4dmLKAr3EJAycuDevCgc0wtLwcWLAjYzyQKZmptLfqffRbq/v3uD4iNRcTq1TCdfrqmmKEtLU0TcHMfNxERTQQMuIkopBhW04QIaMANwBBwS1YqpwlI9vTA9tprsP/3v4DDYTxACJi/+EVYLr3U7d5su77FHiuVExHRBMCAm4hCiqpvCZaYCGGxBPRnGgqnMeCmCURKCceOHbCtXw/Z1ub2GKW4GBFXX214r7iyuQm4WYCQiIjCHQNuIgopY1kwbZCSn6+dQ1MTKyzThKBWVKD/mWegHjni9n6RmAjLVVfBtHjxsIGzfoUb3d2QLS0Qycn+mi4REVHQYcBNRCFlPAJukZkJmM2A3e4cUysqYJo+PeA/m2g8yM5O2F5+GfZNmwApjQeYTDCfdx4sF18MERnp1TkdCQlQIyKg9Pef/DlVVQADbiIiCmMMuIkopOhTyseiWrgwmyGysyHLy0/OgwE3hSGpqnBs2YL+F1/UVOZ3pcyejYg1a6BkZvp2ciFgT0tDhMvebbWyEqZTThnNlImIiIIaA24iCin6omkiPX1Mfq6SlweHLuAmCieOY8dge+YZqMePu71fpKbCsmYNTHPnjnjftU0fcLNwGhERhTkG3EQUMqTDAdnUpBkbi5Ry4POA2+W26hJ8E4Uy2daG/n//G44PP3R/gMUCy0UXwXz++RAREaP6WYZK5WwNRkREYY4BNxGFDNncbGhHNBYp5YCbwmk1NZB2O4SZf0YpNEm7HfZNm2B7+WWgp8ftMaaFC2G56iooqal++Zn6SuWypgbS4YAwmfxyfiIiomDDT4pEFDL0BdMQFQXExo7Jzza0O7LbIWtqIIZog0QUrByHDqH/mWcgq6vd3i+yshBx9dUwzZzp15+rD7hht0PW1UFkZ/v15xAREQULBtxEFDIMPbhTU73aS1rZrOLFT5NhEsA1qSoyExWff7aIjoZITdXsIVcrKobsO0wUbNTmZtjWr4fjo4/cHxAZCcsll8B8zjkByd6Q0dEQCQmaft5qVRUUBtxERBSmfP/USUQ0TvQr3IoXBdPsqsQf3+pHSUM0DtZH47G3bZDu2hx5QcnN1dzmPm4KFdJmg+3119F7xx0eg23TsmWIWrsWlvPPD+hWCZGTo7nNwmlERBTOuMJNRCFjJD24q5olmly6G1U2S9S2SWQl+l5lWeTnA3v2OG+zUjmFAsfeveh/7jlIXYbIIJGXh4hrroGpqGhM5qPk5kL97DPnbcnCaUREFMYYcBNRyDCklHsRcFc2G1ezS2pUZI0grVyfPq5WVEBKOeIWSUSBpNbVof9f/4K6d6/7A2JiYLniCpjPOANCGbuEN4Ur3ERENIGMKuCurq7G1q1bsW3bNixbtgyrV692e1xJSQnWr1+Po0ePIioqCsuWLcOXvvQlRLi0F3nxxRfxwgsvGB4rhMD3v/99LFu2bDRTJaIQJ6U09OD2JqW8qlk1jJXUqDhzhu9zMOzX7uqCbGmBSE72/WREASL7+mB7/XXY//MfwG43HiAEzGeeCcvll0OMUdFBV/qtGbKhAbKvD8JqHfO5EBERBdqIA+4TJ07gpz/9KTIyMgAAjboPwoNKS0tx33334bzzzsNXvvIVtLS04J///Ceqq6tx++23O4+rr6/HokWLsGbNGs3jhRBIG6O2P0QUxDo7Da2LvE0p1yupUUe0Mi1SUwcqo7vMQ1ZUAAy4KQhIKeH4+GPY/vUvyJYWt8coU6ci4pproEyaNMazO0lkZQFCAIO1FKSEWl0N0+TJ4zYnIiKiQBlxwJ2fn4+HHnoImZmZeOyxxzwe969//Qunn346vvKVrwAACgoKkJubi1tuuQWHDx/GtGnTnMdGRUUhMzNzpFMiojCm6luCmUxerSxXulnhbukCmjolUuN8DLiFgJKXB7Wk5OS8ysthmjvXp/MQ+ZtaVYX+f/4T6qFD7g+Ij0fElVfCtHTpmKaPuyOsVoj0dMi6OueYrKwEGHATEVEYGnHALYTwKjg+evQoVq5cqRlLS0tDTk4OSktLNQE3EZEnhoJpKSkQJtOQj+nslWjrdn9fSY1Eapzv8zAE3CycRuNIdnfD9sorsL/zDqAav1yCyQTzOefAcsklEFFRYz9BD5ScHDhcAm7u4yYionAV8KJp1113HWbOnKkZk1KitbUVFotl1OcvLS0d9TnGwokTJ8Z7CgHF6wt9wX6NsYcOId7ldk90NKqGef+faLECcJ92/vHhVqQr7tNuhxJltSLJ5XbfsWOoCIK/Q8H+/PlDuF+jT9cnJaI+/RTxmzbB1O3+W6W+ggK0nXsu7KmpQBAEtK7XFxcdDdfvu7qOHEF5ELyPRouv0dAX7tfI6wt94X6NoXR9hYWFXh0X8ID7zDPPNIy9/fbb6O7uxsKFC51jUVFR2LhxI7Zt2wYAiI2NxYwZM3DFFVcgOzs70NMkoiBnbm3V3HYkJbk/0EVDp+cv9SpaIzzeNxT753UrnPNqaYHo64NkwScaI5aaGiRs3IiI6mq399vj49F+zjnonTZtYK90ELLp6i+Y9VtGiIiIwsSYtwUrKSnBP/7xD6xevRopKSnO8WuuuQbnnnsu5OdFVDo7O7F582bccccduPPOOzF16lS35/P2m4VgEWrz9RWvL/QF6zX29vbCNWE2sbAQacPM9cNqGwCH2/taeixIy56KhGjfAhI5aRJ6/v53wHHyvAURETAFye8tWJ8/fwr3a/R0fbKjA7aXXoL9/fdPFhxzZTbDfOGFiLrwQsQH8RdAhYWFUGNj0fvSS84xU1cXpmZkQMSNYJ9HEJqor9FwEu7XyOsLfeF+jeF0fWMacDc0NOChhx7CkiVLsGrVKu1EzGbDSva0adNgMpnw17/+Fffdd99YTpWIgoxhD7dXFcrd7Gl1caRWxalTht4HricsFojMTEiXFF21ogKmoiKfzkPkLelwwL55M2wvvQR4SB83zZsHy5e/DCVEunqI9HTAYgFsNueYWlkJ04wR9OsjIiIKYmNWqrS7uxu/+c1vkJ2djRtuuEFzX0dHBzZs2OD2cWeffTaOHTuGbg8fMogo/EmbDVKXUj5cD25VSkNLsAiTNgAvqRk6IPdE34+bhdMoUBxHjqD33nthe+YZt8G2yMiA9eabYf3BD0Im2AYAoSgQui/ZWTiNiIjC0ZgE3Kqq4g9/+APsdjt+/OMfw2zWLqw3NTVh/fr16OzsNDx2sE+udJc+R0QTgmxoMKTQitTUIR/T1CHRZ9eOzc7SBiwjDrjz87XzY8BNfqa2tKDvySfR98AD7l9fViss//M/iLznHphOOWXsJ+gHSk6O5rZaWTlOMyEiIgqcMUkp/9vf/oZjx47hl7/8JWJjYw335+bmIjExEZs3b8ZFF12kuW/Tpk0oKChATEzMWEyViIKQPp0ccXHDtjiq1K1uR5pVzEzvxu7Kk3+DqpolOnslYiN928dtWOGurIR0OIZtU0Y0LIcDtrfegu2VV4C+PreHmBYvhuXKK6F40Yc+mCk5OZoKC5Ir3EREFIb8HnD/9a9/RXNzM2655RYAwFtvvYW3334b3/rWtwAAtbW1zmMTExMRGRkJs9mMa6+9Fo8++ig6OzuxZMkS2Gw2vPfee/jggw/w05/+1N/TJKIQouoCbm9SZ/Xp5GmxNmTF98NiAmyff8qXAErrVMyb5FugrA+4YbNB1tUZUmSJfGE9dgzx//0vbM3Nbu8XOTmIuOYamKZNG+OZBYaSm6u5rVZVQaoqhDJmu92IiIgCzi8Bd6pLamdbWxtaXfZafvDBB5BS4oknnjA8bunSpbjpppuc/x0bG4sNGzbgP//5DxRFwbRp03DPPfegoKDAH9MkohA1koJplbqCaWkxNpgUYGqGgkPVJ+87UuN7wC3i4iCSkiBbTvbxVisqoDDgphGyvf46Ul580f2dUVGwXH45zGedFVZZFEKXUo6+PsimJq/e30RERKHCLwH36tWrnf998803a+7zpbr47NmzMXv2bH9MiYjCiH6FWwxTMA1wv8INAEWZAodc2hePdB+3yMvTBtzl5cCSJSM6F01ssq9vIIXcDdMXvoCIK66AiI8f41kFnkhMBKKjNcXg1KqqkCr+RkRENBzmbRFR0JP19ZrbyjAF02wOibo2bcCd/nnAXZyl/bN3olGi1+Z7UUZWKid/UQ8fBuzaCn/K5Mmw3nEHrNdfH5bBNjBQFFWfVi5ZOI2IiMIMA24iCmpSVSEbGzVjw61w17RIqLoYOjVmIOCekq7A5FIjTZXA0TrfV7kZcJO/OD77THNbmTIF1p/9DKYpU8ZpRmPHsI+bATcREYUZBtxEFNRkWxtgs2nGhtvjqU8nT40TsJoHxqwWgUlp2qrkR0aQVq5vDYb29oG5EvnIceCA5rZpzpwJUzhMv4+bvbiJiCjcTIx/0YkoZBlaglksEAkJQz5GXzAtJ0kbYOvTyktqfQ+4RVoaYLVqxtTycp/PQxOb2tICWV2tGVNmzhyn2Yw9fS9uWVcHqUuvJyIiCmUMuIkoqOn3b4u0tGFX//Q9uHOShw64j9VL2By+7eMWimJMh2VaOflIPXhQe9tqhTKBOnPoA244HJA1NeMzGSIiogBgwE1EQc1QodyrHtzaFevcZO2fusIMBa4huN0BHG9g4TQae/p08r5Jk8Kq9ddwRHQ0RHKyZoxp5UREFE4YcBNRUNOnlA/XMqizV6K1WzumX+GOtgrkpmjHRtIeTL+PmwE3+UJKCYduhbtv8uRxms34EfpMEQbcREQURhhwE1FQ0wfcvhZMMylARqIwHGfYxz2CgFvoVrhlbS1kX5/P56GJSVZVAbpCe30TKJ18kD6tnJXKiYgonDDgJqKgpk8pH26FW59OnpUoYFbcBNyZ2j9/pXUqHPpeYsNQcnIA4XJuKbk6R17Tp5PbExLgSEoap9mMH/biJiKicMaAm4iCluzpATo6NGPD9eAermDaoCLdCnefDaho8rFwmtUKkZmpGZNMKycv6ftv902erP0CZ4IwVCpvbobs7vZwNBERUWhhwE1EQcvQEkwIiNTUIR9T1TJ0wbRB8VECmQl+2Met33/K1mDkBWmzQS0p0YxNxHRyABBZWYCuUJyqa5VGREQUqhhwE1HQMlQoT0yEsFg8Hi+lNOzh9rTCDfhnH7ehcBrTYckL6tGjQH//yQEh0Ddp0vhNaBwJsxkiI0MzxvcRERGFCwbcRBS0fC2Y1tQp0WvTjnla4QaMaeVHalWo0sd93G5ag0nV98CdJhb9/m1l0iTI6Ohxms34M6SVsxYCERGFCQbcRBS0fA249fu3oyOApBjPx+tXuLv6gJoWHwNu3Qo3+vqMqfBEOqpu/7Yyc+Y4zSQ4GLZmcIWbiIjCBANuIgpaan295rYyTME0d+nkYogiVCmxAimx2jFf08pFQgIQH68Z4z5uGors7IR64oRmzDTBA253vbilj9kmREREwYgBNxEFLd97cHtXMM2VfpX7SO0I9nG7SSsn8sRx8CDgGkxGREApLBy/CQUBfUo5urogW1vHZS5ERET+xICbiIKSdDggm5o0Y76mlA9VMG2Qfh93SY3q88oaA27yhb4dmFJcPGQxwIlApKQAVqtmjPu4iYgoHDDgJqKgJJubAV3xMWWIgNvmkKhr1QfcXqxwZ2qPae0GGjpGF3CzFzd5IqU07N+e6OnkACAUxbDKzX3cREQUDhhwE1FQMhQei4oCYmPdHwygtlXCoYuTvVnhzkgQiI/Sjvm6j1tfOE22tEB2dPh0DpoYZH09ZGOjZowB9wChD7i5wk1ERGGAATcRBSV9wTSRljZkATR9OnlyLBAdMXzALYRw04/btxVukZEB6FKCmVZO7ujTyREfbygYNlEZVrgZcBMRURhgwE1EQUm/wj1UOjkwsoJpg4p0aeVHfK1UbjIZgwUG3OSGu3Tyob5Imkj0rcFkdTV72hMRUchjwE1EQWm0Pbi9SScfpF/hbuiQaO70cZVbXziNrcFIR6rqQIVyF0wnP0kfcMNmg9RluhAREYUaBtxEFJTcpZQPZTQr3DlJAtER2jFf24Pp93Gz4BPpqcePAz09mjGFAbeTiIsz9rTn+4iIiEIcA24iCjpSSkNhKSU93ePxXX0SLV3aMV9WuBVFoDDT2B7MF4ZK5TU1kDabT+eg8KYeOKC5LbKzoSQljdNsghP3cRMRUbhhwE1Ewaez07ASONQKd5UundwkgMwE3/bF6tPKfV7h1qfDOhyQ1dU+nYPCm75gGtPJjQz7uLnCTUREIY4BNxEFHVXfEsxkgkhO9ni8Pp08M1HAbBpdwF3dItHR6/0+bhEVBaFbhWfhNBoke3uhHj2qGWPAbcQVbiIiCjcMuIko6BgKpqWkQJhMHo/XF0zLTfG96nN+qkCEWTtW6usqNwunkQfq4cOAw3FywGSCMm3a+E0oSOlbpMn6esj+/nGaDRER0egx4CaioKOvTCxSU4c8Xr/CneNDwbRBZkVgaoZ/93FzhZsG6dPJlalTISIjx2k2wUvJzgZc26RJya0ZREQU0hhwE1HQ0aeUD1UwTUqJqhbdCrcPBdNc6dPKfQ24Da3BKiogpW/txSg8cf+2d4TVaqjXwErlREQUyhhwE1HQ8aUHd3MX0KPLOB3JCjcAFOsqlZc3SfT0ex8w61uDoacHsqlpRHOh8KG2tBhWaZVZs8ZpNsGP+7iJiCicMOAmoqDjS8CtTyePigCSY0b2cyenC5hd/ipKCRyt836VWyQlATHaH8593KTqVrcRHQ2loGBc5hIK9Pu4GXATEVEoY8BNREFF2myQLS2asaFSyiubtCvQOUkCQowspTzCLFCQpn2sL2nlQgju4yYDQzr59OkQCv/59US/ws3WYEREFMr4Lz4RBRX96jYwdNG0Sj8UTHM12n3c+oBbMuCe0KSUxoJpTCcfkiHgbmuD7Owcp9kQERGNDgNuIgoqhoA7Lg4iKsrj8VX6lmAjLJg2SB9wlzVI9NtHvo+bK9wTm6ysBNrbNWMsmDY0kZEBmLU9+phWTkREoYoBNxEFFUOF8iH2b9sdErWtupTyUa5wT81QNF2JHCpwrN77VW7DCndjI2R396jmRKFLv7otUlOH3CJBgDCZILKyNGOsVE5ERKGKATcRBRVfCqbVtkk4dIvPOaNc4Y6KEMhP0Z7jSI33K9wiKwswmTRjXOWeuAz7t5lO7hVDWjlXuImIKEQx4CaioKJf4RZDrAbq08mTYoAY6+gCbsDNPu5aHwqnmc0Q2dmaMQbcE5O02aCWlGjGFKaTe0XRVyrnCjcREYUoBtxEFFRkfb3mtjKGBdMG6QPuo3Uq7Ooo9nGzNdiEpJaWAv0uTeKFgGn69PGbUAgxBNxVVZDS+/cgERFRsGDATURBQ6oqZGOjZsyXFe7RFkwbVJip/dPYbwfKG30IuNkajGBMJ1cKCiBiY8dpNqFF6FLK0dsL2dQ0PpMhIiIaBQbcRBQ0ZFsbYLNpxobaw61f4c710wp3XKRAdtLI+3EbCqdVV0Pa7X6ZG4UO9cABzW2mk3tPJCUBuu4E3MdNREShiAE3EQUNQ0swiwUiIcHtsd39Es261ryjLZjmajT9uPUBN+x2yNpaf0yLQoTs7DRsJWA7MO8JIbiPm4iIwgIDbiIKGvr92yItDUJx/2dKn05uEkBWoh8Dbl1a+ZFaFaqX+7hFTAxEcrJmjPu4JxbHwYOA657jiAgoU6eO34RCkL5SOXtxExFRKGLATURBw1ChfIh08ipdOnlGooDZ5L+Au0i3wt3TD1S1jKJwGvdxTygOfTr5tGkQFss4zSY0CTeF04iIiEINA24iChr6lHJlyIA7MAXTBiXFCKTFjXwft2DhtAlLSglV33+b6eQ+M/TirqlhLQQiIgo5DLiJKGjoA+6hKpQHqiWYK/0q92j2casVFWxrNEHI+npDRW0G3L7TB9xwOFgLgYiIQg4DbiIKGvqUck89uKWUqNStcPuzYNqg4izdCnet6nXQrE8pR2cnZEuLv6ZGQUyfTi4SEoxtrmhYIiZmoFq5C6aVExFRqGHATURBQfb0AB0dmjFPK9wtXQN7ql35O6UcMFYq7+gB6tq8LJyWkmJsa8S08glBn06uzJwJIfz/+pwIuI+biIhCHQNuIgoKhpZgQkB4WOHWp5NHWoCUWP8HNGlxAonR2jFv08qFohjbGjHgDnvS4YDj0CHNGNPJR86wj5utwYiIKMQw4CaioGCoUJ6Y6LGqs75gWk6yCMgKohDCsMp9pHYU+7jZGizsqWVlQE+PZkyZMWOcZhP62BqMiIhCHQNuIgoKoyqYlhS4P2WjKpymbw3G1bmwp08nF9nZUHT7kMl7+iwR2dg4sP2EiIgoRJhHe4Lq6mps3boV27Ztw7Jly7B69Wq3x5WXl+Ppp5/G0aNHkZiYiEsuuQRnnXWW4bh33nkHr732Gtra2lBUVIRrr70WOSw2QxT2DAG3h3RyIPAtwVwVZ2oD7qZOoKlDIiVu+J+pX+GW9fWQPT0Qur3dFD4c+nZgs2aN00zCg8jKAhQFUE9+0aVWV8M0deo4zoqIiMh7o1oWOnHiBG699VZ8+OGHUFUVjY2Nbo9rbm7Gr371K2RlZeHuu+/GFVdcgaeffhqbN2/WHPfOO+/gn//8J1avXo27774b6enpWLt2LVpbW0czTSIKAWp9vea24mGF265K1LTqU8oDt8KdlSQQa9WOlXiZVi5ycgaChUFSMiU2jMmeHqjHjmnGuH97dITFApGRoRnjPm4iIgolo/qUmp+fj4ceegjr1q3DtGnTPB732muvISsrC1//+tcxadIkLF++HGvWrMH69etht9sBADabDS+88AK+8pWv4PTTT8ekSZPwjW98A6mpqXjjjTdGM00iCgGGFe60NLfH1bVKOHTxbiBagg1ShDCklR/xtnCaxQKRmakZ4z7u8OU4fBhwOE4OmExQhvi3kbzDfdxERBTKRhVwCyGQqfsw6c6OHTtw2mmnacaWLVuG9vZ2HD58GABw8OBBdHZ2YsmSJZrjTj/9dGzfvn000ySiICcdDsimJs2Yp4Bbn06eFAPERga25VJRpv/2cXN1LnwZ2oEVFkJYrR6OJm8Zqv0z4CYiohAS8KJpLS0taGlpwQxdldaYmBhMmjQJR48eBQCUlZVh0qRJiI7W9uCZNWsWGhsb0dbWFuipEtE4kc3Nmj2agOeUckPBtACmkw/SVyqvbZNo6/auHzcrlU8chv3bTCf3C6Ff4a6shJTevf+IiIjG26iLpg1nMFBOSEgw3JeQkOC8v7W11e0x8fHxQ95fWlrqz+kGzIkTJ8Z7CgHF6wt943mNEWVlcC2RplqtOFpTA7hp9VVSmQLgZNGxGNGG0tLhv5AbzfWpKhBhyka/42TgvWVPNaanD18t2WoyIcXltr2iAqUlJdq93X7A1+j4UtrbkVlToxmrjo+HzYd/o4L5+vxhpNdnstuh2cXd2YmyvXuhxsb6ZV7+xOcw9IX7NfL6Ql+4X2MoXV9hYaFXxwV8aai3txcADCvXABAVFYWez9t79PX1uT1mcKyHbUCIwpZZVxjRnpjoNtgGgIZObW/utBhbgGZ1kqIAOQn9mrGK1givHmvTrdQrdjvMLS1+mxsFB+vx45rbamQkbF5suaLhOZKSoFq073uLruYDERFRsAr4CndkZCQAoLu7G3FxcZr7uru7Efv5N9RWq9Vt2nh3dzcAICLC/Ydbb79ZCBahNl9f8fpC33hcY/8nn8DucjsqN9ftPHr6Jdre7dOMLZiRifxU7787HOn1zeuwo6z55Czre+JRWOh+n7leT2IipMuXCrkAzAH6PfM1Oj763n0XLuXSYJk1C4XFxSM6VzBenz+N5Pp6c3OhlpU5b2dKCUsQ/574HIa+cL9GXl/oC/drDKfrC/gK92AaeHt7u+G+9vZ2JCcnAwASExM9HgPAeRwRhR9vK5TrC6YpYqBt11jQ7+OubJLo7vNuH6nQ7+OuqPDbvGj8SVU17N9WuH/br9zt4yYiIgoFAQ+4k5KSkJiYiEOHDmnGu7q6cOLECRQUFAAAJk+ejOPHjxtSxw8cOOA8BxGFJ297cFfpCqZlJAhYTGMTcBekCZhNJ29LAKV13lUrNxROY8AdVmRVFdDRoRkzzZo1TrMJT/rWYJKVyomIKEQEvrwvgCVLlmDr1q2ase3btyMmJsZZvXz69OmIiYnBzp07Ncdt27YNixcvHotpEtE4kFJCNjZqxjytcFfqVrgD2X9bz2ISmJKu/XnetgfTtwZjwB1eHAcOaG6LtDQoHl7DNDKG1mDV1ZCq9+35iIiIxktAAu6//vWv+N3vfue8vWrVKlRVVeH//u//UF5ejq1bt+LZZ5/FlVdeCcvnhVAiIiJw5ZVX4umnn8bWrVtRXl6Op556CtXV1bjkkksCMU0iCgadnYAus8VjSnmL9gN27hi0BHOlTyv3OuDWrXCjrQ2SrQ7DBtuBDc1mlyipUfFhWRw2Hk7EwSrH8A/S0a9wo7/fsBWFiIgoGPmtaFpq6smmPm1tbWh1KRCUnJyMn/3sZ/j73/+Ou+++G/Hx8bjqqqtwzjnnaM5xzjnnQEqJ559/Hi0tLZgyZQruvPNOJCUl+WuaRBRkVP2HZpMJwk3NBinluK5wA0BxpgK4lMY60SDRZ5OwWoaeh0hPByIigP6Tlc7VigqY3LQ6pNAibTaoJSWasYm+f7vXJnG0TsWRGhUltSqO1UvYHQAw8HrfXWXDHZcJTE73/gszkZAAxMVpUvfVqiooGRlDPIqIiGj8+S3gXr16tfO/b775ZsP9+fn5uPPOO4c9z4oVK7BixQp/TYuIgpyhYFpKCoTJZDiutRvo1hYoR+4YB9xTMhQoAlA/j/sdEjhWr2JGjnG+roSiQMnNhXrsmHNMraiAafbsQE6XxoB65Ahgc2lNJwRMn2+Vmii6+ySO1KooqVFxpFbFiQYJxzD1BLcdcfgUcAMDq9yqSz0YWVkJLFgwkikTERGNmYC3BSMiGorUFUzzXKFcm75tNQMpcWMbcEdaBCalCpQ1nIwmSmqGD7iBgX3c+oCbQp+hOnlBAURMzDjNZmy090jn6nVJjYrKJgnv6vWfdNjL7Riu9AE3K5UTEVEoYMBNRONKn1LuqdiUu3RyRYxtwA0M7OMuaziZVl5SM8LWYOXlfp0XjY+J0A6sufPkCnZJjYqaVl/Da6OqZonOXonYSO/fw+4KpxEREQU7BtxENK6878E9vgXTBhVlKfjPvpMB97F6FTaHHLY9mb5wmqythezvh4iICMg8KfBkRwek7ouTUG8HJqVEQ4f8PLgeWMlu6PA9wDYJoCBdoChTQXGWgslpCn7yTA/s6sn3bWmtinkFw2eHDBK6gFvW1UHabBCfF18lIiIKRgy4iWhceRtwj3fBtEFFmQoE4EyhtTmA4w0SRZnDBNy5uYAQgPz8kVJCraqCafLkgM6XAsdx8ODJ5xMArFYoU6eO34RGQEqJmlbpXL0+Uquipcv381hMwJR0BcVZAsVZCqakK4ZigjkJ/TjREum8XeJjwK1kZWkHVBWyuhpi0iTfJ0xERDRGGHAT0biRNhtkS4tmTElPNxznUKUhjXW8Au4Yq0BOstB8AXCkRkVR5tAr7sJqhUhPh6yrc47J8nKAAXfIMqSTFxdDmIP7n1VVHaj2Pxhgl9Sq6Oz1/TxWM1D4+ep1cZaCgjQxbJZHXmKfNuD2cR+3iIqCSE2FbGx0jqlVVVAYcBMRURAL7k8GRBTW3PXRFS4tBgfVtQ22FTppvFLKgYF93JXNLvu4a1Ws9OJxSn4+HC4BNwunhS4pJdQDBzRjwZhOblclTjRI5+r1kVoVPf3DP04vOmIgu6M4W0FxpoL8VAGT4tuXXnmJ2h98olGit18iMsK3fdwOXcBNREQUzBhwE9G4MQTccXEQUVGG46p06eQJ0fCp2JK/FWcpePfAyYC7tFaFqkoowwQgSl4eHB995LzNgDt0ybo6yOZmzZgpCAqm2ewSZQ0Shz9fwT5ap6Lf7vt54qIG+s5Py1JQlKX4pUhhdnwfFCGhyoHzSAmU1qmYnefDPu6cHGDPHudtVionIqJgx4CbiMaNtxXKg6Vg2iB9+nivDaholpiUOkzAnZ+vua1WVECqKoQyvtdDvtOnk4vERIjs7DGfR69N4mjdyQriZfUSdt87biEpZuCLpGmfp4hnJAgIP3cBsJiA7Ph+VLZZnWMlNb4F3EpOjua25Ao3EREFOQbcRDRuvO3BHSwF0wYlRAtkJAjUtWn7cU9KHWYft67KMvr6IBsaIDIyAjFNCiB9Orkyc6bfA1R3uvokSl1adJ1olFBH0KUrPX6guFlRloJpWQIpsf4PsN3JS+wzBNy+0LcGky0tkF1dYd/7nIiIQhcDbiIaN6rLXkwAEG4KpgHuAu7xXxEuzlJQ1+baj1vFuacM/RiRmAjExQEdHc4xtaICCgPukCIdDjgOH9aMBSqdvL1noDXX4c/3YFc2SYykC3Z20kCAXfx5obPEmPH50iovsQ/bTpy8XdYg0W+XiDB7Nx+RkQGYTIDj5HtPraqCqbjY31MlIiLyCwbcRDRu9Cvc7lLKe/slGnV9gHPHeYUbGEgr33Lo5If+IzUqpJRDrhIKIaDk5UF1SUdWKyqAU08N6FzJv9SyMqCnRzPmr4C7vdeEHaUOHK4eqCBe2+p7eC0EkJcinMF1UZaCuHGseeAqJ6Ff0x3PoQ70sp+e7V1auTCbIbKyIF32bquVlQy4iYgoaDHgJqJxIVVV094HcJ9SXtWiDTiEALISxz94KM7SzqGzD6hplchOGr5wmiHgppCiTycXubkQCQmjOmdprYq/7MhAQ5cFgM2nx5oEUJAuBqqIZykozFQQ7UPl77FkNQ/UOjje4LodQ2K6D9vflZwcOFwCbu7jJiKiYMaAm4jGhWxrA2zawMJtwK0rmJYRL7xOPw2klFiB5BiguevkWEmNiuykodPd9YXTZHl5IKZHAaQvmDba1W27KvH4O/1o6bJ4dbzFBExJV1CcNZAmPiVdgdUy/u8JbxVlKjjeoN2O4QslNxeOHTuct1mpnIiIghkDbiIaF/p0clgsblcJg61g2iAhBIqyFOwoPRkslNSoOGuY2EvJy9Pcli0tkJ2dELGxgZgm+Zns6YF67JhmbLQB92eVKlq6PN9vtQCFGQOr18VZCgrSBCym4HgfjMS0LAX//fRkwH2sToXdIWH28pr0lcrVqqpht3MQERGNFwbcRDQu9D24RVqa2/ZY+h7cuSnjXzBtULEu4D5S68U+7sxMwGwG7CebI6sVFTDNmBHQuZJ/OA4fBlSXFVmzGcoo9w9vK3FoblstwPQsBcXZA0XO8lMFTMP0eA8lhbq2ev0O4HiDRGGml4XT9NX+e3ogW1ogkpP9NUUiIiK/CZ5PrkQ0oXjTg1tK6aYHd/AEHsVZ2j+hLV0wFHjTEyaTcYWOaeUhw9AOrLAQwmr1cPTwuvsl9pzQvsb/Z7EZP7ggAufPMWNyuhJWwTYAxEYKQ6ZKSa33aeUiORmIitKMSaaVExFRkGLATUTjwt0Kt15bz0AxMlfBklIOAJkJAnGR2jFv9qMK3T5u7kENHf7ev737mAM2lwVuRUgsmupdxe5QNk33ZZUv+7iFEMYvrfgeIiKiIMWAm4jGhSHgdtODW7+6bTUDqXHBE3ALIQyr3Edqh2/jpN/HzRXu0KA2N0PW1mrGlFEG3NtLta/xKSm9QdPCK5D075vSWhUO1fsWaO72cRMREQUjBtxENC5UfQ/u1FTDMfqCadlJAkqQFUYqGsFKnaFwWk0NpM23VlA09vTp5IiOhjJp0ojP19wpcbha+3qZndk94vOFkiLdPu5eG1DR5H3Ard/HzYCbiIiCFQNuIhpzsqcH6OzUjHmzwp2THHx/sop1gUN9u0Rr19CBg6Iv+uRwQFZX+3tq5GeGdPIZM9wW+vPW9lIHXF8pVrOKwpSeEZ8vlCREC2Qk6PZx+5BWrl/hljU1kC6FCImIiIJF8H16JaKwp08nhxAQXqxwB1PBtEG5yQJREdqx4QpAiehow551taLC31MjP5Kqagy4Z80a+fmkxPYj2urk09O6YQ7/7dtOo9nHrQ+4YbcbWw0SEREFAQbcRDTm9BXKRWIihMWiGXOoEtUtwdmD25WiCBRm6PZxjyCtnAF3cJMVFYasjNHs3y5vMr6+Z02QdPJB+u0YR2pVqNK7tHIRGwuRmKgZY1o5EREFIwbcRDTmvCmYVt8uYdcuACI3CFPKAWMBqJHs42bAHdz0q9siPd1tKztv6Ve3U2KBvMT+EZ8vFOnfN119QE3LKPZxs1I5EREFoeD89EpEYU2f+ukunbxKl04eHwXERQXfCjdgDByqWiQ6e4fpx61vDVZRAenl6h6NPX+2A3OoEjtKtQH3kkITgqweYMClxApD1wGf0sqzszW32YubiIiCEQNuIhpz+pRyxc0Kd2UIFEwbNClVIEK39/bIMPu49Svc6O6GbGry88zIH2R/P9SSEs3YaNLJD1apaNfVRltWPIE2b7soytQG3Id9CbhZqZyIiEJA8H6CJaKwZUgpd5Oaq1/hDsaCaYPMJoEpGb6llYvkZCA6WjPGtPLgpB45ArhWwBYCphkzRny+bbp08oI0gazEifnPsaGPfY3qdaaHPuCWDQ2QfX1+mxsREZE/TMx/4Ylo3EiHw7CS6y7g1lcoD8aCaa4MgcNwlcqFMPbjLi/3+7xo9PTp5MrkyRC6L0u81dsv8UmZ9rWxtGhirm4DxvdNW89A/QZviKws6PPwucpNRETBhgE3EY0p2dwMqNqAQ59S3meTaGzXr3AH95+r4iztB/8TjRK9/cP049bv4+Ye1KDkOHBAc3s06eS7j6vod1ngVgSweOrEDbjT4wUSdN9deJtWLiIiDAUXJQNuIiIKMsH9CZaIwo6hV25UFBAToxmqapFwDVWFALKTgnuFe3K6ApPLX1QpgaP1w+zj1u9B5Qp30JHt7QMtwVyMpmCaPp18Vq6C+CAtBjgWhBAozvS9rd4gw3uIX1oREVGQYcBNRGPK0IM7LQ1ClxZapSuYlh4vEGEO7qDEahYoSPOt4rJ+hVs2NkJ2T6xezMHOcfCgdsBqhTJ16ojO1dIlcahK+5pYNoHTyQeNpK3eICUnR3ObKeVERBRsGHAT0ZjSF0xz18s4lAqmufI1cBDZ2YBJG3BxhS64GNLJp02DMJtHdK6dpQ5N5kakBZhbwH+G9e+bpk6gqcPLfdysVE5EREGO/9IT0ZjypkK5sWBaaPyp0qfGltVL2OyeAwdhNg8E3S5YqTx4SCmh+rH/tj6dfMFkE6xBnrkxFrKSBGKt2jFvV7n1K9xob4dsb/fTzIiIiEYvND7FElHYUHV7uN314NanlAd7hfJBUzMVuM7UrgJlDcMUTtNVKuc+7uAh6+ogW1o0Y6ZZs0Z0room1fBF0rIi/hMMAIoQKNJnhwxT5X+QSE8HIiI0Y8wSISKiYMJ/7YlozEgph13hbuuW6OjVPi5UUsqjIwTyUnzcx60PuLnCHTT06eQiMXGgFdUIbNetbifFANOy+U/woJHu4xaKAkX3nDCtnIiIggn/tSeisdPZCfRqo2l9wK1f3Y4wAWlxoRFwA74HDobCaVVVkHa73+dFvtOnkyszZxoK/Hl1HlViR6k24F5SaIIygnOFK/37pq5NorWb+7iJiCj0MeAmojGjr1AOkwkiOVkzpE+7zU4WUJTQCUz0qbFH61TYVc+Bg76tEex2yNraQEyNfCDtdjgOHdKMjTSd/FC1ilZd8XlWJ9fKSxaIsmjHvG0Ppt/HLZlSTkREQYQBNxGNGUM6eUoKhK5Kt6FgWlJo/ZnSF07rswPljUMUTouNNXzpwLTy8aeWlRmyMUwzZozoXPpiaXkpImQKAY4VRREozBxZWrmhNVh1NaTqfWsxIiKiQOK/+EQ0ZqSuYJq7CuWhWjBtUFyUQFaids7DrdRxH3fwcejSyUVuLkRCgs/n6bNJ7C5j721vjHQftyFLpK8PsqnJX9MiIiIaFQbcRDRm9Cnl+h7cqipR3RKaPbhd+dyPW7ePmwH3+PNXO7BPjqvoc9mSLwSwuJABtzv6901Vi0Rnrxf7uBMSgNhYzRArlRMRUbBgwE1EY2a4CuX17RI2bfZtSKbe6gOHI3UqVOn9Pm61vBxyiOMpsGR3N9RjxzRjI92/vV1XLG1mjoLE6ND7EmksTEoViNB9F3HEi/ZgQgju4yYioqAVep9kiShkGQJuXQ/uKt3+7bhIICEEg5Mi3V7U7j4YVu5d6SuVo7MTsrU1ADMjbzgOHwZc9wCbzVCKinw+T1u3xIFKbcC4lOnkHplNAlP9tY+blcqJiChIMOAmojEhbTbIlhbNmD6lvFK3fzs3JTT/RCXHCqTGed+PW6SmApGRmjHJtPJxY2gHVlgIYbX6fJ4dpQ64JipYzcCCgtB8TY8VfdHBke7jZsBNRETBgv/yE9GY0K9uA58Hmi70K9w5SaG3uj2oKNOHgFtRjAEDA+5x4zhwQHN7xOnkuurkCyYrsFpC9zU9FoqytL+f8iaJnv7ht1cIfUp5bS2kzebXuREREY0EA24iGhOGgDsuDiIqSjNUFQYF0wYZ9nHXqEPuy9anlavl5QGZFw1NbWqCrKvTjI2kYFpVs4ryJu3zzXTy4U1JV2B2eetIOdDLfjj6lHKoKvvZExFRUGDATURjYrgK5X12ifo23Qp3CBZMG6QPuNt6BorCecLWYMFBn06O2FhDFXlv6IulJUQDM7JD9/U8ViLMApPTtV+0HfYirVxERUGkpGjGWKmciIiCAf/1J6IxYejBrSuYVtMi4RqOCgDZIbzCnR4vkKBdwB86rVwXcMv6esje3kBMjYZgSCefMQNC8e2fSlVK7NClky8pNEFRQvf1PJb0RQe93cctuI+biIiCEANuIhoTamOj5ra+JZi+YFpavIDVHLoBihACRT7041ZycgaaNA+Skit0Y0yqKhwHD2rGRpJOXlKjorlLO7aM6eRem6bLBDjeINFnH34ft6FSOd8/REQUBBhwE9GY0K9w61PKDQXTQnh1e5BhH3et56BBRERAZGVpxphWPrZkRQXQ2akZU0YQcG8/ov1iJSdZIC9EK+6Ph6npClyTARwqcGwE+7glV7iJiCgI8BMAEQWcVFXIYVe4w6dg2iB9wN3YIdHc6f0+brYGG1v6dHKRkQFFV0l/OP12iV3HtOnkXN32TWSEQH6q91X+B+kr/cvmZsjubr/OjYiIyFcMuIko4GRbG6Br0TNcSnkoF0wblJ0kEK1r33ykdoi0chZOG1cOXcG0kaST7zmhosflpS4ALJ7KgNtXvmSHDBKZmYBJ+7vmPm4iIhpv5pE8qKGhAX//+9/x2WefISYmBitWrMCqVasghHFF6rbbbkOlh31U0dHReOyxx2A2m/H+++/j8ccfd9s2Z82aNVi1atVIpkpEQUCfTg6LBSIhwXmzvUeio0d7SDiscCtCoDhTwZ4TJ4PskhoVSwrdB2CGgLuyElJVfS7aRb6T/f1QjxzRjI0snVy7uj09R0FybOi/lsdacZaCjftO/i6P1qmwOSQsJs+/S2E2Q2RmalLJ1aoqmIqKAjpXIiKiofgccPf29uKBBx5AXl4e7rjjDrS0tOCpp55Cf38/Vq9ebTj+rrvuQqduTxwAPPzww4iPj4fZPDCF+vp6TJkyBd/73vc0xwkhkKJr9UFEoUXfg1ukpWmCyCrd6rbFNFDlOxwUZRkDbk/0ATf6+yHr6wdW7iig1JISwG4/OSAETNOn+3SOjh6J/RXa55e9t0emKFOBAJydC2yOgeJpRZlD/11QcnLgcAm4JQunERHROPM54N60aRPsdju+//3vO4Nls9mMdevW4fzzz0dcXJzm+NjYWMTGxmrGjh07hhMnTuBnP/uZZjwiIgKZ/GBJFHaG68Gt37+dlSTCpoVSsa7FUU2rRHuPRHyU8fpEQgKQkAC0tTnH1PJyKPy7GHD6dHJl8mSI6GifzrHzqAOqy0s5wgQsLGB2wkjEWAVykoXmb8ORGtXQMkxPyc2FY+dO521WKiciovHm8yeB7du3Y+nSpc5gGwBOOeUUREZGYteuXV6d45VXXsGUKVMwe/ZsX388EYUgdyvcrvQVysMhnXxQfqqAVffVJvdxBx9DwD1rls/n2KZLJ59XoCAyInxey2NNv4+7ZIj3zSChbw1WVeV2qxoREdFY8SngVlUVx48fx3Rdmp2iKJg+fTqOHj067Dnq6urw0UcfcU820QRiCLjT0zW39QXTcsOgYNogkyIwNUNXAGqotPL8fM1ttbw8IPOik2Rbm6EivK8F02pbVRxv0AZ2rE4+OsbCaSoc6tDBs75SObq7IVtb/TwzIiIi7/mUUt7d3Q2bzYYEl2JHgxISEtDS0jLsOV577TWkp6dj0aJFmvHo6GgcOnQI1113HQAgKioKhYWFuOyyy1BYWOjxfKWlpb5cwrg5ceLEeE8hoHh9oS+Q15hRUwPX0KPWZkPf5+9dKYGqpmy4fv8nemtQWtrn1zmM53OYEhEH4OTfzU+P9+DUdPfzibRYkOxy23b8OCq9+DvH1+jIRR04gCSX22pEBMqkBHz49+X9o/EA4p23YyIcsPZW+nKKsH8Ofb0+S78CINt5u88GbN1Tjqx4m+cHSYnMiAgo/f3OoaqdO9E3daqv0x0RPoehL9yvkdcX+sL9GkPp+oaKUV35FHD39Q18AI52s68tOjoa1dXVQz6+vb0dW7ZswVe/+lUouqq7F1xwAebPnw9VHVj56enpwc6dO3HvvffipptuwsKFC32ZKhEFCdHXB1OPtgS5I+lkeNPaY4JN1f49SIsZ4gN1CMpL1H55UNdpQa9dINJsXK2zZ2Robps6O6F0dUGNiQnoHCcya1mZ5nZ/fr6hvdRQpAQO1Gn/XZyR0Q0Wlx+dmAgVKdE2NHVbnGMVrdahA24hYE9NRYTL5xFzQ8OYBdxERER6PgXcVutAQ9nu7m7Dfd3d3YiIiBjy8W+99Raio6NxxhlnGO5TFAVZWVmascLCQsTGxuKpp57C3LlzNfvGXY8JJaE2X1/x+kKfv69RLS9Hr+uAEJi0YAGEZeBD9O4yB4CTH6BjI4G5Mye7bTPoD+PxHE6yS6zf2we7M5NcQI0uQGG+MaiTU6ag5//+D3BZoZtkMsHk5bz5GvWNlBK9lZVw/eojbtEiJPvwM0pqVLT19mvGLjg1BQW6WgXeCvfn0Jfrm1Vtw/uHTu6Nb7Ylo7Bw6CKCfYWFcLgE3Ml9fcga498pn8PQF+7XyOsLfeF+jeF0fT59/x4dHQ2LxYL29nbDfW1tbUhOTnbzqAG9vb14++23ccEFF8BisWjus9vtWL9+PRwOh+FxZ599NlpaWoZdPSei4KSvUC4SE53BNuCuYJoSsGB7vFjMApPTtdfkqT2YUBTDPlRWWg4cWVMDqdsO5ev+bX3v7axEgUmp4fUaHi/uCqepwxRB4/uHiIiCiU8Bt6IoKCgowKFDhzTjqqri0KFDKCgo8PjYTZs2weFwYMWKFYb7+vr6sGHDBlS4qcY7+MGbVUaJQpOvBdNywqhCuSt3BaA8MVQqZ+G0gNFXJxdJSRC6bKuh2OwSHx3TBtzLikxh96XReNG/b7r7gOqWYQJuXaVyWV0N6eYLfSIiorHg8w6zxYsXY8eOHZrV6P3796O7u9vjPmuHw4E333wTK1ascLv/OyYmBgUFBXjvvfcM923atAkJCQnI0f0DSkShQdbXa26L1FTNbf0K90QJuI83SPTZ3QcOgq3BxoyhHdjMmT4Fy/vKVfRos8mxhNXJ/SY5ViA1TpcdUj10ezB9wA273fB3iIiIaKz4HHCfc845UBQFjzzyCMrKyrB792488cQTWLlyJRITE7F//37ceuutqHRJ4dq+fTva2tpwwQUXeDzvddddh02bNuEvf/kLSktLUVZWhueeew7r16/Htdde63b/NtFYkDYbYrdtQ8Kbb8KhK65Ew9OnlCsuK9z9dom6dmNKeTiamq5AcYkbHCpQVu8+cNCvcMvaWsj+frfH0shJux2qLmPL13Ryfe/taVkKUmLD80uj8VKcpQu4h+nHLeLiAF03FbWqyu/zIiIi8obPn2wjIyPxv//7v7Db7bjvvvvw5z//GWeffTauuuoqAAPVxVtbW9Hv8uHw+PHj+OIXv4ikpCRPp8W0adPwi1/8As3NzXjggQdw7733orS0FP/7v/+LZcuWjeDSiPzD9q9/If699xCzZw/6HnoIqhft7+gkQ0q5SyGp6hYJ/W6R7KTwDFYiIwTyU/X7uN2vcCu5uYDrKquqQmUdC79Tjx0D+rQV5H0JuDt7JT6t0AZ/S4vC8wuj8VScqdvHXaMOu81Mv8rNfdxERDReRrRsnJaWhltuucXtfYsWLTL02L7mmmu8Ou/kyZPxk5/8ZCRTIgoI2dYG+/vvnxzo7oZj+3YoF144fpMKIdLhgGxq0oy5BtxVuv3baXECkZbwDLiBgbTy4w0nV0Q9Fk6LjIRIT4esq3OOyfJyYIg6GeQ7w/7tvDyI+HgPRxt9dNQBh8tTaDEBC6cwndzfirO1AXd7D1DXJpGZ6PlvhZKTA9Xl+ZVc4SYionHCr+KJhmD/8ENAV2zHsWvXOM0m9MjmZkDVBpWuKeWVE2T/9qAi3UrdsToVdoeHVW7u4w449cABzW2fq5OXav82zJ2kIDoivF/D4yEtTiBRV/7F05dVg1ipnIiIggUDbiIPpKrCvnmzYVwtK4Pa3DwOMwo9hkJFUVFATIzzprElWHgHK/qAu98BnGj0EHDn52tuM+D2L9ndDVVXk8GXgLuuTcXROu1zt4zF0gJCCGFsDzZMwC10AbdsaIDUbR8gIiIaCwy4iTxQDxyAbGx0ex9Xub1j6MGdlqapAK1PKc8J04Jpg2IjBXKSvOvHbVihq6iAVIcOMsh7jkOHoCkgYDZDKS72+vH63tuxkcCsvPB+/Y6nIjf9uIeiZGVp6yBICbWmJhBTIyIiGhI/HRB5YHfTpm4QA27v6AumKS77tzt6Jdp6tMfnpoT3CjdgbA/mcR+3boUbvb0evwAi3+nTyZWiIoiICK8eK6XE9lLt87Z4qglmJfxfv+Nlmu5909wJNHZ4DrqF1aqpFwEAkmnlREQ0DhhwE7mhNjfDsXev5/tLSyHb2sZwRqFpqArl+tVtswlIjw//gEW/Uldaq0JVjWnlIjERiI3VjDGt3H/0BdN8SSc/Vi/RoGtnt5Tp5AGVlSgQG6kd81TlfxD3cRMRUTBgwE3khn3LFk26qRoRAdV19UtK2D/5ZBxmFlpU3R7uoQqmZScKmCbACqG+xVGPzfi7AAb2rbJwWmCojY2G+gKmWbO8fry+93ZGgsDktPB/7Y4nIYShBsKw+7j1rcFYqZyIiMYBA24iHelwwOHaCgxAz6xZ6J06VTPGtPKhSSmHWeGeWBXKByXGCMNKvsd93LqAW5aXB2xeE4mqW91GbCyE7nftid0h8dFRbcC9tMikqU1AgaFPK/e5UjkDbiIiGgcMuIl0HHv3Qra2asa65s1D7/TpmjH10CHIzs4xnFmI6ewEens1Q0OllOeGecE0V/p93Ec8FIBipfLAMKSTz5gBoXj3+vu0QkWXrtj10sKJ89odT/r3TX27RGuX57RyRbfCjbY2yI6OQEyNiIjII35KINLRtwJTpkyBPTMTfVOmAK5p5aoKx549Yzu5EKKvUA6TCSI5eeA+KSfsCjfgpuJyjQopjYGDYYW7uZlf8oySVFU4Dh7UjPmUTl6iXd0uyhRIi+c/pWMhN1kgSlfXbqhq5SI9HTCbNWNc5SYiorHGTwlELtSGBqj792vGzGeeCQCQEREwzZ6tuc++e/eYzS3UGNLJU1IgTAOFpZo6JPrs2uMn1Ap3pvbLhY5eoLbNzT7uzExjwMDCT6Miy8sHsi9cKF4WTOvqk9hXrg3wWCxt7CiKcR/3kSHSyoXJBJGdrRljwE1ERGNt4nzCJfKCfnUb0dEwLVrkvGlasEBzt3rgAGSPrrcVAYChKJVrOrm+SFiMFUiIHpNpBYXUOIGkGO2Yu/2owmw2Fn7iPu5R0aeTi4wMKCkpXj3242MO2F2eJrMCnDqFAfdY0gfch33dx80vrIiIaIwx4Cb6nLTZYP/gA82Y+bTTIKxW523T3LmAyeUDtt0Ox759YzXFkKJPKVeGCLhzksWEKjrlS8VlVir3L4eu/7Yv6eTbddXJ5+QriLFOnNdtMNDv465ukejo9X4fN3txExHRWGPATfQ5x+7dgK6gzmA6+SARHW1IP2W1cvd86cE9kdLJB+kDB2/3cTPgHjnZ1we1tFQz5m06eUO7iiO12udnWTFXt8fapDSBCO0uC5QOsY9bH3CrVVWQ6tCr4kRERP408T7lEnlgKJY2bRoU3f4/ADAvXKi57fj0U8i+PsNxE50h4B6iB/dEKpg2SB9wt3QBTZ1eFE6rroa02w3H0fDUI0cA19+dosA0bZpXj91Rqg3SYqzAKXn8J3SsmRWBqRm6tPLqIfZx61LK0dcH2dwciKkRERG5xU8LRADU6mqohw9rxvSr24NM8+YBri2E+vvh0BVam+ikzQbZ0qIZG0wpt9kl6nUFwibiCndWokBspHaspGb4gBsOB2R1dQBnFr706eTKlCkQ0cMXD5BSYpsunXzRVBPMpon3RVEwMGSHDFWpPDER0D3H3MdNRERjaeJ9yiVyw1AsLS7OUCBtkIiLg1JcrBljWrmWfnUbAERqKgCgplVC1cWVOUkTL3Dxdh+3iI52/u4GMa18ZPQF07xNJy9rkKjTfUm0tJDp5OOlWPe+qWiS6O53v49bCGHcx81K5URENIYYcNOEJ/v6YN+6VTNmXr4cwmLx+BiTPq183z5Imy0g8wtFhoA7Lg4iKgqAMZ08NU4gMmLiBdyAcaXuiIeVOu7jHj3Z1mYomGXyMuDWF0tLixeYmjExX7PBYEq6gNnlrSPlMPu4WamciIjGEQNumvAcH30EdHdrxjylkzvvX7AAcK2q3dMDVbd6NpENVaHcWDBt4gYu+oC7rk2irduLwmlsDeYzx8GD2oHISCiTJw/7OLsqsfOoNuBeWqhMqKr6wcZiFpicrv39e6ryDxj3cbMXNxERjSUG3DThGYqlzZ6tCRDdEYmJUKZO1Z6HaeVOhh7cLJjmVl6yQKQukcLdKrfIz9fcVisq3FY0J88M7cCmT4cwmz0cfdKBChWdvdqxpUVMJx9v3maHAG5ag9XWsvAgERGNGQbcNKGpJ05APXZMM2Y+6yyvHmtIK9+zB9Lh8HD0xKI2NmpuD9USLGcCFkwbpCgChV7s4zYUTuvuZqVlH0gpDRko3u7f1hdLm5IukJEwcV+zwUIfcB+vl+izu/8SSh9ww+GArK0N1NSIiIg0+KmBJjT96rZISoJpzhyvHmsoqtbVZah0PlHpV7gHMwY6eyVatdn7EzqlHHDfj1tPpKQAn++BH8R93N6TNTWQra2aMdOsWcM+rrtfYs8J7fOxjKvbQWFqhgLF5U+HQwLH6tyvcovoaIjkZM0Y93ETEdFYYcBNE5bs6YF9+3bNmPkLX4AwefeBWklNhTJpkmaM1coBqarGHtyfB9xVunRyswKkJ0zsgFtfqbyqWaKzV/t7EkJA0aWVS+7j9po+nVwkJUFkZAz7uN3HHLC7LHCblIF2YDT+Ii0Ck1J92MetW+XmPm4iIhorDLhpwrLv2AH09Z0cUBSYzjjDp3Po08rtn3wCqXr+0DcRyLY2QLc/8mTArf3dZCUJmJWJHXAXpAlYXGI4CaDUzUodK5WPnLt2YN4UPdt2RPs8nJKnIDZyYr9eg4kxO8RzXQNDpXIG3ERENEYYcNOEJKWE/b33NGOmuXOhJCX5dB59wI22NqhHj45ydqFNn04OiwUiMRGAm4JpE7D/tp7FJDAlXVcAyot93Ay4vSPtdsNWD2/SyZs6JQ7XMJ08mOkD7mP1KmwO7/Zx61vEERERBQoDbpqQ1GPHIHUBi7fF0lwpmZmGVMWJnlbuLp18cDWxkgXT3CrOGj41Vh9wy4YGyJ6egM4rHKhHj2ozWQCYZswY9nE7dMXSoiKAOfl8vQaTwkwFru8cmwM43uAh4NatcMumJr5/iIhoTPDTA01I+tVtkZrqddViPUO18l27JnTLJk89uFUpUdWi/b1M9IJpg/QrdScaJXptun3c2dmArr4ACz8NT59OLvLyIOLjh3yMlNJQnXzRFBMsZr5eg0mMVSA3xbt93CIzE1C07zOmlRMR0VhgwE0TjuzshGPnTs2Y+cwzIZSRvR3MuoBbNjdDPX58pNMLeZ4KpjV1SPTZtMdyhXvAlHQFJpe4QZXAUd0+bmGxQGRlacZUFk4blr4dmDfp5OVNEjWt2i882Hs7OHlT5R/4/P2TmakZkwy4iYhoDPDTLk049q1btUW9TCaYly8f8flETo6h4vFETis3BNzp6QCMFcqjI4CkmDGbVlCzWgQmpWlX6riPe/RkVxfUsjLNmMmLTJZtJdrV7dQ4gcJMrm4Ho2Jdlf/SWhUO1bt93MwQISKiscCAmyYUt8XSFi4cNsV0KEIIppW7UD304DYUTEsWXlWKnigMK3W1Xuzj5gr3kByHDgGu70OzGUpR0dCPUSV2HtUG3EsKFSh8rQalIt37ps8OlDd6GXBzhZuIiMYAA26aUNTDhyHr6jRjIymWpmdasEBzW9bXT8h0RdnTA3R2asY8tQTLZTq5hrHisjRUXDascFdVQTq0wSGdpE8nV4qLISIihnzMZ5Uq2nW1tFidPHjFRwlkJer2cbv5sgoAhJvWYBP1i1EiIho7/MRLE4qhWFpWFpTi4lGfVykogEhO1v6sCZhWrk8nhxAQqakAwIJpwyjM0FZctrupuKwPuGG3Q9bWBn5yIUpfMM2bdPLtpdovMArSBDIT+U9lMDNkh1S7D7j1lcrR2Qm0tQVqWkRERAAYcNMEItva4Ni9WzNmPvNMv6Q1e0orn2j06eQiMRHCYoHNIVHbqk8p558fV9FeVFwWcXEQul7x3MftntrQYOgJP1zA3dsv8UkZe2+HGn3AfaRWhepm5VqkpABWq2aM+7iJiCjQ+ImXJgz7Bx8Arum3FgvMp53mt/PrA25ZVQV1gq0+ysZGze3Bgmm1rRL6OkY5XOE2KMocvuKyyM/X3GbA7Z4+nRxxcRD6DAGdXcdV9Lv8iVAEsGgqA+5gp3/fdPcbizQCgFAUKNnZmjHu4yYiokBjwE0TglRV2N9/XzNmWrwYIsZ/ZbKVqVOBhATN2ERb5davKAoPBdNSYoGoCAbcevqVutI6Y8VlfVosW4O55zhwQHPbNGPGsK3/tut6b8/OUxAfxddpsEuOFUiL87Ift5t93ERERIHEgJsmBPXAAcPqqz+KpbkSigLz/PmasYkWcKu6PdyKh4JpTCd3T79S12cDKpp0AbebFW4WftKSqgrHwYOaseHSyVu6JA5VaV+n7L0dOvTVyj0F3PpK5ZIp5UREFGD81EsTgqFYWl4elMmT/f5z9Gnl6okTUHWBfjgz9OD2sMLNgmnuJUQLZCYMvVJnKJzW0QHZ2hrgmYUW9cQJoLtbM6bMmjXkY3aUOuD6Ko2yAPMm8Z/IUFGcZaxU7u6LKENrsOpqSNV9cE5EROQP/DRBYU9tboZj717NmPmsswLSA1qZNg2IjdWMTZRVbmm3QzY1acY8tQTjCrdnhorL+sJpaWmGwk9cpdPS798WmZlQdF0E9Lbp0skXTjEhwswvhkLFNN37pqMHqG1zE3DrK5XbbIatMERERP7ET70U9uzvvw+4rnRYrTAvWRKQnyVMJpjmzdOM6SujhyvZ0gLoVoqU9HR09Um0dGmP5Qq3Z/rUWH3FZaEoxn7c3MetYdi/PUw6eUWTaiiytbSI/zyGktQ4gSRdSQ63RQfj44H4eM0Y93ETEVEg8RMFhTVpt8OhK5ZmXrYMIioqYD/TrE8rLy2F2tISsJ8XLAyrRFFRQEyMIZAxKUBGIgNuT/Qr3F19QE3L0P24Wan8JNnXB7W0VDM2XDq5vlhacozxeaDgJoTwqso/wH3cREQ0tviJgsKaY98+yLY2zZi/i6XpKTNmDASbrvP45JOA/sxgoC+YJtLSIIRApS6dPDNRwKww4PYkJVYgRbsrYdh93Ay4T1JLSrTt/xQFpmnTPB+vSuwo1QbcS4pMUAKw5YQCS59WXlLj5T5urnATEVEAMeCmsKYvlqZMmWIsOuVnwmKBac4czdhE2MetL5h2skI5C6b5Sr+6eqRWt49b9xqWdXUQ/f0Bn1co0KeTK1OmDJnRcrBaRau2vhqWsTp5SNJvx2jpAho7ht/HrXKFm4iIAogBN4Uttb4equ7Dd6BXtwcZqpWXlEB2dIzJzx4vnntws2Car9y1OHJdqVNycgDXFVgpYdZ94TFROXQF04bbv61PJ89PEchO4ms0FGUlCsRGasdKao0Bt9CnlNfXQ/ILKyIiChB+qqCwZd+8WTsQHQ3TokVj8rNNs2cDEREnB1QVjj17xuRnjxdDD+70dEgpUc0Vbp8V6/aitnYDDS4rdcJqhcjM1BxjYaVlyNZWSF168FD7t/tsErvL2Hs7XAghDO+dI272cetTyiElZE1NIKdGREQTGANuCkvSZoP9gw80Y+bTT4dwDYK9ZHdIbD0ehzcPJuJYvXf9WoXVCtMpp2jPE8Zp5VJKtz24mzuBHpv22FyucA8rI0EgTpcFPdw+bktdXaCnFfT0q9uIioIyebLH4z85rqLPfvK2EMCSQgbcoaw4W/v35bC7SuVWqzMDZxDTyomIKFD4yZfCkmP3bqCzUzNmPvPMEZ3r71vseP9YAvbWxGLd6/1ocrMn0B1DWvlnn0F2d3s4OsR1dgK9vZohkZZmSCePioChdQ8ZuVupK6kZulI5A27AcfCg5rZp2jQIk+cAWt97e1augoRoZmCEMv37pqFdoqXLi8JpDLiJiChAGHBTWDIUS5s2DUpWls/nKatXsbXk5IfyHhvwzgH7EI84yTRnDmA2nxxwOODYu9fnOYQCfTo5TCaI5GS3BdMEqz97xVA4Tb/CnZ+vuW1uaDD0QZ9IpJSGmg1DpZO3dkt8VqVLJ+fqdsjLTRaI0iUyuUsrF/rCadXVgZwWERFNYAy4Keyo1dUDrYFcjKRYmpQSz++wGca3HHKg1zb8KreIijJ84A/XauWGgmkpKRAmEwumjYI+4G7okGjudCmcplvhVmw2mCZAv3dPZHW1oQXgUAXTdpY64NoxymoG5hfw9RnqFMXYj9tdWrm+Ujl7cRMRUaDw0wWFHf3qNuLiYFqwwOfzfFqhGtJ4AaCn35iK6olZ93Md+/dD6lKvw4G7/duAsSVYDgumeS0nSSBav1Ln0h5MJCQA8fGa+ydy4TT9/m2RnAyRkeHxeH118gWTFVgtfH2Gg+Ha6gHGlHLZ2gqp24ZERETkDwy4KazIvj7Yt27VjJm/8AUI19RuL6iqxAs7PKeOv7PfoWnT5Ilp3jxAcXmb2WxwfPqpT3MJBYYK5WlpsDskalv1KeX8k+MtRREoNOzjHjqtfCLv4zb03541y+P2hapmFeVN2tcme2+HD33AXd0i0dGjfb5Ferp2yw8AVVfhnoiIyB/46ZfCiuOjj4CenpMDQsB8xhk+n2driQPVLZ4D6tpW4/5Pd0RsLJTp07Vz3L3b5/kEO3cr3LVtEg7drzAniSuIvhhupc5QOG2CrnBLu92wjWSodHJ9hkpiNDA9m/8chov8VAGr7jtW/XtHmM0QuroeDLiJiCgQfFv2+1xDQwP+/ve/47PPPkNMTAxWrFiBVatWeVxN+OEPf4gGfVElADExMXj00UdhsVicYzt37sS///1v1NfXIy8vD1/5yldQXFw8kmnSBGQoljZrFhRd+5fh9NklNnysXd1Oj+2HKgUau06+Vt/Z78Cs3OFXxUwLF0J1SXd17N0LabNBuLzuQ50h4E5PN6STJ8cA0VYG3L5wu1LXKxEXOfB7ZKXyAerRo0Bf38kBIWCaMcP9sVJiR6k24F5SaIKi8LUZLsyKwNQMRfOlaEmNigWTtX+vlZwcOCoqnLe5j5uIiALB54C7t7cXDzzwAPLy8nDHHXegpaUFTz31FPr7+7F69Wq3j2loaMB3v/tdFBYWasajoqI0wfbevXvxpz/9Cddccw2mT5+OnTt34oEHHsAvf/lL5OoKnBDpqSdOQC0r04yNpFjaO5860Krr3nX21Da09prxn8NJzrFPy1XUtanISBh6Zcw8fz5s//gHnBWa+vrgOHAA5nnzfJ5bMJL9/ZC6Yl1KWhoqqlkwbbTyUwUizEC/y/c/pbUq5hcMBA76gNvU2QnZ3g6h29sd7vTp5CI/HyIuzu2xJTUqWrq0Y0uZTh52irOMAbeekpMD169euMJNRESB4PMn4E2bNsFut+P73/8+pkyZgoULF+KGG27Aa6+9ho6ODo+PS05ORmZmpuZ/CQkJmmOee+45XHTRRTjvvPOQn5+P1atXY968efj3v//t+5XRhGPfvFlzWyQlDbTm8kFHr8Sbe7Sr2zNyFExO6cOszG5NESsJYNOB4YuniYQEKLovm8KpWrlsbDSMidRUFkzzg8GVOleugYPIzAQitJXVVJcVu4lC1RVMGzKdvEQbeOUmC+Sl8MugcKPPDqlokuju1/Wy17cGq6ryqjYHERGRL3z+lLF9+3YsXboUZpdiI6eccgoiIyOxaxRBRE1NDU6cOIHTTz9dM758+XLs2rULNpuxPRPRINnTA/v27Zox8xe+AGHybeXq9d129OhealcuGXitR5gkvjBde74PDzvQ2+9F8bSFCzW3HXv2QNq96+cd7PTp5IiPh4iKQlWzPrBhUDMS+sBBE3AriqHa8kQLuGVXF9TjxzVjngLuPrvErjLtl2QslhaeJqcJmF2eWomB7BBX+l7c6OmBbG4O/OSIiGhC8ekTsKqqOH78OKbrikApioLp06fj6NGjI55IWVkZ4uPjkaP78Dhz5kzY7XacOHFixOem8Gffvl27h1NRYPKxWFp9u4pNn+n3dirITz35Njl7lgmupQp6bAMF1oajD7jR3Q310CGf5hesDBXKU1PR3SfRrEvb5Qr3yBRlan9v5U0SPS5f8ghdWvlEC7gdBw9C01DbYoFSVOT22L3HVfS6fKEmACwuZMAdjixmgSnp2veOPq1cJCUBUVGaMe7jJiIif/NpD3d3dzdsNpshFRwAEhIS0KLbxzkoKioK999/PxRFgaIoSE1NxWmnnYaLL77YuYe7tbXV7XkjIyNhtVrR2trq9tylpaW+XMK4CfcvDMb1+qRE2n/+A9cSZD2FhahuagKamrw+zcv7k+FQo523TUJifloVSksdmusrTEnBkcaTH9Le2tODPGsdPNQMdErNykJETY3zdvOmTWiLjPR6foE20ucw/sgRxLrc7oyKwqefVgBId44pQqK76RhK3f+JGBOh+h6UDkAROVDlwAtMSmDLJ5WYkjLwBVN0ZCQSXY7vLS1FRYj8XfSVu+cwYft2xLjc7s3JQbWH5/qdvSkATr53JyX1oqmmEt7/lQisUH2Nemusry/VGo8SnKxnsK+sG/NStF8QpqSkwOoSZDfs24fOmBiMFJ/D0Bfu18jrC33hfo2hdH36+mSe+BRw932+ghgdHW24Lzo6GtXV1W4ft27dOuf+biklqqur8e9//xt79+7FnXfeCbPZjL6+PkTpvml2PXdvb68vU6UJxFJVBYtulbV7/nyfzlHTbsHBeu3rekFuJxKjjKvXp+Z1agLu5m4LypqtzgDIk97p0zUBd2RJCdrOP1/bpzsEmXVfhjkSE9HQqa3AnhJthym0L3PcWExAdnw/KtuszrGK1pOvN1tGhuZ4c1MTYLcbegyHK6uuUGLf5Mluj+vqV3CsWfsF16zMbrfHUnjIT+zDVpfbtR0R6HcIRJhOZkTY09I0Abd5grbWIyKiwPHpE5nVOvCBr7vb+CGlu7sbEbriPYPi4+MR71I1Nzc3FzNnzsRtt92GTZs24dxzz4XVakWPa/9kL8/t7TcLwSLU5uur8bi+vs2bNZVmRVoaclesgPAykJVS4qXXbABOphtGRwDXnJ2K2EhtS7HCwkJMlRLvn+jXFAX7rDkD5y1x/xodpMbFoXfTJudtU3c3JksJU5C9Jnx9Dnu6uuC6iz1l2jT0y1TA5VmZnGkNmtd+sMzDF3Oabajcc/L32dCbgMLCgQwCmZODnqefdt4npETe9u2wrFhhKAoVLgafQ7WhAb26L3wyzjgDSn6+4TFv77dDypN1EyLMwIVLsxBpCb6tDqH4GvXFWF1fnk3i+b19cHz+B0qVAogpQKFLO0fbzJmwffKJ83ZMeztS/TA/PoehL9yvkdcX+sL9GsPp+nxac4qOjobFYkF7e7vhvra2NiQnJxvG9+7di08//dQwHhsbi8WLF2P//v0AgMTERLS1tRmO6+3tRV9fH5KSkgz3EcnOTjh27tSMmc880+tgGwA+rVBxWLe3b+V8M2Ij3X8QF0LgnNnafZ/7K1TUthrbzrhSMjIMRXpCvVq5VFUPPbhZMM2f9IXTyhok+u0DUYSIioJIT9fc79iyBb13343etWth37IFMkwzhPTtwBAXZyyE9bntR7TZKvMLlKAMtsl/rBaBSWm6fdy6wmn6L6VkTU3YFLQkIqLg4NOnYEVRUFBQgEO6Yk+qquLQoUMoKCgwPGbv3r3YuHGj2/MJIZwtOCZPnoz29nZDWvpnn30Gs9mMPF1hICIAsG/dOpA+O8hkgnn5cq8fr6oSL+zQfrhKjgHOmTV0IaUlhSbEWLVj73rRIsysr1a+ezekOnSgHsxkW5v294+BlmCVbAnmV1MzlP/P3nmHN3Flbfy9MyPJvfcCxoAx2DQbTO+EGkogpJCe3eyXTbLZJGw2vZLeyGaz2WyyqZuQAqG3JPTeTDXGGIMNGNx7lTTl+0O4jCSDi2xZ8vk9zz4b3ZmRz6Ap99xzzntUGgGSDJzPb7hu+Ph4q8fJ58/D8PXXqHniCei/+QZSZqZTtT2y1g7M2mJbTqmMrAL1eZM6edegd0jTKv8ALFT+IUlQ8vLa2yyCIAiiC9HisFNSUhIOHDgASWpwLlJSUlBdXY1EcyVmAHFxcUhJSUGhWa/eqqoqHDhwAP2utm8JDQ1Ft27dsHfvXtV+e/fuxcCBA+HSicSliM6BoigQt29XjfFDhoB5ejb7O/amS7hSop6Izx2qgUa4toOoE5hli7B0yaLPqznmauVKSYlFSyNHQjGvd9RoUCp4o8agHqYId9tw1TJ081dfk2dzGq41zezZqImJafoL9HpIO3dC/9prqH3lFRi3boVipTTIkVBk2aRQ3oim2oGZR7e9XIG+4XRNdgX6hKl/5/P5CoxiI5V/d3eTWnkj5MuXO8Q2giAIomvQ4hnHpEmTwHEcPv74Y2RmZuLIkSP47LPPMGPGDPj4+CAlJQV/+9vfkH1VhCQhIQFxcXFYvHgx9u7di+zsbBw6dAiLFy+Gj48PJk6cWP/dt99+O9atW4fff/8dFy9exIoVK3Do0CEsWLDAdmdMOA3ymTMWkQhh3LhmH68XFaxOVkdnI/wYhvdq3m0xIU5QRR31RmDvmWtHuVlYGFhIiGrMkdPKLdLJAwORbbaA4aoB/DxAtBGLftyNUmOZpydK5s9H3oMPQpg5E8xKx4c6lEuXYPz+e9QsWgT9F19AOnvWIaPeclYWYLZowFlxuGVFsXC4h/XiwXOUddEV6BXMofEvLUqmkozGMPNe9tQajCAIgrAhLZaxdXFxwdNPP41vv/0Wr732GnQ6HSZNmoSbbroJAFBTU4PS0lIYDKYQF2MMjz32GNatW4fly5ejqKgI3t7eGD58OObNm6cSQxs4cCAeeughLF++HN999x3Cw8Px97//Hd2sCOAQhHl0m4WGgrtWlM+MLScllJj1ir55mACumRNxfw+GhCgOyZkNjs+WUxImxvPgmugRxhgDn5gIcf36+jEpORnKzTeDXa+vWCfEogd3YKBKTA4AwvyYQ55bZyMmlMPvJxscx3N5MkRZgdDoepV8faEdOhTKnDmQTp6EuHMn5BMn1H2q6zAYIO3dC2nvXrDQUAhjxkAYObJFGSL2xDydnIWGgrOiI5KRq6CoUj02nNLJuwxuOoYIf4ZLRQ33QHqOrFrA4iIiIF/VkwEAhSLcBEEQhA1pVd+YwMBALFq0yOq2oUOHYujQoeo/IgiYO3cu5s6de93vTkpKQlJSUmvMIroQSlkZpCNHVGPC+PHNduwqahVsPKaObvcN5xAX0bKkj0nxApIzG/KnC8oVpFySMaBb0xN6wczhVgoKoFy6BOaAC0vWBNOySTCtXehlVotqEIGLhQqigyyvecbzEAYNgjBoEOTiYkh79pjE05roS6/k5MD4888w/vIL+IQECGPHgouNbZH4YEcjWanftsY+s+h2mK9lej7h3PQJ5XCpqOE6uF4dN0W4CYIgCFvSeWdTBHENxN27gUY6AtBqIYwY0ezj1x8RUWNUj908TGhxJLZ3CEOk2eR9S8p10sq7dQMLCFCNiQ6aVm4tpdw8wk2CabbB04UhzNdMcTnn+oJ7nJ8fNLNmweWtt6B7/HGTjgDfxIKQJEE6dAj6999H7bPPwrh+PRSztludAaW2FnJGhmrMWjq5UVRw+Lz6fhzem6eMiy5Gb7NyjLrskDrMHW6lsNBplf0JgiCIjoccbsLhUGQZ4s6dqjF+6FAwd/dmHV9QLmNbqnlNJ4fuAS2/Hay1CDuVLeNKSdOOEGMMfEKCasxR67hlM9E0JSAAOaVqh5si3LbjeorL14JxHPj4eOgeegiu770HzYIFYMHBTe6vFBTAuGIFap58Evp//hPS8eNQpOsr8XcEcnq6esGN58H36WOx3/GLskrAjwEY3ovSybsaMWb3jf5qdkgdLCwMMMvmkM06phAEQRBEa6GZMOFwyKdOQTFTvRfGj2/28SsPiZAa+SkCB9w0tFXVFQCAYT15eJiJ6F+vRZiFWnlOjsNN8JSaGqBSXRxbpAtQ/dsCFOG2JebCaWdzZchyywXPmJcXNNOmweX116H7+9/BDx8OCE3cA7IM6dgx6D/6CLVPPQXDqlWQze6/jsY8nZyLjgZzdbXYz1wsrU8YBz8Puh67Gp6u184OYRqNxeKTQmnlBEEQhI0gh5twOCzE0rp1A9ejR7OOzcyXcfCc2iOcEMcjwLP1t4JGYBhr1iJsb7qEan3TjhAXHQ3m46Mac7Qot3k6ORjDJfirhnzdAXcdOTi2wjzCXWMALpe0XmGcMQa+Tx/oHngAru+/D83ChWAREU3ur5SUQFy7FrVPP43aJUsgHj4MxawPe0cgnTql+mytfruiVsHJi+p7vbkdCAjn47r9uMPCVJ+pjpsgCIKwFTT7IBwKubgY0vHjqjFNM8XSFEXB8gNq58BNC8wc3Prodh3j+wloLG5uEIHd12gRxjjOIq3c0eq4zdPJma8vssvVCw/hlE5uU/w8GAI9W17H3RyYhwc0kybB5eWXoXvuOfBjxgA6nfWdFQVySgoM//43ap58EoZlyyDn5trEjuvBVVRAMcsGsVa/fficBKnRWoSGBxKjKZ28q3K97BDObKGJenETBEEQtoJmw4RDIe7cqW5x5OICvpmq9icvyThj5pxMHyTAw6XtEVg/D4aEHurbaesp6ZrpvhZp5ZcuWbTZ6syYp/WzwEBkF5vXb1N029aYC0DZyuGugzEGPjoaunvvhev770N7993goqKaPqC8HOKmTah97jnUvvMOxP37oRiNTe/fRnRZWeoBV1erGS7m6uSDunNw1dL12FUxd7jNs0PMMzvI4SYIgiBsBTnchMOgiCIkM7E0Yfhwq7Wb5siygl/Mott+7rAQPGsLk+PVkfLCCgUnLjbtDHG9ewMeHqoxR0orV8wj3IGBuGzWEowi3LYnJtQswp0rQ7HWZ9sGMFdXCOPGweWFF+Dy0ksQJk4ErnG/yWfOwPD556h54gkYli5tl7RcXWam6jMfGwtmprqeVybjfL7632REDEW3uzK+7gyBXup7p/ECrLlSOSoqoJSVdYRpBEEQhJNDs2HCYZBOnLCYADVXLG3vWcmi1nXOUA20gu0iXj2DGboHmLUIu4Z4GuN58IMHq8YcyeE2j8ZLfgEoUmuoUYS7HTCP1FXUAHll7eNwN4br1g3aO+4wRb3/8AfTglFTVFdD3LIFtS+9hNrXXzf1ALdFmyVFsYhwW0snNxdL83QB+kXQ666rY65WfraxcFpgIKDVqrZTlJsgCIKwBTQDIRwGcds21WeuZ09wkZHXPU4vKlh9WB3djvBjGGFjASVTizB1lPv0Zdki6tsYwSytXD5/HnJxsU3tai/MRdOKXQNVnzkGhPiQw21rAj0ZfNzUY7ZOK78WTKeDMHIkXJ5+Gi6LF0OYMsUiU6Mx8vnzMHz9NWoWLYLh228hZWW1OiIvFBSAr6pSjfFxcarPiqJg/1n1v8fQnjwEjq7Fro5FdkhOQ3YI4zhL4TRyuAmCIAgbQA434RDIeXmQzVoBNTe6vSVFQol6jo6bhwng2mECPrQnB0+zjNstKU1Hubm+fS1SdKWjR21ul61RRBFKUZFqLFcIUH0O8WHQ8OTk2BrGmFUBKHvAhYVBe+utcH3vPWj/7/+sRpvrqa2FuGMH9IsXo/aVV2DcuhVKdXWL/p55dJv5+4MFBanGzuUpKKgwSyfvTenkhJXskFogp7RRHbdZWjkplRMEQRC2gBxuwiEQzWq34eYGfsiQ6x5XUatg41F1dLtvOIe4dkov1fAM4/qqJ/f7z0qorLUe0WOCAH7QINWYI6SVKyUlgKx28jJldUuwcF9yttuL9hZOaylMo4GQlASXRYvg8tZbEGbOBPP2bnJ/5dIlGL//HjWLFkH/xReQzp5tVtTbvH6b69fPokOBuVhaiDdDVCBdiwQQ4Mng664ea5xWbq5UrlCEmyAIgrAB5HATnR7FaIS4e7dqTBg1Csys3s4a64+IqDETTL55mNCsNmKtZXxfAY0Duwbp2i3CzNXK5fR0KOXl7WWeTTAXTIOrKzKr1ZF6EkxrP8xrUYsqgbKazhHF5QIDoZ03Dy7vvgvtI4+AGzAAaOp+Mxgg7d0L/VtvofaFF2D89VcoFRVWd1WMRmgvXlSNmaeTGyUFh86r77Xhvfl2vd8Jx8Fadkh6btPCafLly1Bk+y5mEQRBEI4PzYiJTo+UnAxUqtW4mpNOXlAuY1uqevI9rBeH7gHte9n7uDMkRpu3CBMhNdEijI+LU/c7VpROn1ZuLpjGAgORXaLehwTT2o9QXwZ3sxbZl8qa6JltJxjPQxg8GC5//Stc3nkHmrlzwfz9m9xfycmB8eefUfO3v0H/6aeQUlNVzo587hw4sVG2CmPg+/ZVfUfKJRnVevX3Du9NrzmiAQuHu1Edt3mEGwaDRftDgiAIgmgpNBMhOj3i9u2qz1xsLLiQkOset/KQCKlRcELggLlDhKYPsCGT+6v/TnElcPyC9UgJ02rB9++vGhM7eVq5uWCa6Bdo4eiEk8PdbnCMobdZlPtS6fUzPuwF5+cHzaxZcHnrLegef9yU1cE3EZEXRUiHDkH//vuoffZZGNevh1JaCunUKfV3dusGZibWti9dvcDWO4QhwJNec0QD5g53SZWphSMAwMvLQgCQ6rgJgiCItkIzEaJTI1++DPnsWdVYc6LbWQUyDp5TO7gT4ngEenXMJR8dxKGHWd3otcTTLNLK09KgmKkxdybMU8rL3dUK5ToN4O9JDnd7Yu44XCrtXBFuazCOAx8fD91DD8H13XehuflmsODgJvdXCgpgXLECNU8+CXHrVtU2ziydvEpv2feexNIIc0K8GTxd1GN1GgiMMarjJgiCIGwOOdxEp0bcsUM94OVl0bvaHEVRsGy/WijNVQvMHNwx0e06zFuEncmRcanIepSb798fEBrtL0mQjh9vT/PahHlKeYHWUjCNo7rZdsXc4S6u1qDK4DiPdObtDc306XB5/XXo/v538MOHq++BxsgyYNbHmzdTRD98ToJoltEyJJocbkKN1TrunIZyH4s6bopwEwRBEG3EcWZnRJdD0esh7t2rGhNGjwZralJ+lZOXZJwxU22eMUiAh0vHOoBDojl4N7NFGHN1BR8frxrrrGrliqJYpJRf4tQtwSJIMK3difRn0GnUY44Q5TaHMQa+Tx/oHngAru+/D83tt1u0Z7JAqwXXq5dqyFydfGB3Dm46WvQhLLFWx12HNeE0giAIgmgLNCsmOi3SwYNATU3DAGMQxo695jGyrOCXA+rotq87MCm+4yNdAs8wrp96ceBAhoSKJlqEmaeVSykpUBqff2ehstIi2nhOUke4STCt/eE5hl7BjlPH3RyYhwc0kyfD5ZVXoHv2WfCjRwNWuhHw/fqBaRpWGwrKZWTkqe+r4ZROTjSBucNdUKGguNJ0/TDzlPK8PChGs1YXBEEQBNECyOEmOi3m6eRcfDy4wMAm9jax96yEyyXqiffcoRpoBfs4gOP68uAb3WVGCdiVZj3KzQ8cqBaSEkVIJ0+2s4UtxzydHDyP9Fof1RC1BOsYHLGOuzkwxsD37AndfffB9YMPoL37bnBRUQAAo58fNAsWqPbfn6HOaPHQAf0j6RokrBPuy+Bmto5z9mp7MC4sTL1BlqHk5HSQZQRBEIQzQjMSolMiZ2VBzsxUjV1PLM0gKlh9WB3djvBjGNHLfpe5txvDULMWYduaaBHG3N3BmbU56oxp5eaCaZKvPwyKOppICuUdg7nDnV+pQbXeegaFo8JcXSGMGweXF17Alb//HQUPPKDqUqAoCvabpZMP7clD4OkaJKzDcZYq//XCaa6uYAHqEhmq4zahlJXBZ906+C1bBvHAAepRThAE0UzI4SY6JUaz6Dbz9bVonWXO5hQJJWbC3jcPE8Bx9p14m4unlVQBR7OsT1SEhATVZ+nkSSgGQ7vZ1hrM67erPdWTUx83dHi9fFclKpBBUK11MGTkOfEkmOcBTv3ayixQkFdG6eREy6A67pah6PWoff99uJ08CZeMDBg++wy1r7wC6fjx+j7mBGFv5MJC+KxbB//vvoNx82YoUtPdYQiiIyGHm+h0KNXVkA4cUI0JY8eCNdW3F0BFrYKNR9XR7b7hHOIi7H+J9wji0DPYvEWYaHVfPiEBaKzurddDSklpT/NajHlKeYmr2uGmdPKOQ8MzRAepr630HCd2uK1gHt0O8rL8NyEIc3qbOdw5pQrKa6zXcZPDDRh++MGiRZqSnQ39Rx9B/9ZbkM6csZNlBGFCzs6G/o034HbyJHSXLsH4ww+oXbwYUlaWvU0jCHK4ic6HuH8/oNc3DHAc+DFjrnnM+iMiasx0beYnCWCdpDXVpDh1lPtsroKLhZaOEfP0BBcToxrrbGnl5hHuXMFcobxz/Jt3FWKaSI3tCoiygoPn1A738N58p7nvic5L9wAGnVnDi7NX7x3zCLfSxVPKxf37Ie3a1eR2OSMD+nfeQe0HH0Am54awA1JGBmrffhtKWZlqXLl0CfrXXoPhxx+hmIm9EkRHQg430alQFMVCLI0fNAicr2+TxxSUy9iWqp50D+vFISqw81zeCdEcfNzUY5ubaBFmoVZ+/DgU0XpE3B6YO9yZoAi3PTGP1F0oUHAuT4ZsRSfA2Ui5JKPSbA41vDddf8T14TmGXuaLVblNONwlJVCqzOqVughybi4M337bvH1PnULt4sXQf/IJ5CtX2tkygjAhnTwJ/fvvA9XV1ndQFIi//47aF16AdOJExxpHEFehmQnRqZDPnbOIJgjjxl3zmJWHREiNgnoCB8wdcu1e3R2NwDGMN2sRdjBDqk9hbAxvVseNmhrIp0+3p3nNRjEYoJSUqMYyFYpw25OewRwayxRICvDmagMe+1aPf/9uwI7TIgrKnTPqbZ5O3jOYIciLXmtE82hSOC0kRN0xAuiSDqRiNEL/6afqjDMAJTfeCO0f/2ghLleHlJyM2hdfhP7LLyEXFnaEqUQXRTxwAPp//hMw07qRBcs5oFJcDP0//gH9p59aRMIJor2hmQnRqRC3b1d9ZoGB4Pr1a3L/rAIZB8+pnYkJcTwCO+Gke2xfHkIjs0QZ2HnaMsrN+fqCi45WjYmdJK1csTJ5KtI19ODmGBDqQw53R+KiYYgKtPw3rzYAyZky/rdLxDM/GvDsj3p8v9uIo1kSqg2OH/2uNig4dkF975NYGtESzIXTsosUVOsVMEEACw1VbeuKSuXGH3+EcumSaqxqwADU9O8PYcQIuLz+OjR33gnm7W15sKJA2rMHtc8+C8PSpeTgEDbHuGULDJ9/DpgJo9X27Im8v/wFmptuAqw43tKhQ6h5/nmIO3eS0j7RYXQ+r4TosiiVlZAOHVKNCePGgXHWL1NFUbD8gDrV2lULzBzcuaLbdXi5MiSZtSjbnipCtJL6a5FWfvRop1DbNE8nN7p5Qs+71H8O8mbQ2KnneVdm6gABwLWd6PxyBdtSJfzrNyMe+0aPt1brsSZZxLk82Wqbus5O8nkJYqNbgueAodHkcBPNp0eQWuVfQaN+3F28jls8dMhyATwsDOVTpjR8FgRoJkyAy5tvQnPzzYCbWd0UAEgSxC1bUPP00zD88kuXTc0nbIeiKDCuXg3j0qWAmUI+P3w4iufPh+LiAs2NN8LllVfAxcZafkl1NQzffAP9u+9CzsnpIMuJrgw53ESnQdyzB2hcq8zzEEaPbnL/lEsy0q6oVydnDBI6dUsq8xZhpdXAkUzLFVZzhxuVlZDPnm1P05qFuUJ5hTulk3cGEqN53DskH0MiKxDme/3fQFaAjDwFa5LF+vTzf/1mwPZUEfkOkn6+zyydfEA3rlPf+0Tn41oq/125NZicnw/D11+rB7Va6P78ZygajcX+TKeDZvp0uL79NoRZswCdzvJLDQaIGzag5umnYVy/HopZmjpBNAdFlmFcuhTGNWsstgmTJkH7hz+oykG4kBDo/vY3aO+7z+qCkJyejtqXX4Zx7dpOpZVDOB+dMxRIdDmsiqUNGQLm6Wl1f1m2jG77ugOT4jt3hKt7AIfeIQxncxtWZbekiEjqqbabCwwE69YNysWL9WNScjJ4ayu1HYiSn6/6XKAjwbTOQoiXESFeZejVKxAlVQpSsyWkXpaRmi2j4jrirDUGU2/4uv7wgZ4M/SI49Ivg0DeMg5uuczmyRRUK0nOo9zbRdmJCOaTnNCze1Ee4rbQGUxTF6RXwFaMRhk8/BcwUnbV33AEuLAzIyGjyWObmBu3cudBMnAjjhg0Qt21TL6IDQHU1jCtWwLh5MzQ33mhq+WnFiScIcxRRhOHLLy3axgKAZu5cCDfeaPX+ZIxBGD0a/IABMPz4o+XxogjjqlUQDx6E9u67wffu3V6nQHRhyOEmOgVyWhqUvDzV2LXE0vadlXC5RD3hnjtUA60DpDNPihdwNrehh9m5PAVZBbKFqrqQmAijmcOt3H57kyn2HYF5hDubowh3Z8TXnWFUHwGj+gCyoiC7SMGpbBmpl2WczZEhXieIXVChYMdpCTtOS2AMiA5i6BfOoV8Eb0rD5ez7Ox/IUEe33bSmCDdBtJQ+oRzWoeF6yipQUGtUoDWLcKO6GkpJCZifXwdb2LEYly2DfOGCaowfMQL8qFHN/g7m5QXtbbdBuOEGGNeuhbRnD2BeK1teDuPSpRB//RWa2bPBjxxp13cb0blR9HqT+n1KinoDY9DccQc0EyZc9zuYlxd0f/oTpBEjYPjuOwtNGuXKFejfegvC+PHQzJ8PZq1EgiBaCTncRKfAWq2YeT/qOgyiglWH1avm4X4MI3o5xst6UBQHX3egpFEp25YUEX+YoFXtxycmwrhyZf1npawM8vnz4Hv16ihTLTCv4c6hHtydHo4xdAtg6BbAYfogQC8qOJsjmxzwbNli4cocRTEtCp3Lk7D2iAQXDRAbxiHuagQ8yIt1aNRPUSzTyYdE89DwdO0RLSc6iAPPTOr+gKnc4lyejH7h/oCLiyrSq1y+DDixwy0eOQJxyxbVGAsNhfbOO1t1j3P+/tDdey/kadNgXLXKQqMFAJSiIhi++gps0yZo5s4Fn5jo9FkERMtQKiuh/+gjyOfOqTfwPLR//COEpKQWfR/fvz9cXn0VxtWrIf72m0UduLh9O6SjR6FZuJCuR8JmkMNN2B2lrAzS0aOqMWH8+CYfcptTJJWzCgALhgng7Bx1ay4CxzChn4AVhxoWDQ6ek3HzMAXebg3nwIWGgoWFQWnUjkZKTrabw63IsoXDXejS4HDrBMDf0zF+g66MTmCIj+QRH2lKwS6tUpB6WcapqynoFTXXPr7WCBy7INcrhAd41kW/OcSGtX8ddV6FBjml6gnSiBhKJydah07D0D2Q4Xx+wzV1NkdGXAQPLjxcNcmXs7PB9+9vDzPbHbmwEIavvlIPajTQPfggmIuL9YOaCRcSAt2DD0KePh2GlSshnzxpsY+SkwPDv/8Nrnt3aObNAxcXR44OAbmkBPolS0yLXY3RaqF7+GHw8fGt+l6m00F7yy0Qhg2D4ZtvLLI6lLIyGP79b/CDBkFzxx3gnHihjegYyOEm7I64e7e6rYNWC2HECKv7VtQq2HhUHd2ui7Y5EmP68lhzRKxXWZautgiblai+JfmEBIhmDrdyyy12mYgoZWUW9XiFjWq4w/0YOJogORw+7gwjY3iMjOEhKwouFyv10e/0XFmlBG6NwgoFO9Mk7EwzpZ9HBbCr0W8e0cG2Tz9PyVWn+QV4MvQKpuuOaD0xoRzO5zdc6GdyGuq4VQ63kwqnKaJoqtuurlaNa2+/3aKWvS1w3bvD5bHHIJ09C+Mvv1gVApUvXIB+yRJwffpAM2+eXTO6CPsi5+VB/8EHlu1I3dyge+wx8D17tvlvcN27Q/fccxC3bDFlFJr185aOHYN0+jQ08+dDmDCByh6IVkMON2FXFFm2FEtLSmqydmb9ERE1RvXYzcMEh1sJ93RhGN6Lx+4zDZO87akipg/iITRKjRUSEyGuW1f/WSkqgnLhAlhUVEeaa/rbZoJpIq9Buaah/yoJpjk+HGOI9GeI9OcwbaCpfONsrsn5PpUtI7v4+unnmQUKMgskrDsqQacBYkMb0s+DvduWfi7LQGqe+tkwvBfncPc/0bmICeWw6XjDszgzX4FRVMDMlcqdtDWY8ZdfIGdmqsb4YcPAjx3bLn+P790b3FNPQU5JgWHFCpU4aB3ymTPQv/kmuAEDoJ03D1xkZLvYQnRO5IsXUbtkCVBerhpnPj7QPfGERReBtsB4HpopU8AnJMDw3XeWGRh6PYxLl0Latw/ae+6ha5FoFeRwE3ZFTkmBUlSkGhPGj7e6b0G5jG2p6nDbsF6chdiYozApXu1wl9UAyZkyhvVqSI9lkZFggYGqVG4xORlaezjcZunkpa4BQCNHJ5zqt50OrcAQF8EjLoLHAgBl1cpV5XMJqdkyyq6Tfq43Ascvyjh+0RQx9PMA4iJ49Avn0De85ennmSUuqDaq08dJnZxoK71CODA0dLIXZdPCUU+z6K6SkwNFksB457nmxGPHTHWsjWBBQdDedVe7LmQxxky1tHFxkJKTYVy1CkpursV+8okTqD1xAvywYdDMmQMuOLjdbCI6B9KZM9D/859AjfoFw4KDTc52QEATR7YNLiAAur/+FdKhQzD88IOFsy9nZqJ28WIIU6dCM2sWmFbbxDcRhCXkcBN2xUIsrXt3cE04kysPiZAaCZ0KHDB3iONewpH+HGJCmaq90eaTotrhZgx8YiLETZvqx6TkZCjz5nV4VM9coTxXQ4JpXQ1vN4YRvXmM6M1DURRcLmmUfp4jw3id9PPiSmBXmoRdaRIYgO6BpvrvuAgePYOZKrvDGqfM0sl7BDKE+DjmghvReXDTmjI7LhY1PIvTc2T0jjGLookilLw8sLCwDrawfZCLi2H48kv1oCCY6rZdXTvEBsZxEIYOBZ+QAGnfPhhXr4ZSXGyxn3TgAKRDh8CPHg3NrFlUU+ukiMeOmcobjOpURtatG1weewzM27uJI20DYwxCUhL4fv1gWL4c0q5d6h0kCeKGDZAOH4b2rrvA9+vXrvYQzoPjeiuEwyMXFUE6cUI1phk3zqojmVUg4+A5dVuRCXE8Ar0ce7I9KV5Aek7DiyWzQMH5fBnRQQ3nZe5wK3l5UK5csUh3bG/MI9zUg7trwxhDhB9DhB+HqQMA49X087r2Y5eKrpN+DlMLpqwCCRuOSdAJQJ8wrl6ALdRHnX5ea1CQXqAWbxpB0W3CRsSEcrhYpK7jvjHBA8zb26RfcRX58mVTP2oHRxFFGP7zH6BKrUCqufVWcN27d7g9jOdNvZKHDYO4YweM69YBFRXqnWQZ0s6dkPbuhTBxIjQzZoB5ena4rUT7IO7daxLuM2shx/XpA90jj3Romy7m4QHdvfeaWoh9841F21olPx/6998HP3IktLfcQtchcV3I4Sbshrhrl7odg4sL+GHDLPZTFAXLD6jFuly1wMzBjn/5DurOwc/DFPmrY0uKiOiJDalKXFQUmK8vlJKS+jEpOdmmNUzNwdzhLmrkcHu7murSia6LRmDoF8GjX4TJCS6rVnD6sozUyxJOZcsoq7728XoROHFRxomr6ee+7kC/cB5xERz6RnA4cUGCKDdaiGLA0J7kcBO2ISaUw+aUBof7XJ4MUVbAIiIsHG4MHWoPE22KcdUqyBkZqjE+MRFCM/oZtydMo4Fm8mQIo0dD3LwZxk2bLFKLIYoQf/sN4o4dEKZMgWbq1A6LyBPtg/H332H88UeLcX7QIGgffBBMo7GDVQDfpw9cXnkFxvXrIW7YoBb4BSDt3YuaEyegve028MOHk54I0SSO77EQDokiipB27lSNCSNGWG0/knJJRtoV9YrnjEFCu7cf6gj4qy3CfjnYsKBw+JyMBcMU+Libzo9xnEmtvFF/VDE5GZrZszvUVtlMNK1xSzCKbhPmeLsxDO/NY/jV9PMrdennl2WkX5FhuE76eUkVsCddwp50U/q51my+FRfJwdPV8Z8BROegd6j6GWYQgYuFCiLCwyGfOlU/rjiBcJp08iTEjRtVYywwENp77+00DgNzcYHmxhshjB8P46ZNpvefmYI09HqIa9dC3LoVmhkzIEycSHW1DoaiKDCuXAlx/XqLbfyoUdDec4/dNROYRgPt3LkQkpJMLcTMFqpQWQnDf/8Lbu9eaO+6C1xQkH0MJTo1NEsm7IJ0/LgqagAAwrhxFvvJsoLlB9XRbV93k+CYszAmloe20elICrDjtPqc+cRE1WclOxuyWYpTe6LU1ACVlaqxQl1g/X+TYBpxLRhjCPfjMGWAgMema/GPe3RYNFODaQN5dAu4/rWjwCTA1hhKJydsiacLQ5iv+lo8c0W2yCRy9NZgckkJ9P/9r3qQ501RxGak7FYZOJTVmhbROgLm4QHtzTfD9c03IUycCFhzvqqqYFy2DLXPPAPj9u1QzNpXEp0TRZZh/N//rDrbwpQp0N53n92d7cZwYWHQPfUUNHfdBVjJqJBTU1H70kswbtxI1yBhAUW4CbtgLpbG9epltdXCvrMSLpu1Ipo7RIBWcB4Hz8PFFAncmdaoRdhpCTMGC9BcFZHievcGvLxUqplScjK4GTM6xEbzdHIFDMW6BtEaEkwjWoJGYOgbzqNvuGkyVVFTp35uSkEvqbr28a4aYGB3Wi8mbEtMKIcrJQ3P4bO5MqbGmimVFxRA0evBdLqONq/NKJJkqts2WzzVLFgAvhmdL7adEvHTvlCIMkNIqgGT400CijpN+z//mY8PtHfcAWHKFBjXrIG0b5+6JA2AUlpqcuB+/RWaOXNMLUapb3KnRDEaYfj8c0jJyRbbNPPnQ5g+vdNkWzSGcRw048eDHzgQxh9+sLTfYIBx+XKIBw5Ae8894Hv0sI+hRKeDnkREhyPn5UFOTVWNWYtuG0QFqw6rVwnD/ZhTRrbMI/YVNabU8joYx0EYPFi1j3TkSIfYBlimk5dofSByDTm+lFJOtAVPV4ZhvXjcN16Ddxbq8OoCLW4bIaB/JAetlWXh0bG8Uy26EZ2DmBD1c+xsrgwlJFTV/hCKAvnKlQ62zDYY16yBfPasaowfPBjC5MnXPXZ3mojv94gQZdO/RW6pgu92i3jyez2W7TeiqLJjIt5cYCB0f/gDXF55BXxCgtV9lPx8GD7/HLWvvALx2LEOi8YTzUOprYX+o48snVXGoL37bpMYXid0thvD+fpC99BD0D7yCJivr8V25dIl6F9/HYYffjBlCBJdHopwEx2OaFa7DXd38EOGWOy3JcUy0nVzkgCO69wP4tYQ7schNoxT1apvThExvDdX/+LhExIg7thRv13OzIRcVATO37/d7VMKC1WfGwumMQaLVEyCaC2MmVJ7w3w5TO4PGCUF5/JM0e8zlyoR4C5i7pD26cNKdG1izOq4awzA5UoNAoOCVCrFSnY24GCRKyk11SJ1l/n7m9J2r+PcHM2S8M0u6ymy1Qbg1xMSfjspISGKw+T+AnoFs3Z3mLjwcOgefhhSZiaMK1ZYLOIDpt/J8M9/gouOhmb+fPCxse1qE3F9lMpK6D/8EHJmpnqDIED7wAMQrMwFOzPC4MHgY2NNdehbt6qzLhQF4ubNkI4cgfbOO8EPHGg/Qwm7Q2EpokNRjEaIu3erxoRRoyyETiprFWw4pn7Bx4ZxiI903kvWPMp9oVDBubyGhzcXGwuY1dh1VJRbuYZgWpAXo2gj0W5oeIbYMB7zkjRYMLAIE3qVdUgKK9H18HFnCPJSX1vpOY5fx62UlkL/+edqZ6Cubtvd/ZrHpl2R8J8tRvPsbcu/oQDJmTLeXmPA4pUG7EuXYJTaP7LM9+gBl0WLoHvySXDR0Vb3kc+fh/7dd1H7/vuQzB09osOQi4tR+9Zbls62TgfdY485nLNdB3N1hXbhQuiefRYsIsJiu1JcDP1HH0H/739DKS3teAOJToHzei9Ep0RKTraoH7OWTr7+qIgaM0HSm4cJnT7NqC0M7MYhwFN9fltSGhYdmCCAHzRItd1a/VN7IJvVcBc2inBT/TZBEM6CeZQ7PUe2mEQ7ksOtyLLJ2W6k/wGY6mT5JhzUOi4Uyvj4VyNEs44CA0KrMKBb09PHi4UKvthuxFNL9ViTLKKsugMc79hY6J59Ftq//MWq0wOYRK30r70G/b/+5bBlAY6KnJsL/ZtvQsnJUW/w8IDuySfB9+1rH8NsCB8dDZcXXoBm/nzAShsz6fBh1Dz/PMQdO6CY9RonnB9yuIkOxUIsLTYWXEiIaqygXMbWU+o3fFJPDlGBzn25chzDhDh1lDs5U0Zxo9o4c7VyOSPDQu29PbDowe3S2OF27t+FIIiug3l7sPRcKxFuB2oNJq5bBzktTTXGDRgA4YYbrnlcbqmMDzcYUGvWHWBAaBWmx5bg0WlavH6rFhPjeOiaaJFcXgOsSRbx1FI9vthmwIXC9nUyGGMQBg2Cy0svQfvAA2BNtGeSjhxB7YsvQv/FFxaLyYTtkbOyUPvmm1CKi1XjzNcXLk8/7VTCYkwQoJkxAy6vvALO2iJCTQ0M334L/Tvv0KJPF4NmykSHIV++bCHYIowfb7HfykMipEbvZZ4DbhraNeQGRvfhVSJRslmLMD4uDmisjqsoEI8ebVebFFGEUlSkGqOWYARBOCN9QtXPs8paoNArTL1TeTmUiooOtKp1SGlpMK5Zoxpjvr7Q/eEP11TvLqlS8MEGAypq1eMJURym9Smp15AL9uawcJQG796hwy3DBYsMrTpEGdh3VsbiFQa8vUaP5PMSJLn9ot6M4yAMHw6XxYuhvftuMB8fy50UBdLevah97jkYvvuOUn3bCSktDbXvvGOR2chCQ6F79llwoaE2/5tltTwulWphEO0nlscFB0O3aBG0f/gD4OFhsV0+exa1r7wCw+rVUIxGK99AOBvkcBMdRmPBLwCAlxd4M+XtrAIZB8+pV8En9OMR6NU1LlV3HcPIGHWUe8dpCcarLw6m0VgIb7R3WrlSUgKYpT8V6hqE2sjhJgjCWfD3YPAzK2tOMwRYpIh29ii3Ul4Ow2efqeu2OQ7a//s/MCsOQB2VtQqWbDCgWO0fITaMwwMTNbDmp7tpGaYMEPDGrVo8PEWDPqFNv6/P5ir492YjnvlRj1+Pi6jSt6PjLQgQxo2Dy5tvQnPLLVYdH0gSxG3bUPPMMzAsXw7FzDEkWo945Aj0S5YAer1qnOvRAy5PPQXOz6+JI1tHjUHB/3YZ8e+9ofj+SBD+/r0eyw90nIK+OYwxCCNHwvW118CPGGG5gyhCXLMGta+8Aik9veMNJDqUruHFEHZH0esh7t2rGhPGjAETGsK5iqJg+QG1UJqrFrgxoWtEt+uYaJZWXlkLHDzXkGJvkVaeltaukwRzwbRq3hXVgmlGqhWAQC9yuAmCcA4YY5Zp5XkAC1NHuTtzHbciy9D/978W5Uaam24C37t3k8fVGhV8tMmAKyVqB6V7AMPDUzTQXEcck+MYBkfxeHKWFi/N12J0Hx5CE108iyuBZQdMbcW+221ETmn7pZszrRaaqVPh+tZbEGbPVmeJ1WEwQNy4ETVPPw2PPXvADAbLfYhmI+7aBcMnnwCiek7H9e0L3aJFYJ6eNv17xy5IeHGZHjtON8yVKvXApuMSnv5Bj3/9ZkDaFckuLeKYpyd0f/wjdE88ARYYaLFdycmB/u23Yfj2WyjV1R1uH9ExkMPdARi3bYPQxeuEpIMHgca9CBmDMHasap9T2bKqLRYATB8kwMOlazl0Yb4c+oWrb83NKQ0vCr5/f6CxqrssQzp2rN3sMa9xK9IF1PelDfNl4JxYyI4giK6HeYTWqlJ5J45wixs3Qj51SjXGxcdDmDat6WMkBf/+3Yjz+WqHJNib4bHpWrhqW/acj/TncO84Dd5dqMPcIQK83azvZxCB7akSXvjZgA83GpBySYLcTk4Rc3WFds4cuL79NoQpUwDBymJ+TQ28du5E8L/+BcOPP0LOzW0XW5wZ48aNMHz9Ncyl7fnEROj++lcwV1eb/a2yagWfbjbg41+NFm1k61AU4GiWjPfWGfHycgN2nBahN3a8483HxcHllVcgTJ8Oa6ki4o4dJlG1Q4eod7wT0qrQYUFBAb799lukpqbC3d0dkydPxqxZs5pUkK6ursZPP/2EAwcOQK/XIyYmBgsXLkT37t3r97ly5QqeeeYZGK3UMgwcOBBPPfVUa0y1O3JhIYzff48gRYEhLAzilCnghw4Fc3Gxt2kdink6ORcfDy6gQXhLlhUsM4tu+7oDk+ObWB53cibF80i93LD4cKlIwdlcBTGhDEynAx8fr2oJJiYnQxg9ul1sMRdMKyTBNIIgnBhzpfLSaqA6OByN46JKJ41wS+npMK5cqRpj3t7XrNuWZQVfbDPiVLZ6wdvXHXhiphaerq1fVPV0ZbgxQcC0gTySM2VsPikis8C6M5FySUbKJRkh3gyT4nmMiOHh0g4tAJmnJ7S33grhhhsgrlsHcdcui7IprrYW4u+/Q/z9d3D9+kGYMAH8wIFgfNeckzQHRVFgXL4c4qZNFtv4sWOhveuua2oHtPRv7T0r4+d9RlTpr79/HZdLFPxvl4hfDogYHct3eMki0+mgvflmCElJMHzzDeSsLPUOZWUwfPopuIEDob3jDnD+/la/h3A8Wuxw19bW4q233kJkZCSee+45lJSU4Msvv4TBYMDNN99ssb8oinjjjTfAGMPDDz8MV1dXbNu2Da+88greeOMNhFxVqC4tLYXRaMQHH3xg8R1eXl6tOLXOgbh7d/0qn/bKFdOq3w8/gE9KgjB2LLgePZy61RVgUqg077toLpa276yEy8Xql/DcIUKX7e/cvxuHQC+GgvKGf5MtKSJiQk2RbT4xUeVwy6mpUGpqbLpyXIdFD+5GLcGofpsgCGcj2JvB0xWoaJSUdVEXisbJ2PLly1Bk2WYOhC1QKios67YZM9VtNzGPUhQFP+wVcei82uF01wGPz9DC38M2z3iBZxjWi8ewXjzO5Zkc7+RMGda003LLFHy/R8TKQyLGxPKYGCfAvwlBtrbA+flBe/fdEKZOhXH1akgHDljdT05NhSE1FczXF8LYsRDGjrUuxNaFUSQJhm+/hbR7t8U2YcYMaObNs9lct6Bcxne7RYsFojqifGsxIqoCufoQ7E2XoBct96k2AL+dkPD7CQkDunGYGM+jXzjXYfNxrls36J57DuKWLaYFMrM6d/n4cdSmpUFz000QJk3qVM8ZonW02OHetm0bRFHEI488AuFqOo4gCFiyZAmmTp0KT7O6jP379yM/Px8ffPABPK4KVvTq1QuFhYVYu3YtHnjgAdX+IWYtohwZRZatPnyg10PatQvSrl1g4eEQxoyBMGLENYVMHBmjWXSb+fmBHzCg/rNBVLDqsPqJGO7HMKJ3111J5hjDxDgeP+1r+Hc5miWjqFKBvwcz/fvxPCBdrVcSRUjHj0MYPtzmtliklLtQD26CIJwXxhhiQjgkZzZM6E/Jaocbej2UoiKrNZn2QJFl6L/4wiRy2QjNnDng+/Rp8rg1ySK2parbcOoE4K/TtQjzbZ9Jfs9gDj2DtSiuVLA9VcSO05LVKGW1Afj1hITfTkoY3J3D5P4CeocwmztFXHAwdH/6E+Tp02FctQrisWOw9heUkhIYV6+Gcd068IMHQ5gwAVyfPk4fNLkeitEIw2efqYIAdWhuuQWaqVNt8ndkWcHmFAmrDoswWHGi3XXArSM0CGTZYAyY1EuDm5IE7D0jYespCfnllqs7CoDjF2UcvygjxMc07xrZm4dLC0soWgPjOGhuuAF8QgIM330H+cQJ9Q56PYw//ghp/35o77kHXLdu7W4T0X60+Gm6f/9+DB8+vN7ZBoD+/fvDxcUFyVbUkjMyMhAXF1fvbNcxaNAgZGRktMJkB8JgMCkTens3uYty+TKMP/6ImkWLoP/PfyClpkKR27dXZUeiVFdbrBoLY8eqVuu2pEgWtTc3JwnguK79EhvVR93fVFaA7ammtwxzcwPXr59q//ZQK1cUxTKlXBXhplVXgiCcD/M67hOlXoC7Wr68Mwmnib/9BvnkSdUY17cvhJkzmzxmc4qItUfUzjbPAQ9N0SA6qP2f7X4eDPOSNHjnDh3uHiMgzNf6O19RgCNZMt5Za8DiFQbsSZdglGxf48pFRkL3l78g/8EHUTlsmHVVcwCQJEiHD0P/7ruofeEFGLds6bJiV0pNDfQffmjpbHMctPffbzNnO7tYxpurDfh5v3Vne2g0h1cX6DAyhkfj9Q83LcPk/gJeu1WLv07TID6y6es6t1TB0j0mIb8f9hqRV9Yxc3HO3x+6Rx+F9sEHASuZKHJWFmoXL4Zh2TIo+hbkzxOdihZFuGVZRlZWFubOnasa5zgOsbGxOHfuHMabpQqPHj0anJVUiJKSEmjM2mw4G8zFBdr586GZOxfZv/0G92PH4HLunIWQBABThPLgQUgHD4IFBkIYMwb8yJHgfH073nAbIu7fr06V4TjwjWqNK2sVbDimfnrGhnHXfCh2Fdy0DKNieGw91TAh2nlawqwEU6q9kJgIQ6MJlpSSAkWvB7OmwNpaKiuBWnUz1kIXU0TH0xXwakNtH0EQRGfFXKm8sBKQQ8PBZTS071Gys4FBgzrYMkukjAwYf/lFPejlBd0DDzSZirr/rIQf96rfvQzAAxM1iIvo2OwyncAwtq+AMbE80q7I+P2khJMXZVhzqS8WKfhquxHLDwDj+/IY30+At5tt30OSry/KJ05E4H33QTp0COK2bZDPn7e6r5KTA+PSpTAuXw5++HBoJkzoMpFIpbwctR9+COXCBfUGQYD2z3+GYIN7wygpWH9UxMajEqytsfi6A3eM1mBQ92tfsxxj6N+NR/9uPPLKZGw7JWHPGQk1Vlpg1xhNgaAtKRLiIzlMiuMRF8m1q0AsYwzC0KHg+/WD8ZdfLNvoyjLETZsgHT4M7V13AV1MB8oZaJHDXV1dDaPRCG8rEVtvb2+UmKUyAab0cXNKSkqwdetWzJkzp37Mzc0kYXnPPfcAADQaDcLDwzFlyhSMGjWqSZscJUp+QasFkpLQY9o0uJ08CbfjxyGUllrdVykogHHFChhWroS+Z09UDRoEfc+eVlUNOwsXzB+4AKAoCPztNzReVqnp3RtXioqAoiIAwJaz3qgxqMsQhoXl4Nw5K09BO2L1/DqAnh4CtqKhzKJKD6zdm4OBYdXgvL0RzBhY3QKOwYDLmzej9hrpg9fC2jlqLl9G44RJiXEo1foAAPxcapGR0XmVes2x12/YUTj7+QHOf450fp0HRQFchDDUig3v3WzBB41dqfK0NJTExqqO6+hzZDU1CPzySwiNMuMUAEUzZ8JQUABY6ZByrtAFv5z0B8wSp6f0KYGPXIVrTava+/w0AGb0AkaE8Tic7YGTOe4wSJZzn4oaYO0RCeuPiugbXI2hEZUI8bLNvEF1jkFBwK23QsjNhfvRo3A9dQqcFXFfGAyQdu6EtHMnDOHhqEpIQE1srHUldDtji9+QLyuD/48/QiguVo3LWi2KFyyAwcMD17yQmkF2qRYb03xRVG09ODc4vBLje5ZBZ1RUf6o55zckCOjvx3Aq1w3J2R5N/o06IT9fVyMSIqrQP7QKLkI7K4iPHAltZCS8N26E5upcuQ6lsBD6JUugiYrCldhYCIWFUDgO4DgoPG/6/7rPHGcqPWQMcLCyB0d6V1jzc63RoieB/mqkss45boybmxuuXLly3e8wGAxYsmQJgoKCMK1Ri4qoqCj84x//gOFq70NRFJGeno5vvvkGFy5cwMKFC1tiaqdF9vRE5ciRqBwxAtoLF+B2/Dhcz5wBkySLfZmiwCUjAy4ZGZA8PFDdvz+qBwyA5OdnB8tbjvbyZWjMXvbVgwfX/3dpDY/kbHXKVr/gaoTa6KXpDPi7i4j2q8X54obVzMOXPDAgtBqymxsM3bpB1+jB5JKW1mqH2xrmi0JFWn/IzLSSHOhBvxNBEM4JY0CEjx4ZhQ1ClJdcwlUOt93bfSoKfNavh1BerhquHDUKhqgoq4dkl2qxMsUPsqKegI+NLsPg8Cb6KtkBXzcJN8SUYUx0OU7muCP5kgdKay2nrLLCcCrXHady3RHhrceQyErEBNTYPD4hhoSgbPp0lE+YYAqaHD1q4QzVob18GdrLl+G1eTOqBw5E9aBBkBw8W7ExQmEh/H/8EXxFhWpccnND0a23QmyjFpNeZNhxzhtHLrvDfFEIAPzcjJgeW4JIn7b1StcJChIiqjA4vApZJTokZ3sgo9DF6t8sqdFgy1kf7DrvhfiQaiREVCLA3Upuu40wREai4P774bFvHzz37bPwEQKzshBornB+DVROeCNn3Or4dRx4hTHrx17d32KMsaa/q/Hfa/T/7sXFUBiD4O4O0c+vUwccm0uLHG7d1VTVaiu1KtXV1dA27g1sBUVR8Omnn6KwsBCLFy+2SCkPNBMf6d69O7p3745XXnkFY8eORUREhMV3NndlobOgsrd3b2DyZCiVlRD374e4c2eTrUb4ykp4Xr3xuNhYU8p5YiJYJ0vLb3x++m3b0PgRwYKCENFIbfHzrQbISsOqPM8Bd03wQaBX511QsMf1Nksr4R+bGpzbgiotJPceiA3jYRw9GsZGDrdbZib8u3dv03XR+ByNp0+jsVvdWDAtPtoXvXp1DsGgluBoz4yW4uznBzj/OdL5dQ4GV4vIKGyYVGdoo9E4305TUoKeUVFgVqKYHXGOxt9/h/HsWdUY16cPgu69F8FWJqjZxTJW7DZANCtNnRzP49YRQWAsuNl/uyN/w/hY4FZZwYmLMjanSEi7Yr22NrtMh+wyHfw8gAn9TCnqHi6tj+w1eY7x8VBuuw3ymTMQt26FdPSoRVsxAOBrauC5fz88DxwAFx9vSjfv37/TKE635jeUzp+HfulSoEq9OMP8/eG+aBE8g5t/DVnjxEUJ3x0wotjK2g/PgGmDeNw4WAeN4Gm5gxktOb/eAG5IMimgb0uVsDtNQrUVf94gcThy2QNHLnugX7hJ3XxAJNd+mkOxsZCnToXh228hm93rLYHJMiDLVsUAOyONZ5au//iHU4hKt8jhdnNzg0ajQbnZaioAlJWVwe86kddly5bh6NGjeOGFF+Bv1lvu119/RUJCgoXTHRMTg4iICKSkpFh1uJ0B5uEBzeTJECZNgpyZCXHXLpPQWBPiCHJaGgxpacD330MYMQLCmDHgIiM72Opro1RUQDp8WDUmjBtX/6LJKpBxIEP9gurofoiOQlwkh2Bvhryyxi3CJMSG8RASEmBcurRBF6CmBnJqKviBA23yt80VyhsLplEPboIgnJmYEPUz7pQUqt5BkqDk5IDZ4f0rZWbCuGyZetDTE9om6rYLymUs2WCwcCJG9OZwywih0yttcxzDoCgeg6J4XCqSsSVFwoEMCUbL5EAUVwK/HBSxNlnEiBgek+J5myuuM8bAx8aCj42FXFICadcuiDt2QLFWKqgokE+ehP7kSTB/fwjjx0MYPbrJVm2dFenUKej/9S+LuSkLC4PuiSfapDlUUaPgx31Gi3lhHVGBDPeM1SDSv33nHYFeHG4ZzmFOooD9GRK2pki4XGI9hTz1sozUyzICPBkmxPEY3YeHu64d2teFhUH3979D2rULhmXLgJqa6x/kTPDO0bGoRQ43x3GIiopCWloaBjUSQ5BlGWlpaViwYEGTx+7atQtr1qzBY489hujoaIvt27dvhyRJmDFjhtXjFWtCY04GYwx8dDT46Ggot95qEuvYtQvyuXPWD6iuhrhlC8QtW8D16GGKeicltUsv5pYi7t0LiI3SbQQBwtVafEVRsPyAOhXHVQPMTOh8tU6dgboWYT80Erg5dkFGYYWMAB8fcD17Qm5UwCQmJ9vM4bbowX01ws0AhDahKEsQBOEMdAtg0GkA/dU0n1rBFQYvP2jLG+pW5cuXO3zBW6muhuHTTxvaQl5F98c/WnV6yqoVfLDBiDKz5MQB3TjcM07TrmJQ7UGkP4d7x3GYP0zAztMStp0SUWpFJNwgATtOS9hxWkJcBIdJ8Tzi20H8ivP1BTd7NoQZMyAdP24SWTt92uq+SlERjL/8AuOqVeCHDDG1FuvVq9MveIiHDsHw+ecW1xwXHQ3dX//a6gikoijYnyHjp71GVFqJMWl5YM5QAZPjefAd2LlGp2EY11fA2FgeZ3JkbE2RcPSCbFXzuLBCwbL9IlYfFjG8l2mBx9YdXBjHQRg3DvzAgTCsWAFjcjJYba3DRKzbRFd0uAEgKSkJmzdvxoIFC8Bf/UdISUlBdXU1EhMTrR6TlpaGzz//HAsXLsSQIUOs7hMXF4fdu3djypQpqpZjGRkZyM7ORj+zFkjODnNxMfXnHjMGcnY2xN27TU5slfUaKzkzE4bMTODHH8EPHQph7FhwPXva5SGuyLKFwiKfmAh2tUf7qWzZIiVs+mABnm1I/XJ2RsbwWHlIRO3ViZ+iANtOSVgwnAOfmKhyuKVjx6CIotU0x5aiFBaqPhddjXAHeTPoBPq9CIJwXniOoVcwh1PZDe+rYu9whJg53B2JoigwfPWVxbNZmDEDfHy8xf7VegUfbjSgwKwHce8Qhv+brIHgwO03PV0YZg4WMHUgj+TzMrakiDifbz04cypbxqlsGcHeDJPieYyM4eGise25M0GAkJgIITERcm4uxO3bIe7ebT0iKUmQDhyAdOAAWEQEhAkTIAwb1ikCJuYYt2+H8bvvLDrscPHx0D30UKs7oxRVKPjfbiNSLlmPavcN53DXGAFBdsx8ZIwhNoxHbBiPoqt943edlqwuDhhEYGeahJ1pEvqEmhZ4BnbnbLpQwHx8oLv/flwaOxYA0DM62rQIIkmmsoar/600/iyKgCybxpra91rHN9qu+o5G+6i+QxRNY1aOV+17jb+pXLWZKUrXdbgnTZqErVu34uOPP8bs2bNRUlKCL7/8EjNmzICPjw9SUlLw9ddf47HHHkNERATy8vKwZMkS9O/fHwkJCcjNza3/Lp1OB9+rq7GzZ8/GoUOH8NZbb2HOnDnw8fFBeno6fvrpJ0yaNAndu3e33Vk7GFxEBLS33QbN/PmQjh41Rb1TU63vbDBA2rMH0p49YKGhJqd95Mh6Z7cjkNPSoOTlqcaEq+3iZFnBMrPotq+7qYaMaBpXLcPoPjw2pzSsLu9KkzA7UYAmIQHGn35q2LmqCnJ6Ovg2LlIpBgMUs84DdS3Bwim6TRBEFyAmVO1wZ2lCEYKGdoxydsd2ahC3brXoecz16gWNWbtWADCICv75qwGXitSOUoQfw1+map1m0VTgGIb14jGsF4/z+TI2nxSRfF622kYqr8zUa3nlIRGj+/CYGNc+pWxcSIhp3nbTTZAOHoRx2zbL9llXUbKzYfzf/2BctgzCyJEQxo8HFx5uc5taiqIoENevh3HlSott/NCh0P7xj61a2JdlBVtTJaw8KEJvRXfMTQvcMkLAqBi+U0X+/T0Y5idpMCtBwMEMCVtOSRb3Vh1ncmScyZFtpifQFKxOdMxMt6fz/Ku1jroOVD2jox1OYb0pWnynuLi44Omnn8a3336L1157DTqdDpMmTcJNN90EAKipqUFpaWm92vjx48dRUVGBo0eP4ujRo6rv0ul0+Oijj+Dp6QkvLy+8+uqr+Pnnn/Hvf/8bVVVVCA0NxS233IJJkybZ4FQdH6bRQEhKgpCUBLmgAOLu3ZB277ZeM4Sr/SF//hnGX34BP3iwqda7X792F+wQt29X2x0WBq53bwDAvgwZl4vVD6g5Q0x9pYlrMyGOx5YUqb43abXB1Et1XL8AcN27Q270MpeSk9vucJtFUACgSGfSXgj3o9+LIAjnJ8asH3c6C8PwRp+VDnS45QsXYPz5Z/Wguzu0//d/YGZRIFFW8J/NRpzNVb9vA70YHp+hhVs71Jp2BqKDOPxpkhYlwxVsOyViZxPRyBoD8PtJCZtTJAzqzmFyvICYUGZzB4/pdKZyv9GjTRo927dDOngQsNZarLYW4tatELduBRcTA2HCBPAJCTbJVmspiizD+PPPEH//3WKbMGECNAsXtmoueblYxjc7jU1mIiT24LBwlMbmvdVtiVZgGB0rYFQfHhl5CrakiDiSKUO2ckp1egJrkkUM62Va4OkWQPo3zaWzCAzaglbdxYGBgVi0aJHVbUOHDsXQoUPrP0+ZMgVTpkxp1vd6e3vjgQceaI1JnZriStvXn3OBgdDedBOU2bMhp6SYhNaOH7eqlAlJgnT4MKTDh02CHaNHgx89Glw7tBdTSkshHTumGhPGjwdjDAZRwapD6pdMuC/DyN4U3W4Owd4c+nfjcOJiw2+85ZSEsX15U1p5I4dbPHIEmjvuaNPDSjETTCsXPKHnTe3JSDCNIIiuQFQgg4ZHvTjXFbcw1XaluBhKdTWYlXaptkSpqYH+00/V2igAdH/4g8W7XFYUfLPDiOMX1fMBb1fgiRmd25mxFb7uDPOSNLgxQcCBDAmbT1oXv1IU4GiWjKNZBkT6m9LNAwAINp6WqDR6brkF4p49ELdvt9BJqUNOT4chPR3w8jJlKo4bB85MbLi9UEQRhq+/hrRvn8U2YdYsaObMafHChCgp2HDM1DddsjJN9XYD7hytweAox5kPMsbQO4Shd4gWJVUKdqSK2HFaQkWt5b5GCdh9RsLuMxJ6hzBMjBMwuAfn0CUdRMsglap2pqxawVM/6BHgFoQ+QTVw9ZMR5mu7VVTG8+AHDgQ/cCCUsjLTQ3zXriYf4kpREYyrV8O4Zg24+HgIY8eCHzDAZiuo4u7dalENrRbCiBEATMraJWYl6POHCe3XTsEJmRTPqxzuKyUK0q7I6JOYCOOKFQ07lpdDzsgAHxPT6r9lrlDeuCUYRbgJgugKaHiG6CAOZ3JMz908l2DIjAPXqKWlfOUK+HZsk6UoCgzffGPxXhemTrUQyFQUk4DTvrNqr8ZVCzw2Q9vlOoFoBYYxsQJG9+GRdsWkbn78ggxrYZBLRQq+3iHCTROK/qHVELxldA9oh6i3hwc0U6dCuOEGyKmpELdtMwVMrClylZdDXL8e4oYN4AcONImstWOmomIwQP/pp5CPH7fYplm4EJpWZJyeyzNFta80ofY9NpbHzcMEh8668HVnmDtUg5kJAg6fk7HllIisAuvnezZXwdlcI3zdYRJm68vDy9Vxz51oHuRwtzPHsiQoiql3ckGmFrszDQjxYUjswSGxB49Ifxs6397e0MyYAWH6dMjp6RB37oSUnGw9delqmwrDyZOmFdSRI00p5yEhrTfAmlhaUhKYmxsqaxVsOKZemY8N49A/smu9/NtKv3AOIT4MuaXqFmF9p4aAhYer+rhLR460yeG2UCi/Kpim5YEgL3o5EATRNYgJZTiTY/pviRNQ7BGMgIqc+u1ydna7Otzijh2QDh1SjXHR0dDMm2ex78ZjEn4/qVaS1vLAo9O07d5SqTPDGEPfcB59w3nkl5tUp3efkeqFSBtTbeRx4KInDlw0IMDTNF8bEs0jKtC2zjfjOPDx8eDj4yEXFUHcsQPirl2Alda7UBRIx45BOnYMLCjI1Fps1Cib9idWqquh/+gjy37PPA/t/fdDGD7c+oFNUGtUsPKQiK2NSuEaE+TFcPdYAbFhjhPVvh4anmFEDI8RMSY9gS0pIg6fl61G9UuqgFWHRaw7ImJoTw6T4gVEBXbde9TZIYe7nUnOtLzLcksVrD8qYf1RCYGeDAk9OCRG8+hho4c5Ywx8nz7g+/SBsnAhxAMHIO7cCeXSJesHlJdD3LQJ4qZNprqhMWNMquItVJ7UnT8PpbhYNVYnlrb+qIgas/6fNw/r/L0/OxuMMUyK4/H9nobFi+MXZBSUy/BOTITY2OFOToZy662t/je26MF9NcId6ssoK4EgiC6DqY67wYm9qA1DABocbqUdlcrlS5dg/OEH9aCbm6lu2ywzbcdpESsOqRe2eQY8eIMGvUNoIl9HkBeH20ZymDNEwJ50CVtSJAsV9zoKKxT8ekLCryekdnW+OX9/aOfNg2b2bEhHjphai6WnW91Xyc836fOsWAE+KckU9e7Ro032KGVlqF2yxHKeqNVC9+c/gx8woEXfl3JJwv92GVFUabmNY8CUATxmJzq3fk90EIfoiVrcMlwxtadLFVFmRbBelIF9Z2XsO2tAdBDDpHgBiT04CLzz/tt0RcjhbkdESUFuqfV2B3UUNHqY+7kDCT14JEbz6BnMbNIrkrm7QzNxIoQJEyBfuABp506IBw4AtVaKTNCobmjpUgjDh5ui3s1UiHc3E8Vj3buDi4pCQbmMbafUK+5JPTlayWslI2J4rDjUsIChANh6SsKCxESIa9bU76cUF0POygLfo0er/o55DXddSzBb95ckCILozEQHc+AZ6lWvr7iGIQHJ9dvbS6lcqamB/t//tqjb1t53H7iAANXY4fMSvttlKfl833gNBnRzngiiLXHVMkyOFzCxH48Tl0zp5qcvNz1ns+Z82zJYAlxtLVYnjpudbYp6791rfc4mipD27oW0dy9Y9+7QTJhgyipsYbBELiiA/oMPLEsR3dyge/RR8FdFb5tDRa2Cn/cZLUoa6ugWwHDvWE2XEg7zdmOYnShgxiAeyZkytp4ScS7P+gLP+XwF57ca8bMrMLYvj3H9BPh0Ac2FrgA53O2IwDO8dbsOGXkKth4twpkCV1Tom/4nL64CNqeYVDO9XU3Od0IPDjGhbe/jxxgDHxUFPioKmltvhXTokKm9WKP+zSpqaiBu2wZx2zaw7t1Noh3DhjUpDMOXlUFn9l2aq2Jpqw4bITZ69vIccNNQuvRai4vG1CKscdrg7jMSZieGgQUHq1qyScnJrXK4FVm2cLjrItwRVL9NEEQXQicwRAWx+kmyuXCafPkyFEWxacRTURQYvvvOssXm5MkQEhJUY6nZEj7farRI271tpIDhJEp6XTiOYVB3HoO687hcLGPjoUKk5buhtKbpeUpj59vfA0iM5jHExs43FxEB7R13QDNvnilTcdu2JlXxlQsXYPj6a+Dnn00lghMmNKtEUM7ONjnbZWXqDd7ecHn8cXCRkc2yVVEUHDwn48e9RquiYRoemJ0oYMoA3qZ9qR0JgW9oX5dVYHK8D2bIqvlxHWU1wNojEjYck5DYw5RuHh1kez0BouMgr6ed4TiGmFAGrqoMk3qXgfeORvJ5CcmZMgormlYvL6sBtqVK2JYqwcMFGBzFI7EHh9jwtqsaMp0OwujREEaPhnzlCsRdu0wrqJVWcn9gepAbr7Yj4YcMMUW9e/dW3fhux46p+/65uoJPSkJWgYwDGeqnyYR+7dP3sisxMY7H5pMNdVE1BmD/WRmjEhMhbthQv5+UnAxl/vwWP6SVsjKLqEqh7moPbnK4CYLoYsSEcjiXZ1rkvOKqdrhRVQWltBTM19dmf0/avRvS/v2qMS4qCpoFC1Rj5/Nl/Os3o0WN6I0JPCbH0xSvpYT7cRjfsxzjosuh843G4fMSDp+Xkd9EyjkAFFUCv52Q8NsJCX4eQGIPk/NtKweJubpCM348hHHjIGdkmETWDh9WC9TWUV0NcfNmiJs3g+vb19RabNAgi7ZxACBlZED/j38A1dXqvxcYCN2iReACA5tlX3Glgu92G1WCro3pE8rh7rECgr1p3ldHVCCH+8drsWCYgp1pEranihaiwgAgycDBczIOnjMgKtCkbj60J/07OiL0NO5AGLta0xHE4eZhCi4WKfXOd15Z0w/zylpgV5qEXWkS3LTAoCgOCT14xIVz0LSx/oULC4P21luhmT8f0rFjpqj3qVPW1TINhob0peBgCGPHmhTI3d3hZqZoKYwYAeh0WL5ZrUjiqgFmJtBl11YCvTgM7M7h2AV1i7AxQxOARg63kp8PJTsbrJmr1I2Pa4yB06Bc4wWAWoIRBNH1iAnhsPFqHXeJzg+1nA4uckODZ+XyZcBGDrd8+TIMS5eqB11doX3wQVXd9pUSGR9tNEBvlkk+ri+POYn0nm0LjAHdAjh0C+Bw01AFl4oUHG7GfK240tTf+/eTpjLB+sh3UNvLBBlj4Hv3Bt+7N5TbboO4e7eptVhRkdX95dOnYTh9GszHx9SRZuxYcFevUV1GBvSrVwMGtbgOi4iAyxNPgHl7X9ceWVGwI1XCLwdFq+JzrlpgwXABY/rwFJltAk9XhpmDBUwdyONYlklk7Wyu9esrq0DBl9uNWLYf6B/shQgfPYyuEniOgedMtfE81/A/joNpG2v8GfWfGQP9Lh0IPZHtBGMM3QMYul99mF8pUZCcKSP5vPVekXVUG4C96TL2pstw0QADupnUzuO7cdC1wflmggBhyBAIQ4ZALiyEuGcPpN27LUTQ6lDy8mBctgzGFSvAde8Ovkq9NCeMG4dT2TLSrqhXPKcPFuDpQje4LZgUz6sc7txSBWeESET7+al+NzE5GdqWOtzm6eS6AIAxeLqgS/RwJQiCaEzPEA6MmdaiFcYh1zUUUVVZ9dvl7Gzw8fFt/juKXm+q2zZzhLT33quKOBZVKliywYBKvfr4IdEc7hhFgqS2hDGGbgGs3vnOLlZw6FwznO+qBufb171R5NsGGj3My8vUlWbaNMgnT8K4bRvklBSrwRKltBTGNWtgXLcO/ODB8PD0hOfOnYCsnp9xvXtD9+ijzeopn1Mq45sdRmQ0UYs8OIrDHaM08HGn67A5CBzDkKuLM5eKTHoCBzIkGK0kMVTUAnsveAEXABy3stLRAho74BzX2GFn9Q68uaNe78hfHVMfB3CMmX02+16r3wfwV4/jOCC/wAUcA/QuEvqEOoeAHDncnQDGGML9GML9OMxOFJBbKpuc70wJFwubfpjXGutSTWRoBaB/pMn5HtCNg4u29RcnFxAA7Zw5UGbNgnzqFMRduyAdO2Y9fUmSIJ8/rz6+Vy8gLBzLV6gnDL7uwOR4qiezFbFhHMJ8maq35ZZTMnonJkL8/ff6MSk5GZg7t0XfbdGDmwTTCILowrhpGSL9Wf07+YpbmNrhtpFSueH776Hk5KjGhAkTIAwZUv+5okbBkvUGixTUuAgOf5ygoS4S7Qhjpusg0r/B+a5LO7+W813SSKOnzvm2hUAu4zjwAweCHzgQckEBxO3bIe7ebb1EUJYhJSfDy8r3cAMGQPfgg9cVXBMlBZuOS1h3RLRae+ztCiwcpUFiNM31WkukP4d7x3G4eZiAXVfTza2pvdsCSb7af8Fiet/0tdy87W3lqijkCSP+cY8OghNcTuRwd0JCfDjMHMxh5mABBeUyjlx1vs/nN32BG0RcddJlCDwQF25SzxzYnYO7rnUPc8Zx4Pv3B9+/P5Tycoh790LctQtKbu41jxPGj8e+DBnZxWp75wxx7hYQHU1di7D/7W7IJzxxUUb50MFwa+RwK1euQM7NbVGPdRJMIwiCUNMnlMPFwqt13FaE09qKuHcvpD17VGMsMhKaW2+t/1xrUPCPTQbkmjl30UEMf75B4xSRIEehsfM9d4jJ+U6+6nyb/z6NMXe+E65GvtvqfHOBgdAuWADN3LkmYdzt2yGfO3fd4/jhw6G97z6LNnPmnM+X8c1OIy4XWz+30X14LBgutHrOSajxcGGYPkjA1AE8jl80Rb3Ns0a7As7ySCOHu5MT6MVh6kAOUwcKKK5UcCRTQnKmhIxcpcn1JVECjl+UcfyiDJ4BfSM4JPTgMDiKb3U6N/PygmbaNAhTp5pEO3buNIl2mKW9wd0d0qBErFqhTnMJ92UYSWqpNmd4bx6/HBJR3SitcHN1FGZ7ewONVEel5GRwM2c2+3utppSDBNMIgui6xIRy9d0hclzDVduUK1egyK2fDMs5OTB89516UKeD7s9/BtNoAABGScHHvxmRVaB++4f6MDw6TQsXDT2f7UVj53vOEAWXSxoi37ml13a+t6SYeoH7uDU4371CWu98M43GpFQ+ciTkCxdg3L7dJMBnPl+DSfVec+utYFzT2Wt6o4JVh0VsTpGsyvsEejLcPVZA33Ca47UHHMcwOIrH4CiTiv62VAknsmphlBjACZBlU6S67v+l9g4+dzC8kyRWksPtQPh5MEzuL2ByfwFl1QqOZEk4kinjzBUZchM3mKQAKZdkpFyS8d0uETGhHBKjOSRE8a2qxVWJdtx+O8SDByHt3An5wgXIGg1c7r4bv5/hUFKlnnjMHyZQmls7oNMwjOnD49cTjVqEpSuYPXAwsHN7/ZiUnAxNCxxu2Uw0rciFUsoJguja9AppeP7luIWqNxqNln2Mm4liMED/6aeAXl2Qrb3nHnDBwQAAWVbw+RajRYTLzwN4fIYWHqSN0mlgjCHCjyHCj8OcRJNGT53znXMN57u0Gth6SsLWUxK83RpqvtvifHPdu0N3zz1QFiyAuG+fqbVYTg4Unod27lwI06dfs97/VLaE/+0SrXbVYQyY0p/H7CFCmzSEiOYT7sfhztEcMkIuAAB69eplsY+iKJAVtQOudsgV9ec6h10BJFkx+9xoe6NtNvtORTH7G6b/rzUYIcsAxwu4xlqQQ0EOt4Pi7cYwoZ+ACf2AiloFx7JMAh6nL8sW7UHqkBUg7YpJyGzpbhG9QhgSe/BI6MHDz6MVzrebGzTjx0MzfjzOnzgBheMQ3CsOG35UTxpiwzj0j3SSO6YTMiGOx28nG1aea43AqYhBiMP2+n3kCxcgFxaCCwi47vcpNTUW9V+FukAwmDIVCIIguiKeLgzhvgyXSxRUajxRrvGEl7GifrucnQ34+LT4ew0//GDRX5kfOxbCsGEATBPo73aLOJKlfrl7ugBPzNC26v1NdAyNNXrmDAEuF8v1audXriGQW9aU8x3MWhW8YG5u0EyaBGHiRGQlJ0PRaBA9cGCT+1fWKvh5vxF7061PKCP9Ge4Zq0FUIM3tOhuMNSiTa6zv0cEWtZyMjEsArC8oOCrkcDsBni4MY2IFjIkFqvQKjl+QcSRTQkq2DNGKzhlgkjs4m6vgbK6IH/eJiA5iSOhh6vXdmh7Z8lVVy/VHRdSYZS3dPIwUU9uTAE8Og7pzONpoMra6rCfiPDxUjrOUnAxu6tTrfp95OrkMhmKdHwK8GHSUskgQRBcmJpTD5ZK6ftzh8DKm1W+TL19uscMtHjgAaedO1RiLiID29tvrP688JGJnmvpl7qIB/jpdixAfcngciXA/rt75vlIi4/B5kwPebOfbtSHtvHdIy51vxhika1yjiqLg8HkZS/caUVFjuV3ggdkJAqYM5CFQ1iJBNBtyuJ0Mdx3DyBgeI2N41BoUnLhoElw7eUmGQWz6uPP5Cs7ni1h+AOjmz5AYbXK+W/IyL63hse2UelKQ1JOjFdAOYFI8r3K4cys4lPcaCK9jDQI80pEj0DTD4TZPJy/V+kDkNCSYRhBEl6d3KIdtqVfruN3CEFve4HAr2dlAXFyzv0vOzYXhm2/UgzqdSS1aqwUA/HZCxIZj6veqwAGPTKXooqMT5sthdqKpO02zne8aYFuqhG2pErxc69TOOcSEcG0u2yupUvD9bqOq3WhjeoeYotq0yEMQLYccbifGRcuQ1ItHUi8eelFByiVTn+8TF2XUXqN138UiBReLRKw8BIT5MiT2MCmeh/uya0aqd573VrWJ4DngpqF0iXUEfUI5hPsxlXroHvdBmI4Gh1vOyIBcUgLO1/ea36UUFqo+F5FgGkEQBABThLuOHFd1HXdLlMoVo9F63fadd4ILNX3vnnQJP+9Xr5QzBvxpkgaxYSRQ5UyYO9/JV53vy9dwvsvNnG9T5LvlzresKNh5WsIvB0TUWJkbumpMmYpj+vJt7h9OEF0V8oa6CDrBVK+d2IOHUVRw6rIp7fxYloxqS+HKeq6UKLhSImHtEQnB3g3Odzd/tfOdW6FBap6b6tgJ/fhWpacTLYcxhknxPL7d2TA5+93QG9NcXMFqG/LCpKNHwU2ceM3vMhf+aWgJRr8lQRBdGx83hmBvhrwyBVfczJTK8/MBoxHQWK+cbIzxp5+gXLqkGuNHjYIwciQA4FiWhG92WHo/94wRkNCDnG1nJsyXQ1gih1mJAnJKGyLfTbXjAkzO9/ZUCdtTJXi6AglRV53vUA78NZzv3FIZ3+4yIj3H+ncP6s7hjtEa+LqTo00QbYEc7i6IRmAY1J3HoO48RElB2hVT/+6jWRIqa5s+Lq9MwYZjEjYckxDgaXK+E3rw6BHEsC3DW7WvqwaYmUCXV0cyvBePXw6IqLoaMBE5DbLD4hF5/lD9PlJyMjTXcbhlaglGEATRJL1DOOSVSchxDYUMBq6uSaeiQFNYCGNo6DWPFw8fhrhtm2qMhYVBe8cdAIAzV2R8usVo0X3k5mECRsfSe7UrEerDYVYCh1kJAnIbOd/Z13C+K2qAHacl7DgtwdOlUeS7kfMtycCGoyLWHBGtav14ugILR2owJJojDR6CsAH05O7iCDxDfCSP+Eged44WcDbXlMp0JFNCmRXBjDoKKxT8ekLCrydMqUzlNS6q7dMHCa3u+U20Dq3AMLYvj42N6v22agfhHjQ43PKZM1AqKsA8PZv8HnPRtCKXAAg8EORFvydBEERMKIfdZyQYeS0KdQEI0jc8M4WCgms63HJ+Pgxff60e1GpNdds6HS4Wyvj4V4OFEzR1AI9pA2nK1pUJ8eFwYwKHGxs538mZEi4VXcP5rlU734OjePhwrth/0RP5ldaFfUbG8LhluECt5gjChtDTm6iH5xhiw3jEhvG4fZSAc3kKks9LOJIpobiq6ePKzRxzX3dgUn9KebMH4/sJ+PW4VB8ZOeHRD5KgBS9erRtQFEhHj0IYO9b6F0gSlKIi1VChLhBhvuyaaWkEQRBdhT6N67jdwlQOt6agAE2tVStGIwyffgrUqPfQLlwILjwceWUylmw0WNTRju7D4+ZhNF0jGmjsfOeVNUS+r+d8m9Tu/a1uD/BkuGuMgLgImr8RhK2hJzhhFY4x9A5h6B3C4dYRAjIL6pxvGQUVTT/QAWBOogCdQM6ZPfD3YBgcxSE506ReZ+S1SPeLQ9/8o/X7iMnJTTrcfHk5IKsVSgtdAjCI0skJgiAAAP6eDH4eQHGlyeEeWHK8fptgliHUGOOyZZAvXFCN8cOHgx89GqVVCpZssGzFNDiKw11jqLUm0TTB3hxmDuYwc7DJ+a4TXLt4Dee7MYwBk+N5zB0iUOtPgmgnyOEmrgtjDNFBDNFBHG4epuBSkYLkTAnJ52Xklqkf6BF+prZkhP2YFC8gObNBCe+A5yCVwy2fPg2luhrMzc3iWKG0VPW5mndFNe+GcBJMIwiCqCcmhMP+DBlXXMNU45omHG7xyBGIW7aoxlhICLR33YUqPbBkgwGFZovZfUI5/GmihrKLiGYT7M1hxmAOM+qc78yrznehdec73JfhnnEaRAfRO54g2hNyuIkWwRhDtwCGbgEc5g5RcKVEwZFMGUfOVcFVI+H+yT5t7gVJtI3eIQyR/qw+tSzVJw4SJ4CXr9ZrSRKk48chjBhhcSxfUqL6XKQLABijHtwEQRCNiAm76nC7qR1uvrISrLpaNSYXFsLw1VfqLxAE6B58EAZeh39uMFi0f+oWwPDIVA00lC1GtJJgbw4zBnGYMUhAfnlD5PtCoQINL2PmYC2mDeQh8HSNEUR7Qw430WoYYwj3Ywj349DX27SqH+DpZ2eriLoWYV/vMDnYtYIrTnvFIr40pX4fKTnZqsNtHuGuawlGEW6CIIgGYkJMz8RCl0AYmQCN0iBA1TjKrYgiDP/5D2DmhGtuvx1yWAT+/ZsR5/LUznawN8Nj07Vw1ZIjRNiGIC8O0wdxmD5IQMrpc+A5oG+fnvY2iyC6DDSLJggnZFhPHh6NhOOP+Q1SbZdSUqDUWvaA480dbl0APHSAt2s7GEkQBOGgBHszeLkCMuOR5xqi2ta4jtv4yy+Qz59XbeeHDgU3diy+3G5EyiW1ZoavO/DEDC28XMnZJtoHF40CDd+8+m6CIGwDOdwE4YRoBIZxfRtq6VN8B0BqfLsbjZBOnrQ4zjLCHYhwP+rDSRAE0RjGGGKuqpWbp5XXRbil48ch/vab+rigIGjuvhs/7ZNw8Jza2XbXAY/P0MLfk563BEEQzgQ53AThpIzvJ6CunL5acMdZrxjVdik5WX2Aolip4fZHONVvEwRBWFDvcFsRTpOLi6H/4gv1AVfrttef1mLrKXWjba0APDpNizBfmpYRBEE4G/RkJwgnxdedIbFHwy1+3Dyt/MQJKMaGhq9cTQ04g0G1T6FLIAmmEQRBWKHO4c4xi3ALBQWmuu2qKtW45tZbsb0yHKuTRdU4zwEP3aBBz2CakhEEQTgj9HQnCCdmUnyDLuIJ3wGQ0ch51ushnTpV/9E8ui0xDqVaHxJMIwiCsEKYL4O7Dsgxi3BzBgPkjAzVGJ+QgCORY/HDHrWzzQD8YYIG8ZHUTpMgCMJZoZk0QTgxPYMZugeYnOwKrTfOe0artjdOKzev3y7S+kNmPMJ9KcJNEARhDscYeoeYFiar+aaVJVlAAM7dcDe+3C7CXKpq4WgBST3J2SYIgnBmyOEmCCfG1CKsIcp93G+wart07BgU0RRxMVcoL3IJQIAngwu1piEIgrBKTCgHMGYhnFYPz6Pglj/h490aSGbe9pwhAib0o+6sBEEQzg453ATh5AztycHzavDluO8g9cbqashpaQAAwSylvFAXQPXbBEEQ16C+jtvVusNdPfNmvJcSDoM6kxyT4nncOJgi2wRBEF0BcrgJwsnR8Azjr7YIK9X5Isu9u2q7dOQIACs9uF3I4SYIgrgWkf4MLhpL4TQAEOMH4s3yMajWq8eH9eJw6wiB2i0SBEF0EcjhJoguwLh+AvirczvztHLx6FEosmxZw60LIME0giCIa8BzDL1COKR7xahEKRVfP3wYcCfKatROdf9IDveN14AjZ5sgCKLLQLNpgugC+LgxDOlput3N24OhvBxyair4igrVcKFLIPXgJgiCuA4xIRzyXUOwuttNKBc8cdkzEl/HP4yLNW6q/XoFMzx4gwYCR89VgiCIrgSpdRBEF2FSvIADGQYUugQi2y0cEdWX67cZf/3VYv9SN38Ee9PEkCAI4lr0vlrHvS10EraFTjINGtT7hPsx/GWaFjqBnqkEQRBdDYpwE0QXITqIQ49A02TvhJl4mpyaqvpcLnjC398VPEViCIIgrkmPQAbNNfTPAjwZHp+hhbuOnqcEQRBdEXK4CaILMbm/KanlmHlauRlFJJhGEATRLASeoWew9emUlyvwxEwNfNzoeUoQBNFVIYebILoQiT04eLsCua6hyHMJbnK/QhJMIwiCaDa9Qywdalct8PgMLYK86FlKEATRlaG3AEF0IQSeYXw/AWDsmlFuaglGEATRfOIj1TnlGh74y1QtIv1pmkUQBNHVoTcBQXQxxvblwXNW1MobUagLpAg3QRBEM+kZzGFCP5PT7a6V8PAUDWJC6RlKEARBkEo5QXQ5vN0Yknpy2JceiSKdP/z1RRb7VHr6w8fNysEEQRCEVe4YrcGggIsQOAV9InvZ2xyCIAiik0DLrwTRBZkYdzWt3EytvA5daBAYo5RygiCIlqATFPA0syIIgiAaQa8FguiC9Aji0DOYWU0rN3Aa+Ib4dLhNBEEQBEEQBOFskMNNEF2USfECLnhEoVTjrRov1AUggoR+CIIgCIIgCKLN0KyaILooCT04eLtzOOE3UDVe4BJEDjdBEARBEARB2ACaVRNEF0XgTC3CtoVMQjXvWj++K3gswn2pfpsgCIIgCIIg2gqplBNEF2ZcXx7rjgbgg7gnEVuWivOePVEb0h0uWnK4CYIgCIIgCKKtkMNNEF0YT1eGpJ489qYHI981GAAw2J+cbYIgCIIgCIKwBZRSThBdnFkJPDxcGj5PiuftZwxBEARBEARBOBEU4SaILk6gF4cXbtJhx9EchHkbEBsWZW+TCIIgCIIgCMIpaLXDXVBQgG+//Rapqalwd3fH5MmTMWvWLDBmPR3VYDDgp59+wr59+yBJEhITE3HHHXfA3d1dtd/Fixfxv//9D+fOnYOPjw9mz56N8ePHt9ZMgiCagb8nw4CwanubQRAEQRAEQRBORasc7traWrz11luIjIzEc889h5KSEnz55ZcwGAy4+eabrR7z2Wef4dKlS3j44Yeh0Wjwww8/YMmSJXjuuefqnfTi4mK88cYbSEpKwp133olLly7hq6++AmMM48aNa/1ZEgRBEARBEARBEEQH0yqHe9u2bRBFEY888ggEwfQVgiBgyZIlmDp1Kjw9PVX7Z2VlYd++fXjvvfcQGhoKAHj88cfx2GOP4dixYxg8eDAAYN26dQgNDcX9998PAOjevTtqa2vx888/Y9SoUfV/iyAIgiAIgiAIgiA6O60STdu/fz+GDx+ucoD79+8PFxcXJCcnW90/Ojq63tkGAC8vLwwYMAD79++vHztw4ABGjhypOnbEiBEoLy/HmTNnWmMqQRAEQRAEQRAEQdiFFoeMZVlGVlYW5s6dqxrnOA6xsbE4d+6cRc11ZmYm+vbta/Fd/fr1w2+//QYAKCkpQUlJicV+7u7u6N69O86dO4e4uDiLpB8HIAAAjhVJREFU78jIyGjpKdiFCxcu2NuEdoXOz/Fx9nOk83N8nP0c6fwcH2c/R2c/P8D5z5HOz/Fx9nN0pPPr1atXs/ZrcYS7uroaRqMR3t7eFtu8vb1RVlZmMV5WVtbk/qWlpfX71I0193sJgiAIgiAIgiAIorPS4gi3Xq8HALi5uVlsc3Nzw5UrV6we09T+tbW1AFD//9b2c3V1RU1NjVV7mruy0FlwNHtbCp2f4+Ps50jn5/g4+znS+Tk+zn6Ozn5+gPOfI52f4+Ps5+hM59fiCLdOpwNginSbU11dDa1Wa/UYa/tXVVXV7+/i4tLi7yUIgiAIgiAIgiCIzkqLHW43NzdoNBqUl5dbbCsrK4Ofn5/FuLe3t9X9y8vL4evrW79P3Zi1/ax9L0EQBEEQBEEQBEF0VlrscHMch6ioKKSlpanGZVlGWloaoqKiLI7p0aMHTp8+bTGempqKHj16AAB8fX3h4+Nj8b1VVVW4cOGC1e8lCIIgCIIgCIIgiM5Kq9qCJSUl4cCBA5AkqX4sJSUF1dXVSExMtNh/2LBhOHfuHPLy8urHKioqcOLECQwbNky13969e1XH7t+/H+7u7lZVzgmCIAiCIAiCIAiis9Iqh3vSpEngOA4ff/wxMjMzceTIEXz22WeYMWMGfHx8kJKSgr/97W/Izs4GYIpwjxgxAkuWLMGpU6dw9uxZLFmyBN26dVM56LNmzcLly5fx9ddf4+LFi9i7dy9++OEHLFiwABqNxjZnTBAEQRAEQRAEQRAdQItVygGTwNnTTz+Nb7/9Fq+99hp0Oh0mTZqEm266CQBQU1OD0tJSGAyG+mP+9Kc/4ccff8THH38Mg8GAhIQE3HPPPeC4Bp/fz88Pzz77LL799lu89NJL8PLywi233IJJkya18TQJgiAIgiAIgiAIomNplcMNAIGBgVi0aJHVbUOHDsXQoUNVY1qtFnfffTfuvvvua35vt27d8Pzzz7fWLIIgCIIgCIIgCILoFLQqpZwgCIIgCIIgCIIgiGtDDjdBEARBEARBEARBtAPkcBMEQRAEQRAEQRBEO0AON0EQBEEQBEEQBEG0A0xRFMXeRhAEQRAEQRAEQRCEs0ERboIgCIIgCIIgCIJoB8jhJgiCIAiCIAiCIIh2gBxugiAIgiAIgiAIgmgHyOEmCIIgCIIgCIIgiHaAHG6CIAiCIAiCIAiCaAfI4SYIgiAIgiAIgiCIdoAcboIgCIIgCIIgCIJoB8jhJgiCIAiCIAiCIIh2QLC3AQRBEARBAOXl5cjPz4fRaKwf0+l0CA4Ohru7ux0tIwiCIIj25cKFCzhz5gwqKytV435+fhg/frx9jLIR5HC3I4qi4MiRI0hLS0NVVRUURanf5u/vj5tvvtmO1tmOAwcOYNeuXcjLy4PBYKgfd3FxQUhICMaOHYvExEQ7Wtg2nPkB0FXoCr9hbW2txXPGzc0Nbm5udrSq7bz++uu44YYbkJSUZLGtoqICb7zxBt588007WGY7CgsL8eWXX+L48eNWt3Mch4SEBNx7773w9fXtYOtshzPchzt27EBRUVGT23meR2BgIBISEuDi4tKBlrUvXWU+U1xcjH379iEvL89i4Ss0NBTDhw+Ht7e3HS1sG+Xl5Th37hwqKytVv6Gvry/69+9vR8tsg7Oe3/79+zFs2DAwxiy21dTU4LPPPsNf//pXO1hmG2RZxn/+8x/s2bMHwcHBFu85f39/h3lHNAU53O2EwWDAO++8g8zMTPTq1cvi4pFl2U6W2ZaPP/4YJ06cwPjx4zF48GDk5eVh586d6N+/P6Kjo3H27Fn84x//wMiRI/Hggw/a29wW0RUeAABw6dIlLF++HGlpaRYT4eDgYHzwwQd2sqztdIXf8OTJk/jhhx9w4cIFi22+vr74+OOP7WCV7UhNTUV6ejrOnTuH2267TTXhqK6uxsWLF+1oXdspLS3Fiy++iH79+uHtt99GcHAw8vLysGbNGjDGcNdddyEjIwMrV67ECy+8gNdff93hJvzOdB+ePn0ahYWFqrGioiLk5+fD3d0dYWFhyM/Px5dffok//elPVheKHI2uMp/ZsmULvv32W0RGRiI4OBj5+fk4f/48+vfvD61Wi4MHD+LHH3/Evffei3Hjxtnb3BazfPlyrFmzBhzHWTxDAgMDHdohBZz7/P75z38iOjoaQUFBFttyc3ObXKx1FDZs2ICTJ09i8eLF6NGjh73NaRfI4W4nVq1ahZKSErzzzjvw9/e3tzntwu+//46zZ8/i7bffVr2AZ8yYgVdffRWTJk3C9OnTkZWVhTfeeAObN2/G5MmT7Whxy+gKD4Ds7Gy8+OKL6N+/P+655x6LiZSnp6edLLMNzv4bpqWl4Z133sGUKVOsRj8dPbpdx6OPPoqlS5ciKysLf/nLX+Dh4WFvk2zGihUr0LNnTzzyyCP1YxEREXjooYewZMkSbNu2DbNmzUJ8fDzeeOMNLF++HH/4wx/saHHLcab70HzhuLCwEC+++CLuvPNOTJ06FRzHQZZlbNmyBf/617/g7++Pnj172sla29AV5jMnT57E999/j0WLFmHAgAH14ykpKfjvf/+LF154AX5+fvjtt9/wxRdfwN/fH/Hx8Xa0uGVs374dmzZtwqOPPorExESrkVJHxtnPrykKCgrw448/OvRiAmDKHFqwYIHDvx+uBTnc7cTevXtxyy23OO3LCQC2bt2KefPmWUzyfXx8MHfuXCxfvhzPP/88oqKisGDBAmzZssWhHO6u8ABYtmwZEhMTVZN9Z8LZf8OVK1di8uTJuOuuu+xtSrsSERGBxYsX41//+heeffZZPP74407zmx45cqTJ7J8bbrgBX331FWbNmgVBEDBnzhx8/vnnHWxh23Hm+3D58uVISkrC9OnT68c4jsMNN9yAK1euYNWqVVi0aJEdLWw7XWE+s3btWsyaNUvlbANAfHw8Jk6ciB9++AGPPPIIpk6diuLiYqxevdqhHO7ffvsN8+bNw5AhQ+xtSrvgjOf3+OOPIz8/X/XZGjExMXj44Yc7yqx2IT8/3+EXJq8HOdztRElJCbp162ZvM9qV3NzcJm+Q6OhofPPNN/WfY2NjsXTp0o4yzSZ0hQfA6dOn8dhjj9nbjHbD2X/Dc+fOYd68efY2o0Nwc3PDk08+iWXLluHVV1/Fvffei9jYWHub1WYqKyvh4+NjdZuPj4+qXtjf39+i7MMRcOb78NixY00+Q0eNGoV33nmnYw1qB7rCfOb8+fNYuHCh1W0DBgzA+vXr6z8PHz4cW7Zs6SjTbEJOTg769etnbzPaDWc8v0WLFqGiogKKouD111/HQw89BD8/v/rtjDH4+PggJCTEjlbaBi8vL1RXV9vbjHaFHO52ws/PDyUlJYiIiLC3Ke2Gi4tLk5O/yspK8Dyv+uzq6tpRptmErvAAMBqN8PLysrcZ7Yaz/4aKojhN2nhzqYuUfvrpp+jbt6+9zWkz/v7+yM7OtvquyM7OVtUiXrx4EYGBgR1pnk1w5vtQr9c3eQ9qNBpIktTBFtmerjCfAaAS2TIfF0Xxuvt1ZlxcXFTn4Gw44/k1vt+io6MxaNAgp+1WMWbMGGzevNkpFtGbgvpwtxNTpkzB+vXrHfLB3Fz69u2LHTt2WN22c+dOxMTE1H/esWMH4uLiOso0m1D3AHBmevbsibNnz9rbjHbD2X/Dvn374sSJE/Y2o90xr8cbMmQIXnnlFeTk5Dh8rd6IESOwcuVK6PV61bjBYMCqVaswdOhQACYl2lWrVmHUqFH2MLNNOPN9GB4ejlOnTlnddurUKadwUrvCfCYqKgrHjh2zuu348eMIDw+v/3z06FFER0d3kGW2ISkpCXv27LG3Ge2Gs5/f4sWLm3S2ZVnG3r17O9gi29K7d28kJyfjww8/xLZt27Bz507V/06ePGlvE9sMRbjbCRcXF5w5cwYvvfQS4uPjIQjqf2pfX19MmDDBTtbZhrlz5+LFF1+Ej48PZs+eDVdXV9TW1mLNmjXYvXs3XnzxRQCmOuGDBw/ijTfesLPFLaN3797YuHEjPvzwQwwcOFAVsQccv80EACxcuBAffvghevbs6ZQpg87+G95555149dVXERYWhoEDB4LjnG8N9YEHHkBAQIDFeHh4OBYvXtyks+MozJ49G8nJyXj22Wcxffr0enXkTZs2QVEUzJs3D7Is4+WXX4abmxtuvPFGe5vcYpz5Ppw8eTKWLl2KuLg41TP0woULWLFiBe699177GWcjusJ8Zvr06fj444/Rs2dPVR33qVOnsHr16nqhwhMnTmDt2rUOV5c/ZswYvPnmmxAEweo96OXlpVpUcDSc/fyuRXZ2Nj7//HOMHDnS3qa0mvXr18PLywuZmZnIzMy02O7oKvMAwBRnXrK0I59++qlF65DG+Pv7489//nMHWtQ+pKSk4NNPP0V5eTk8PT1RUVEBDw8PPPDAAxg8eDBkWca7776Lm266SRXxdgRee+01FBQUNLk9MDAQzz//fAdaZHtef/11pKenQ5Ik+Pj4WLykHP0cnf03XLRoEXJzc5vcHhQUhCVLlnSgRR1PQUGBQ6ZZN6a2thYrV67EgQMHUFJSAh8fHyQlJeGmm26qT1fev38/EhISoNVq7Wxty3H2+/CLL77Azp07kZiYWN/WLTk5GRMnTsQ999xjb/PaTFeZz6xatQrLli1DdHS0qi3YjTfeiNtuuw2yLOP//u//MG/ePJVIniPwxBNPIC8vr8ntjv6ucLbz2759O4qLi6+7n8FgwKFDh9C9e3c8+uijHWAZ0VrI4SbajCzLSE9Pr58oxsTEWDhuROfk5MmTKCkpaXK7j4+PhWor0Xm4fPkyysvLm9zu6enpFCmtTZGfn49nnnkGX3zxhb1NIbo4J0+exL59+1BSUgI/Pz+MGjXK6UScugLZ2dk4ePBg/Xxm6NChqswFWZadMpOI6Fx88sknzXK4XV1dERMTg6lTpzrkYmxXghxuotUYDAa6wQmCsCnXW0Sow2g0Ytu2bSgoKMBrr73WAZa1DwcPHkRiYqJTL1LSu4IgCIK4FpWVlVi5ciUOHz6MqqoqvP/++/D29salS5cQGRlpb/PaDNVw24iioiLodDp4eHjY25QO46mnnsKLL75o0YfbmXD2B0Ad5eXlOH78OCorKzF16lSnWsHvCr/hhQsXkJycjMrKStx+++3QaDT2NqnVvPfee6reo03h4uKCmJgYh+8h/5///AdvvvkmgoKC7G1Ku9EV3hXORFecz3z00Ue4//77nfacX3zxRfztb39z6q4koiji999/x5EjR1BZWYnnnnsOHh4eqKysdKrfVVEUlJaWqjoguLm5OXTHktLSUrzwwgsIDQ3FwoUL8cknn6C6uhre3t745JNPMHPmTIwePdreZrYJcrhtxEsvvYSgoKB6oTBnr1kDgOLiYlRXVzvtJKorPAAAYO3atVi+fDlCQkJw5coVDBo0CKGhofjss88wf/58+Pv729vEVtMVfsMvv/wSu3btQr9+/XDixAnccMMNCA0Nxdtvv4077rjD4VLKHanOzlZUVlY6tcPdFd4Va9euxZkzZ1BZWalS83bEd31XnM8cPnwYt9xyi1M5Zo3JyspCVVWV0zrcNTU1WLx4MURRxLhx4/Dzzz/XawotXrwYt99+OwYNGmRvM9tEVVUVli5dir1798JgMKi2+fj44F//+pedLGs7P/74I6KiourFCD/55JP6bRMnTsSWLVscfq5GDreNmDVrlqpf6pw5c65bG+vohIeHIzs722mVH7vCA2DPnj1Yu3YtnnnmGcTGxqoEfiRJwqpVq+rVWR0RZ/8NN23ahGPHjuGNN95AaGio6vcLDg7G6tWr8fDDD9vRQuJ6DBgwACdPnnS4NkMtwZnfFUVFRXj++efh7++PoUOHWiwqOOK7vivOZ3x9fVFUVISQkBB7m9IuBAUFITc3F6GhofY2pV1YtmwZdDodXn31VQiCgJ9//rl+26hRo7Bx40aHdrhramrw4osvwtPTE48++mi9OOPatWshiiIef/xxe5vYJo4fP46//OUvVrf17t0bS5cu7WCLbA853DZi6tSpqs+OLl/fHObOnYsVK1agX79+8PT0tLc5NqcrPADWr1+PW2+9FbGxsRbbRo8ejc8++8wOVtkOZ/8Nt2zZgltuucXqJGrYsGH46KOP7GBV+7B7927s2bMH+fn5EEWxftzRo2tz5szBe++9Bw8PD8TFxVm0XHL0VEHAud8VP/30E7p164annnrKaUpxuuJ8ZsKECdi0aRPi4uLsbUq7MH36dKxduxbx8fEOXXLUFAcPHsQDDzxg8fwEgLi4OKxevdoOVtmOVatWwcPDAy+++GL9c6auHejixYuxf/9+h1POb4xer4erq6vVbQaDwSmuWXK4O4CioiJUVFQgKirK3qbYlMOHD6OwsBCPPfYYIiMjLR50fn5+eOihh+xkXdvpCg+AnJwc9O7d2+o2Hx+fZolXdWac/TcsKChosn+6u7s7amtrO9ii9uGjjz5CSkoKxo0bhyFDhiAvLw87duxAcHCwQ08yAOCdd95BWVkZvvzyS6vb68ofHBlnflecOHECDz30kNM42y3FYDDg119/xaxZs+xtSpvw9PTE6dOn8fLLL6Nfv35O12u8qKgIFy9exN/+9jfExMRYPb9bbrnFTta1naqqqiYzLRhjYIx1rEE25sCBA7jrrrssnjMcx+HGG2/Ejz/+6NDvwm7duuHkyZPo0aOHxTZnyQAjh7sdSUtLwzfffIOLFy8CAD788EMEBgZi27ZtGDVqlMOrtsbGxiI4OLjJ7Y6eZtYVHgDu7u4oKSmx6rTl5uY6dP024Py/obe3N/Ly8qz+fpcuXXKKuuDff/8d6enpePPNN1XX47Rp0/Dyyy87vKPz7rvvorq6usntTS0YORLO/K6ora2Fn5+fvc2wGxcvXsSqVasc3uE+c+ZMfVAkPT3dYrujO9wAMGTIkPr/Nm9QJMtyR5tjU0JDQ5Geno7u3btbbEtLS2tyYdpRKCkpafIZGhwcfE2NBUdg5syZ+OSTTxAUFIThw4fXj588eRIbNmzAE088YUfrbAM53O1ERkYG3n77bcyePRvPPPMM/vKXv9SnQe7duxdlZWWYO3eufY1sIxMnTrS3Ce1KV3gAJCQkYNWqVYiPj1e1JZJlGevXr0dSUpIdrWs7zv4bjhgxAsuWLUO/fv3g7u5eP15bW4s1a9Zg1KhRdrTONmzbtg0333yzxeKPn58f5s2bhzVr1mDw4MF2sq7tuLu7q347Z8SZ3xURERHIzs52OHHCa7F8+XIUFRVddz+j0YiUlBSH1sGow1EzLJqLI0evm8MNN9yAH374AVFRUaqsvezsbKxZswb33XefHa1rO76+vsjLy7P6nMnLy3P4Up2hQ4diwYIF+OSTT/Ddd99BFEW89957KC4uxt133+0UpR7kcLcTy5cvx5QpU3DTTTdZbJs0aRJ++eUXh3e4nZ2u8ABYsGABnn/+eTz//POYMmUKAFOK5KFDh1BdXe3w16iz/4bz5s1DSkoKnnrqKYwdOxaKomD79u04cuQIvL29MXPmTHub2GZycnLQq1cvq9t69uyJb7/9toMtah8OHz5c387moYcegouLCxRFcfhUyMbIsoz09HRUVFRg6NCh9jbHJtxyyy345ptv0LdvX5XQmCOjKIpFBNQanp6euPfeezFs2LAOsIqwFc5Y5jhhwgRcvHgRr7zyCnr16gVJkvDFF1/g3LlzmD59usNfo0OHDq1fXG6c1SXLMtatW4eEhAQ7WmcbZsyYgVGjRuHYsWMoKyuDj48PBg0a5DTK+uRwtxNnz57FggULrG4LDw9vVp/Zzs727dtRXFzc5HY/Pz+MHz++4wxqB5z9AeDp6YnXX38dv/zyC1auXAkA2LBhA5KSkjBv3jy4uLjY2cK248y/oVarxcsvv4xff/0VR44cQWBgIM6dO4fJkydj8uTJqqwFR8XV1RUVFRVWt1VVVTl8Hb4oivjggw+QlZWFpKQkHDt2DCUlJQgNDcVzzz2He++9FzExMfY2s83s27cP33zzDURRRG1tLd5//30EBwdj+fLlmDZtmsO2Y9q7dy+Ki4vxxBNPoFu3bhb3nL+/P/785z/bybrW0dTcxZm5fPnyNTVLvL29ERYW1oEW2R5nL3O85557MHbsWCQnJyMyMhI+Pj64++67HT6dHABuuukmPPfcc3j11Vcxd+5cBAcHIz8/H6tXr0ZRUZHDZ+vV4e3tjXHjxtnbjHaBHO52gud5GI1Gq9vKysocdnLRmNTUVAuHWxRFXLhwAYBJJdnRHW7AuR8AAODh4YF77rlH1VLK2WjqNywoKEBgYKAdLLIdgiBg5syZThHNtkZcXBy2b9+Ovn37Wmzbvn27VYV9R6JuwvTOO+/Aw8MD27Ztq982cOBArFu3zuEnU8ePH8fnn3+O+++/HyNHjsR9991XXzN68eJFrFmzBgsXLrSzla0jNjb2ms8QZ6jv/v777zF//nynWIBtivfee++agZCQkBC8//77HWiRbekKZY4A0KNHD6uaLY6Om5sbFi9ejO+++w5LliyBKIoQBAFDhw7Fo48+6vAp5XUYjUYcPXoUeXl5Kh9Kp9MhJCQEAwcOtKpE7wg4ptUOQGxsLHbt2mV1Mrh7927Ex8fbwSrb0lTNU0lJCV577TWMHDmygy2yPTt37lRFQzdu3IjU1FQMGjQIkyZNsrN1RFvIz8/HM888gy+++MLeprSJqqoqVQ1wUVERzp8/j5iYGKdIcZ07dy5eeOEF+Pj4YM6cOXBzc0NtbS1WrVqF/fv345VXXrG3iW1i586duPPOO60uwg4ePBhbtmyxg1W2ZdWqVZg7d67VWt9x48bhu+++c1iH2xkWla/Hb7/9hsmTJzu1w71kyRKLMUmScPToUXz55Zf4+9//bgerbEdXKHM8deoUevbsWX+dHjp0qH6+NnDgQDtb13Y8PDzw4IMP4k9/+hMqKirg6enp8KKhjTl69Cg+/fRT8DyPgIAAFBYWoqysDD169IAkSbhy5Qrc3d3x5z//2SFbFZLD3U7Mnz8fL7/8Mniex4wZM8AYQ1VVFX7++WccPnwYr7/+ur1NbDd8fX0xf/58/PzzzxgwYIC9zWk1O3fuxFdffVX/Il6/fj3WrVuHESNG4KeffgLP804x2SovL8eePXtw5coVVX9jwBSdcaT0wuulBdZhNBqxbds2q/2rHYnLly/jlVdewfPPP49u3bohPT0db731FjiOA2MML730ksOLOYWHh+Ppp5/Gv//9b2zcuBGenp6oqKiAj48PnnzySauqtI5EWVlZk+qzWq3W4p50RLKysprMoAkKCrpmaRJhf+q6WVxLad4Z4Xm+vg3hd999h0WLFtnbpFbj7GWOR48exYcffoj33nsPLi4u2LlzJ77++mvExcXhww8/xCOPPILExER7m2kTOI5zisX0xpw/fx4fffQR7rzzTkyYMAEcx9Vr0vz22294/vnnwRjDypUr8d577+Hll192uEwGcrjbie7du+OZZ57BV199Vf+Qfumll9CjRw88//zzTv/i6tatG7Kzs+1tRpvYtGkT5s2bV9+yZvPmzfjjH/+IxMREREVFYePGjQ7vcGdlZeGNN96Au7s7oqOjLephmyOc05m4XlpgHS4uLoiJicEjjzzSAVa1Hz///DP69u1bX6NWF8W47bbb8NVXX+Gnn35y6EliHTExMfjggw+Qnp6O4uJi+Pr6IiYmxilW9wMCAnDhwgWrdYbnz593+LpRwHS/VVVVWd1WVFTk8JNHURSxbt067N69G/n5+ZAkqX5bUFCQ1eipIzFq1Cjs3LnT4cs3Wkv//v2xYsUKe5vRJpy9zHH16tWYPn16fXnHhg0bcN9992HMmDHYtGkT1q5d6xQO94ULF3DmzBlUVlaqxh1dM2nlypWYPHmyKnOUMYYJEyYgNzcXP/30E+6//37ccccdqKqqwooVKxxubkMOdzsSExODN998EwUFBSgtLYWPj4/D14s2l5KSEodPP7ty5Uq9inVpaSmKi4vr05Kio6ORk5NjT/NswrfffotBgwbhwQcfdArnxdEnti3l9OnTePTRRwEABoMBaWlp9YsIY8eOxdtvv21P81rF119/jYULF9YL+Bw6dAhDhgwBYwx9+vSxs3W2Z9y4cVi2bBn69Omj6pteUlKC1atXY/bs2Xa0zjb0798fmzZtstoVYPPmzQ7d1k0URbz++usoLS3F9OnT68WMNm7cCA8PD9x///32NrHNxMTE4LPPPoNer7doIQmY+qg7cjbb9aitrXX4bgHOXuZ48eJF3HHHHQCAyspKXL58uV6ZvF+/fvjpp5/saV6bkWUZ//nPf7Bnzx4EBwfD19dXtd3f39+hHe709HTMmTPH6rahQ4figw8+qH+WTpgwAe+++25HmmcTyOHuAAIDAy0c7fLycqdQSW6KjRs3OmSNRWNcXFzqhX3S09PRs2fPerGGiooKhxVuaExmZibuvPNOp3C2uyJGo7E+AyMrKwuBgYH1zxWe52EwGOxoXevYvXs3hg8fXj8x/PDDD7FkyRKVM+pMzJw5E+np6XjmmWeQkJAAWZaxcuVKpKSkID4+3im0IhYsWIDnnnsO77zzDqZPnw4AuHTpElauXInMzEz86U9/srOFrWf9+vWorKzEG2+8AVdX1/rx0aNH4+WXX8bFixcdvv3Sxo0b4ebmhoyMDGRkZFhs9/f3d2qH+8CBA4iOjra3GW3C2cscBUGon5OdPXsWUVFR9Yu2er3e4ec4GzZswMmTJ7F48WKHS6VuDkajsUmVfK1Wi5qaGtXnxllEjoLjewydlHfffRcPP/ww3NzcLLYVFxdj0aJF+Oqrr+xgme1ISUmxqL0rLS3F4cOHUVBQgMWLF9vJMtvQr18/rF27FvPnz6+v3a7j9OnT6Nmzpx2tsw0eHh4WqUnOyO7du7Fnzx7k5+eramIDAwPx/PPP29GythEeHo5Tp04hIiIC+/btU0UQs7OzHbJ0pX///vjpp5/w17/+tX4xwZnhOA6LFi3CwYMHceTIEcTFxYHjOPzxj390it6qgOk+W7x4Mf73v//hnXfegSzL+Oc//4nExES8+uqrDr34vHv3bsybN0/lbAOmdnZz587FunXrMHbsWDtZZxtefPFFe5vQ7lRXV6O6ulo1VlpaioMHD2Lz5s14+umn7WSZbXD2MseePXti69atuP322/Hrr7+qsmYyMjIcvjXYjh07sGDBAqd0tgEgIiICp0+ftvo7nT59GiEhIfWfU1NTERkZ2ZHm2QRyuNuJY8eOoaKiwqrDfe7cOZWqsKOyatUqFBQUqMbc3d3Rp08fPPbYYw7fDuW2227D22+/jWeeeQbx8fG44YYbAJjUrdesWYO//OUvdraw7YwdOxZLly5FSEiI00YQP/roI6SkpGDcuHH1Ajg7duxAcHBwfbTNUZk1axY++eQT7NixA3l5eXjjjTcAmNLL16xZU59S50jce++9+Mc//oFHHnmkvrZ38eLFTUYoHH3RpI6kpCQkJSXZ24x2Izg4GH/7298gSVK9wq4z9IkvKChocvIXGRmJK1eudLBFRGt46qmnrIr3RUZG4oknnrDaltDRcOYyx1tvvRVvvPEGtm7dioiICEybNg2AqTRn5cqV9enmjkp+fr5TBHmaYuLEiVi6dCn69eunep5mZ2djxYoVmDdvHgBT6cCKFStw33332cvUVkMOtw05efIkSkpK6j8fPnzYojdeQUEBfv31V6eoy3OGSe61CAoKwvvvv2/RdsnDwwN/+MMfnEKAY968eThx4gQef/xxeHt7W4imOboz8/vvvyM9PR1vvvkm/P3968enTZuGl19+2eHTzIYNGwYfHx+cP38eAwcOrI9SFBYWwtvb2yF7c3t7e+PFF19EVlYWcnNz8c9//hNTpkxpUljLvJbNkSkuLkZJSQn8/Pyc6rw++eQT9O3bF2PGjIEgCE6VueDh4YGSkhKr3QBKSkosIt+OSmVlJVauXInDhw+jqqoK77//Pry9vXHp0iWHjDaZ89Zbb6ki3IwxeHh4OLwWjTWslTk6OlFRUfjoo4+Qm5uLiIiI+vRyjuMwbdo0jBs3zs4Wtg0vLy+LDAxnYvz48Th79iyef/55JCYm1mthJCcnY8iQIZg6dSpkWcarr76KcePGOWTbYaY4mgxxJ2bx4sUoLCwEYJrw+vr6qlbwGWPw8fHBuHHjMGHCBHuZSRD17Ny5E5999hlGjhyJPn36WDjcji6G8+yzz2LKlClWxUS2b9+OHTt24KWXXup4w4hm8+ijj+K1115z6LTj63HlyhV89tlnOHv2bP1Y37598cADDzh8qicArFu3DuvXrwdjDNOmTcOkSZOcIssLAP773/+ipKQETz75pMW29957D25ubnjooYfsYJntKC0txQsvvIDQ0FBMmjQJn3zyCd566y2EhobimWeewcyZM632WCc6H1lZWcjJybFQLPf19XV43R1n5ueff0Z+fr7Dd1a5HseOHcPBgwdRUlICb29vJCUlqUqrysrKHLarBTnc7cQdd9zh1EI/jUlJScG+ffvqIzOjRo1yivSrxtTW1uL/27vvqKiu9X/8b0ZEmsDQu6iISBEEFRXECraIIBqNGlvKNX6iN/YYFVREY4slkasxV2NuYkE6EbFrImpEUMCCSFGUNkgvUsffH/6cr+MMisrM4Zx5XmvdtT6ePVnr7QeZc56z9352TU2N2DFZ6urqUrcMsMnSpUvh4eEBX19fpqPIxJw5cxAUFCR19unx48cIDAzEgQMHGEjWdl5fgVFSUoLs7GzY2Niw9sYEvOjK+vJseFNT0xYbqrDd06dP8d1338HR0RF+fn4wMjJCUVERIiIicPfuXWzatIkTs92NjY3466+/EBcXh/LycgwbNgxjxowRW3nCRmVlZVi5ciXs7Ozg7+8v+vlFRkYiNTUVwcHBrJ9N3Lt3L2pqakR7f2fNmiUquM+cOYMrV65w5sVlbW0tkpOTUVZWBj09Pbi4uHBilruqqkp0tCIXV7Nxzes9kpqamvC///0PTk5OcHJyktiOQy9M2j9aUi4js2fPhr6+PtMxZO6///0v/vrrL7i4uMDS0hJFRUX4/vvv4eXlhRkzZjAd74OlpaXhyJEjePTokcQYn8/HTz/9xECqtlNcXMyZxkzSqKmpoaqqSupYTU2NxEMH2+Tl5WHdunVYvXo1LC0tkZGRge+//x48Hg9KSkoIDAyU+rKhvbt27Rp+++03VFRUAHhxYsCECRM4sRXndeHh4bC2thbrCWFubo6FCxdiy5YtiIiIwGeffcZgwrbRsWNHjBgxAiNGjEBiYiLi4uKwaNEiDBgwAB999BFrmxrx+XysXbsW+/fvx/Lly0XXra2tERAQwPpiGwBSUlJa7FnSo0cPHD58WM6JZOPKlSv45ZdfoKqqCn19fTx9+hQHDhzAl19+yfr+Cr/++isaGhqwc+dOTvyblObx48cICwtDenq6RDNYIyMj/PDDDwwle3fSeiRpaWkhJycHOTk5Ep83MDCggrudo4JbRry8vDg78/TSpUuX8M8//yAoKEjsYenhw4cIDg5Gt27dWLnP4qX09HRs2bIF3t7emD17tsQsE9tnt4EX+9Tz8/NZ+7D7Nvb29rh48aLUFRcXL16UeiYpm4SGhqJXr16in19YWBi8vb0xdepUHDx4EMeOHRPNSrFFWloaQkJCMHnyZAwZMgQqKipISkrCr7/+ClVVVXh7ezMdsU2lpKTgq6++kjo2evRo/Pzzz3JOJHv9+vVDv379cO7cORw8eBAJCQlwdHTE+PHjpZ7V3d4ZGxtjzZo1KC0tRWlpKfh8Putn7l9VX1/f4l70hoYG1r+4BF7c7/ft24dPP/0Uw4cPB4/Hg1AoxLlz57Bnzx7o6emxumnVrVu3sHTpUs4W20+ePEFAQAAcHR0xa9Ysiee11/sptXeKuNqgvLwcsbGxuH//Pqqrq8VWlHJhBQYV3DLC1ZmnV505cwZ+fn4SxZqVlRX8/Pxw6tQpVhfckZGRGDlyJD799FOmo8jMlClTcOjQIWhra8PGxoYTXYNf5evrizVr1kBHRwcTJkyAuro66urqEBUVhWvXrmHdunVMR/wg9+7dw8KFCwG8ePBNT08X7fHy9PTE5s2bmYz3XqKjozF27FiMHz9edM3d3R08Hg9//PEH5wru2traFpuI6erqcvLYvszMTERHRyMlJQUDBw6Ep6cnrl27hq1bt8LU1BS+vr6snFHU1dUVO51DKBTi2rVrrL4PAoClpSXS0tKkHkmUlpbG+jOqgRffOyNGjMDIkSNF13g8Hry8vJCfn4+oqCjWvbx8VYcOHTjxYqQlx48fh6urK+f3OHNVSUkJVq9eDT09PfTr10/ihQkXGm1SwS0jXJx5el1eXl6LsxH29vYIDw+Xc6K2lZWVJTqKgKuOHDmC0tJSbNiwQeq4oaEhduzYIedUbcfMzAzffvst/vOf/+DkyZPo3LkzqqqqoKOjg2XLlqFLly5MR/wgjY2NohvRw4cPYWBgIGou1qFDBzQ0NDCY7v3k5ORI3Y7Sr18//PTTTygrK+PEnuaXTE1NW+z0nJuby6mtSXfu3EFUVBQyMjLg7u6OrVu3iprCOTo6YsqUKTh16hTOnj3LyoL7dU+ePMH+/ftZX3CPGzcOISEhMDQ0xIABA0TX09LSEBcXh8WLFzOYrm1kZmbC399f6pi7uzu2bNki50Rty9nZGX/++ScWLlzI+tM5pLl37x6++eYbpmPIXHNzMwoKCiRmgLW0tGBmZsZgsg9z7NgxWFpaYsWKFZz89wlQwS0zXJx5el2nTp1aPKagsbGR9bOlz58/58Sy8TdZvHgxKisrWxxn2zIsaWxsbETNYl4u97SxseHEl7qZmRnu3LkDc3NzXL16VewF2JMnT1jZ4bqurk7q8lVlZWUoKyujrq6OgVSy4+XlhfDwcDg7O4t93zx79gyRkZGsL9aAF8vmw8PD8fjxY3h6emLevHlSl1xraWlh8uTJDCRsvYsXL0o9r/l1DQ0NSExMRJ8+feSQSrb69euHyZMnIyQkBL///juampqwbds2lJaWYubMmazcBvA6oVDY4jNLx44d0dzcLOdEbWv69OkICgrCkiVL0L17d4nZbl1d3Xb/u/cmjY2NnD7JAnjx3XPs2DGpz2xsnxxJTU3F/PnzOfFc1hIquGWEizNPr3NycsK1a9ek7oO9cuUKbGxsGEjVdnr16oXU1FROnDHaEjMzM1a/FX3dr7/+imnTpok6WicmJqJv375QUlJCz549GU7X9saPH4+QkBBcunQJRUVF2LhxI4AXD/sxMTFwc3NjOCF5XUFBAcrLy0V/NjY2hoaGBlatWoVRo0bB3NwcBQUFiI+Ph4aGBicaxR07dgz29vZYsmQJ6/uX3L17t1UFt5qaGoYOHYpRo0bJIZXsjR07Fu7u7rh58yYqKyuho6MDZ2dnzhQ51tbWuHv3rtRl83fv3mX9FsDi4mKUlZVBS0sLz58/x+sHFLH9wKLu3bvjwYMHrP85tSQpKQkHDx7E1KlTMWDAAE6t8gJevGh/dTsOF1HBLSNcnHl63eTJkxEQEAATExN4eXmBx+Ph+fPnOHv2LM6dO8f6BgczZszA+vXrYWpqCicnJ06/eXv06BGSkpJQXV2NTz75hLV7vS5fvowBAwaIXgLt3LmT08fzubm5QUdHB9nZ2XBychJ9rzx9+hTa2toYN24cwwnfz40bN6SurhAKhbhx44ZY0aanp8eqGbZt27ahsLBQ6tj//vc/8Hg86Ovrw93dHT4+PlBWZv9t+uWLIC5g+5naH0JbWxuDBg3ChQsXkJWVhWfPnsHT07PFhmps4ufnhx07dqBXr15ie9IfPXqE8PBwzJ49m7lwbeCPP/5Anz59ODuLOG3aNOzcuRPdu3fnZBPY2NhYjB8/HmPGjGE6ikyYm5vjyZMnnH1hAtA53DLzzz//ICQkBGZmZqKZJyMjIzQ0NGD16tVwc3Nrcb9Qe7Vv3z6JYwpKSkogEAigqakJU1NTFBUVoaGhAZ9//rnYXi82WLJkSYsPwtKwfQnPSwcOHMDff/8NOzs7pKamYsuWLTAxMcHmzZsxffp0Vn0B7tq1C+Xl5fj3v/8NHR0dTJ8+ndMFNxetX78eJSUlrf48F7qXKor79+/j8uXLEAgEYkt09fX1MW/ePAaTvb/4+HgMHz6cc+fEZ2dnIyYmBnl5edDX18eECRNgbW2N9evXo6qqCl26dEF2djY6duyIwMBA1s10//XXX3j69KnYteTkZDx+/BhOTk4wNzdHYWEhkpKSMHz4cMyaNYuhpG1j9uzZCAgI4ESDOwAIDg6GQCAQu1ZeXo7m5mbo6OhIbA9g+31i7ty5WLVqFas75b9JamoqDh06hICAANavgmoJ+1+dt1NcnHnq2bPnGxv4dOjQAfr6+nBxcWHl3ue37Wd+HRf2N8fHx+PWrVvYuHEjTExMxB4qjIyMEB0djf/7v/9jMOG7mT17Nnbt2oWvv/5a9KUdFBTU4ht9tt+EX6qsrERKSgqqq6sxatQoVs9gBAQEvPN/IxAI6KVKO3f48GGcOnUKffr0QdeuXSEQCJCUlAQLCwtWP0QeO3YMffr04cSqtZfu3buHzZs3w8PDA97e3sjPz8fWrVsxaNAgqKioYOvWrVBWVkZDQwM2b96MsLAwzJ07l+nY7+Tu3bsSBbeqqip69OiB2tpaZGZmwsDAACtWrICdnR1DKduOhoYGnj17xnSMNuPj44OysrJWf57tXa6VlZVZ3xfpTa5cuYLS0lIsXrwYlpaWEn9XPT29Fo/PZAsquGWoZ8+eEvtGTU1NsWrVKoYSfZihQ4cyHUGmuLafuTXOnTuHjz/+GCYmJhJjbm5u2L17NwOp3p+2tjYCAgLw8OFDFBYW4scff4S3t3eLb0y5sA8qNjYWYWFhMDY2Rn5+PpydnWFiYoKff/4Z/v7+nDoPuCXffvstNm/ezOozZp8/f47Kyko0NjaKXVdXV2flC8xXXb16FRcuXMC6detgZWUlup6bm4uNGzey+rSAjh07oqqqilMFd2hoKCZOnCjWP6Bnz5748ccfsWzZMtE2BxUVFYwfPx6//PIL6wputq6oeF9eXl4ICwtD165dWf99Arw41UCRODk54caNG2Lfn1xia2v7xvs3F/Z3U8HNgOrqaoSEhGD58uVMRyFvUVZWBjU1Naiqqopdb2pq4sTeyuLi4hb3O2loaLC2I7SVlRWsrKxw+PBhDBkyhHXLHVsrISEBsbGxWLlyJWxtbcVWKDQ3NyMqKgqfffYZgwnlo7GxEU1NTUzHeC9CoRBhYWE4e/YsampqJMb5fD5++uknBpK1nVOnTmHixIkSD4uWlpbw9fVFREQEvv32W2bCfaB+/fohMTER1tbWTEdpM9nZ2RIFdN++fcHj8SQeio2MjMSaAJL2KS8vDxkZGVi4cCHMzc0lnl+4MIPY0NAAZWVlVq/waomfnx/Wrl0LLS0tODk5ScwAs/3FLNcn9AAquBlx69YtPHz4kOkYbaKyshIJCQnIz8+XeOBl+zETT58+RUBAAD777DO4urqKjS1evBjz58+X2qGdTbS1tVFUVCS16H78+DHrl+m+bYb++fPnUFJSklOatnfixAlMmTJF6r9DDw8P/PzzzwykIu8iLCwM58+fx/Tp09GjRw+JhoVsfoh66fHjxy3OgNrZ2SEsLEzOidqOh4cHdu7cCSUlJdjb20sUMmw8H7epqUliT/rLQub1YuZls1SuqKysRFZWlsQ5x3w+n9Wzqvb29jA2Nm5xnO0ziFVVVVi7di0+/vhjidM5Vq5cia+++orVzdQ2btyImpoaHDp0SOo4F17Mch0V3G1kw4YNEg3FpGlsbERNTQ3mzJkjh1Sy9fDhQ2zcuBEaGhro1q2bxIMi22/CoaGhsLW1lSi2gRcPWREREfjuu+8YSNZ2Bg4ciOPHj8POzg4aGhqi63V1dYiJiYG7uzuD6T7cwYMHMX36dKkNjSoqKrBy5UqEhIQwkKxtFBQUoEePHlLHdHR03qknAWHGxYsXMXv2bNY1mXwXL/f7SsP2IzL37duH6upqxMbGIjY2VmJcX18fu3btYiAZeVdhYWGIiYkBj8eT2IZkYGDA6oKb6zOIYWFh0NPTQ//+/SXGbGxscPz4cSxZsoSBZG1jy5YtUldAvcS2F7MvTyJ5ue22trYWtbW1LX6e7TP4ABXcbcbHx6dVy6rU1NTQvXt31r9NBIDffvsNzs7OmDdvHieX8KSmpuKbb76ROubi4oJTp07JN5AMTJw4Ebdv38aKFSvg6emJ58+f4+LFi0hOTmZtc79XnT17FmPHjpW6vzI3N1esUzIbaWhooKysTOqb+8LCQoXYv812z549k9pDgUtsbGxw9epVqcuur127xuqmaTt37mQ6gkyweeXP+7h48SLi4+OxcOFCuLq6Ktzfn+2SkpIwb948qT+3gQMHYvv27QykajtvKzjr6+vlmObDHThwAPr6+li/fj0AYPny5W9sgseFGXwquNtI7969mY4gdzk5OZgxYwYni23gxReYpqam1DG2nlP9OhUVFaxduxanTp1CcnIyDAwMkJWVhZEjR2LkyJGs7IqZl5cnNrOblZWF0tJSsc8UFxcjPDyc9W/9XVxcEBUVBQcHB7GflVAoxIkTJ6S+7SftS/fu3ZGUlMTqxmFvM2HCBAQFBcHY2BgjR44UPRSfO3cOZ86cwYoVKxhOSF7F4/Gknu7Q1NSE4OBgse+a5uZmTvQzOX36NCZOnIi+ffsyHUVmuLwFsLq6usVO5BoaGqzt8fEmjY2NSEhIwOnTp1FeXs6q1XqLFy8We4HAtRl8adj/LdnOPXv2DMnJySgtLQWfz2ftkVnSaGpqorq6mukYMmNmZob79+9LPYf69u3bnHlAVlZWxrhx41g/m/3S1q1bxbZ37NmzR+IzfD4fnp6e8Pf3l2e0Njd58mSsXr0aq1evhre3N4AXKzMSExNRW1sLX19fZgOSt5o2bRo2btyIoqIi2NjYSLzMY/veUQCwtrbG/PnzsX//fkRGRsLQ0BDFxcWora3F559/zoljl+rq6nDz5k2JM8Z1dXVZ92JvxYoVEi8p34QLK/YKCgo48e+wJVzfAmhkZIRHjx5JfV578OAB6/oovMnTp09x5swZXLx4EXV1dejfvz/ruu6/vtqJC0vG34YKbhn6559/8PPPP6NTp07Q19fH06dPcfDgQXz++ecYOHAg0/E+mKenJw4fPgxjY2PWN9eSZtSoUfj999/RtWtXdOvWTXQ9PT0dERERrPuCkyY+Ph7Dhw+XuseZrV5d4jl9+nT88MMPnDqy51WdO3dGcHAwwsPDERkZCQCIi4tD//79MXHiRInu+qT90dXVBZ/Px+XLl5GWlibxIMz2vaMvubm5oXfv3khKShJ7Af1q7wi2unHjBvbu3YuOHTvCwMAAT58+RUVFBfT19dG9e3fWFdwODg5MR5A7VVVVTs6CvsT1LYBDhw4V9d15dStVYWEhwsLCWD17/1JaWhpOnz6NW7duoXPnzqitrcXatWtZvSXnJS4+i76OCm4ZycjIQEhICGbOnIlhw4aJOnleuHABe/fuhb6+fovNjthi4sSJSE1NxaJFi6CtrS31QXH16tUMpftwgwcPxpMnTxAQEABra2sYGBiguLgYWVlZmDRpEvr168d0xA927Ngx9OnTh7MF6UcffcSJ2Zc30dTUxKxZs8SOBFM0hoaGrC3cfvvtN3Ts2JHTL4ZeUlNTQ//+/XHhwgVkZmaitrYWnp6eUFNTYzrae8vOzsZPP/2E6dOnY8SIEaJ7/fnz5xEZGYkZM2YwHZG0Qv/+/ZGQkMCp491exfUtgKNHj0ZmZiaWL18OFxcXGBgYQCAQICkpCR4eHhg2bBjTEd9LXV0d/vrrL5w5cwb5+flwcHDAggUL4OLigi+//LLFbY9sw/VnUYAKbpmJjo6Gt7c3RowYIbqmpKSE4cOHo7CwEFFRUVi2bBmDCT9cQkICcnJy4O7ujp49e0oU3C3tp2GTTz75BO7u7khMTER5eTl69+6NL774gjPLkzp27IiqqirOfsl98sknEtcaGhqQn58PMzMz1u3Fv3PnDkpKSlr9eT09Pdjb28swUdt79uzZG/dydejQATo6OmLNcdjcECclJQWLFy/m3O9gdnY2YmJikJeXB319fUyYMAHW1tbYsGEDqqqq0KVLF9y8eROnT59GYGAgtLS0mI78XiIjIzF8+HB4eXmJrikpKWHEiBEoLCxEaGgoJ1ZDcd3gwYOxadMmKCsrSz3nmI3Hu72K61sAlZSUsGDBAiQlJSExMRE5OTng8/lYtGgRK3ssFRQU4NSpU/j777+hoqKCIUOGYOnSpZy7T7zE9WdRgApumXnw4AH8/PykjvXv3x9btmyRc6K2FxMTg0mTJnF+n6ilpSWrz298k379+iExMZGzb/VLS0uxfv16LF68GJaWlsjLy8PGjRtRXl4OAwMDrFmzhlWdvKOioiAQCCSuP336FHw+X+Ih0dDQkHUF97Jly97YrRR4cXMeOHAgpk+fzvo3/EpKSqye4ZXm3r172Lx5Mzw8PODt7Y38/Hxs3boVgwYNgoqKCrZu3So6Kmzz5s0ICwtr8Zzu9i4jIwMTJkyQOubm5sbql0GKJCQkBHV1dYiLi0NcXJzEuKGhIXbs2MFAsrbB9S2AL7m6uko9ypVtgoKCUFFRgd69e+Prr79m7Qqu1uL6syhABbfMNDU1tbgXQUVFhfXHEQEvOj27uLgwHUMuMjMzIRAIxPZ4caGZkYeHB3bu3AklJSXY29tLdJtl+1v90NBQ6Orqil6YHD16FL1798aMGTPwyy+/4NixY5g/fz7DKVtv1apVUq/PmjULq1at4sTxUq93K21ubhZ1Xx0/fjwsLCxQUFCAmJgYBAQEYMOGDaxuttK3b1+cO3dOrE8E24WGhmLixInw8fERXevZsyd+/PFHLFu2TPQ9o6KigvHjx+OXX35hbcH9tnt9XV2dnBOR9/HDDz8wHUGmuL4F8FXl5eUSzQvZ9iyzbt06nDp1Cn/99Rf+/e9/w93dHSNGjODs5A/Xn0UBKrhlxtzcHHfu3JH6y3H37l3W/8MBXrzxzc/P5+wXAPCi0A4JCUFxcTE6d+6MqqoqCIVCqKmpwczMjPUF9759+1BdXY3Y2FjExsZKjOvr62PXrl0MJGsbt27dEi3nbG5uRlpaGrZu3QoNDQ2MGjWKs2fostnr3UpPnDgBoVCItWvXim7CxsbGcHR0RFBQEKKiojBt2jSm4n4wc3NzHDlyBIWFhejZs6fEgwafz2fd/sPs7GyJArpv377g8XgwMDAQu25kZITy8nI5pmtbb7vXc+ElGGE/RdgCWFxcjJ9//hl3796VGGPbs4yBgQFmzJiBjz/+GAkJCThz5gzOnj2L7t27Y+TIkRgwYADTEdsU159FASq4ZWbEiBH4448/YG9vL3Yjzs3NRUREBCcaqUyZMgWHDh2CtrY2bGxsWHlm85sUFBRg06ZNGDFiBHx9faGuro7a2lrExMQgKSkJy5cvZzriB+N6wVlXVwd9fX0AwKNHj6ClpSV64FdXV8ezZ8+YjEda4eLFi/j4448lClFlZWWMHz8ev//+O6sL7idPnqBXr14AXixPfp2enh7rCm5ps77Kysrg8XgSTZteNhljK29vb/z666+ws7MTOyry5b1+6tSpDKYj76KpqQlnzpxBcnIyqqursWrVKtHeZ7ZvXeH6FsDy8nIEBgbC1tYWmzdvhpGREYqKikTbsL777jumI74XFRUVDBs2DMOGDUN6ejpOnz6NX375Bb/99hsaGxtRUVHBiX3PXH8WBajglpkhQ4YgMzMTa9asgaurq+iXPzk5GR4eHvD09GQ64gc7cuQISktLsWHDBqnjbN/zFBkZCVdXV7GHeXV1dUydOhUVFRUIDw/HzJkzGUzYthoaGnDhwgXk5+fD1NSU9d2DgRezZzk5OTA3N0dycrLYOasFBQWs2r+tqAQCQYuzhMbGxm/d793eUUMtdnN3d0d2djYCAgLg4uICY2Nj0b3e3d0dw4cPZzoiaYVnz54hKCgITU1NGDJkCEJDQ1FVVQVNTU0EBQXhk08+gbOzM9Mx3xvXtwBGRETAysoKCxcuFF0zNzfH119/je3bt+PPP//EpEmTGEz44WxtbWFra4uKigqcPXsWFy5cQFBQEFxdXeHj48OpbUlcRAW3DH322Wfo378/rl69iocPH4o6Jjo5OTEdrU0sXrwYlZWVLY537txZjmna3u3bt8W+vF81ZMgQ7Nmzh5UFt6J0DwaAkSNH4tdff8WNGzeQmpqKwMBAAIBQKER8fDwnmqtwnba2NoqKimBubi4xVlRUxImlkC8JhUI8e/aMEw1yXu0iz3WffvopXF1dkZCQILrXL168mJXdkRXV8ePH0alTJ6xfvx7KysoIDQ0Vjbm7u+PkyZOsLri5vgUwOTkZ//rXv6SOeXt748CBA6wvuF/S1taGv78//Pz8cP36dZw+fRo//PADvv76a9ja2jId771xeYUJQAW3zDk6OrJ+n29LzMzMOLEXvSVvevDV0NBAVVWVnBN9OEXqHgwAXl5e0NDQEJ3PaWVlBQDIy8tDWVkZxo8fz2xA8laurq6IjY1Fnz59xJYjNzc3IzY2Fv369WMwXdsoLCzEH3/8gZSUFAiFQuzevRu6urpISUmBo6Mj687O5fF4CAoKksjd1NSE4OBgse1Hzc3NEtsF2MjOzk5sBQ1hl+vXr+OLL76Q+m/R3t4e0dHRDKRqO1zfAlhdXQ0+ny91jM/no7S0VM6JZI/H42HAgAEYMGAAhEIh5s6dK1pOzzZcX2ECUMFN2ggXukK+zsTEBFlZWbCwsJAYy8rKkmj+wwaK1D34pUGDBmHQoEFi1ywsLBRizxAX+Pv7Y9WqVQgKCoKvry8MDQ1RVFSE6OhoVFRUYOLEiUxH/CAFBQVYs2YN+vfvj7Vr12LdunWor68HAISHh6OoqAje3t4Mp3w3K1aseKcHXF1dXRmmkR8u3gcVRU1NTYurZZSUlFi/YoPrWwANDAzw+PFjqSuhnjx5wpnvmJbweDw0NzdDKBQyHeW9cH2FCUAFd5sJCwtDSUlJqz+vr68Pf39/GSaSDy51hXzd0KFDERYWht69e4t9WZeVlSEiIgJeXl4Mpns/itQ9+FVCoRAZGRmoqqrixIyoItHU1MT69evxv//9Dz/88AOampqgrKyMgQMHYtGiRaw+Egx4cVSdm5sbvvjiC4mxkSNHIj4+nnUFt4ODA9MR5IrL90FFYWJigoyMDLHGdy+lp6ezfik217cADho0CBEREejTpw9UVVVF1+vq6hAZGQk3NzcG05G34foKE4AK7jajpKQktdNqQkICXFxcWN98ShqudoV8ycvLC3fu3MG3336LoUOHiprhXLp0CV27dsW4ceOYjvjOFKl78EtXr17FoUOH0NTUhLq6Omzfvh1GRkYICwvD6NGjWbU3KDg4GAKBQOK6tKW6wItZi5bO7mYTbW1tfP311xAKhaiqqkLnzp1Zt8y6Jffu3cPSpUuljllZWSE/P1/Oici74Pp9UFF4eXnhyJEjsLKyQo8ePUTXnzx5gpiYGMyZM4fBdB+O61sAx48fj5s3b2LlypUYO3as6Hnt5MmT6NSpE+tXQnEd11eYAFRwt5mWZquvXr2KqVOncvIsTq53hVRSUsKiRYtw6dIlJCQkIDk5GXw+H5MnT8awYcM488DPZSkpKdi/fz/mzp2LQYMGYc6cOaIlV7m5uYiJiWHVkVITJkxQyKW6L/F4PGhrazMdo00JhcIWv0tqa2vFZmtI+8P1+6CiGDZsGHJzc7Fu3TpYW1ujubkZ//3vf5GVlYUxY8Zwaoa0rKwMpaWl4PP5nLlHKCsrY82aNYiOjkZcXJzo7zdgwAD4+flJTDSQ9oXrK0wAKrjJB1CUrpBDhgzBkCFDmI7RZrjwprC1oqKi4OvrCw8PD4mxIUOGsO4MZ0VbqvuqR48e4f79+6iurha7rquri6FDhzITqg1069YNiYmJsLa2lhhLTExkdddZRaAo90FFMGvWLHh6eiIpKQkWFhbQ0dHBzJkzOfGwD7xozrh//36kp6eLrtnY2ODLL7/kxKRQx44dMWnSJPp9YyGurzABqOAmH0ARukLW1NSIdSovKSlBdnY2bGxsWDnTpmjdgx8+fIhZs2ZJHTM0NOTEv1GuEwqF2LdvHxISEmBkZCTxnaOnp8fqgtvPzw/ff/89NDU14e3tDSUlJQiFQly4cAHnz59HQEAA0xHJGyjCfVCRdO3aFV27dmU6RpsrLS1FYGAgHB0dJbY+rF27Fps2bWLdbHdubi6uXLmCqVOnil2Pjo7GuXPnUFVVBQsLC0yZMgX29vYMpSStoQgrTNj9NE0YxfWukHl5eVi3bh1Wr14NS0tLZGRk4PvvvwePx4OSkhICAwOl/t3bM0XrHqyqqoqamhqpYyUlJax8aaJo4uLikJaWhqCgIE4+CPfq1Qvz58/HwYMHERYWhqamJgQEBKBTp07497//zcm/M5dw/T5IuCE8PBw2Njb4+uuvRddebn3YsWMHwsPDpTZubK8EAgHWr18v8bI1LCwMsbGx8PHxQdeuXXH79m1s2bIFAQEB6N69OzNhSatwfYUJFdzkvXG9K2RoaCh69eol+mUPCwuDt7c3pk6dioMHD+LYsWNYsmQJwynfjaItSXZ0dER8fLzUt9tnz55Fnz59GEhF3sWlS5cwefJkTheebm5ucHV1RUZGBsrLy8Hn8zl5Vi4Xcf0+yFUtNaB8SVlZGfr6+nB3d4enp6cck8lGSkoK5s2bJ3XM29sb//nPf+Sc6MNERETA2dkZM2bMEF2rq6vDiRMnMHPmTIwYMQIA4OLigubmZkRFRbHuee1d2dnZQUtLi+kYH4SrK0wAKrjJB+B6V8h79+6JGuE0NDQgPT1d9HbY09MTmzdvZjIeaYXJkydj1apV2LJlC8aMGQMAePz4MSIjI5GTk4Mvv/yS4YTkbQQCgULMTCgrK8POzk7i+vPnzxWq7wLbcP0+yFU+Pj4oKysTu3b27FkUFhbC3d0dlpaWKCgowO+//47k5GR88803zARtI9XV1S12gdbW1pbojdHepaamYsGCBWLXXu5Nf33We+DAgaw+Y/xVlZWVyMrKQnV1tdgpMnw+HytXrmQwGXkbKrjJe+N6V8jGxkbRDerhw4cwMDAQvT3s0KEDGhoaGExHWsPAwABBQUH43//+hy1btkAoFOLHH3+Eq6sr1q9fz/q3wYpAS0sLtbW1TMeQmYMHD2L69OlSvy8rKiqwcuVKhISEMJCMtAbX74Nc5ejoKPbnGzduoKSkBMHBwTAwMBBdHzVqFAIDA3H69Gl4e3vLO2ab0dPTe+PWBz09PQZSvb+amhqJs8NzcnLQrVs3iZVBmpqaqK+vl2c8mQgLC0NMTIzU0zoMDAwk/k2zyYYNG1BcXNziOBeOOKWCu408e/asxb2iZWVl6Nixo9g1dXV1qKuryyOaTHG5K6SZmRnu3LkDc3NzXL16VWxZ8pMnT2BkZMRgOtJaRkZGWLp0KZqbm0VnONNSXfYYPHgwzp49y9lu3WfPnsXYsWOlfp/k5uaiubmZgVTkXXD5PqgoTpw4AX9/f7FiG3hRqPr7+7O+4B44cCAiIyNb3PowcOBABtO9O11dXQgEArEXCHfv3kXPnj0lPisQCFpsbMgWFy9eRHx8PBYuXAhXV1fOrXry8fFBeXm52LXm5mbcvHkTt2/fxuzZsxnJ1Zao4G4jK1asQElJidSx4OBgiWt6enrYvXu3rGO1qTt37rT4d5RGT0+P1Z0hx48fj5CQEFy6dAlFRUXYuHEjgBfLy2NiYmhvXjt09uxZ9OjRQ+pZjh06dGhxSR1pv3r06IGTJ09i586dcHJyknhZwufzWfdmPy8vD5WVlaI/Z2VlSTQzLC4uRnh4OKs7sHMVdUfmnocPH7Z49JC1tTV+++03OSdqWz4+PkhOTsaqVaswZswYUZfykydPQlVVFT4+PkxHfCeurq6IjY2Fo6MjOnbsiOTkZGRkZGDu3LkSn71w4QKcnZ3lH7INnT59GhMnTkTfvn2ZjiITvXv3lnp92LBh+Omnn5CZmcn6njtUcLeR77//vsUZbmlePWqKLaKioqQ2GXn69Cn4fL7Eg7ChoSGrHzbc3Nygo6OD7OxsODk5iWagnj59Cm1tbYwbN47hhOR16enp+OOPP6CmpgYnJyc4OzvD0dGRE6tJFNWJEyegpaWFnJwc5OTkSIyzcSnd1q1bxZbP7dmzR+IzfD4fnp6e8Pf3l2c08hbUHZmbOnXq1OIzXHV1NdTU1OScqG2pqKhg7dq1iIyMxIkTJ0RbH9zc3Fi59cHX1xfr1q3DggULoKuri8ePH2PKlCli54kLhUIcOnQI9+/fZ/0MaUFBgdQeH4pg5MiRCAkJweTJk5mO8kGUnr+6657I1dKlSxEQEMD6faSzZs3C999/L/ZFRwhTGhoacPfuXaSkpODWrVt4+vQpevToAWdnZzg7O3PmiAnCDdOnT8cPP/xAW1RYYu/evWhqahI7Xqmurg5fffUVZsyYIeqODLzYn19aWsr57shcsHPnTnTq1AlfffWVxNh//vMfNDc3i/3MCfMaGhpw7do1VFRUwN7eHt26dRMbr6iowNatWzFnzhzWv/T66quvsGTJElhbWzMdRe5yc3OxZs0aHDp0iOkoH4RmuBlUVFSEmpoa1hfcXBUfH4/hw4ez7s2volNRUREV17NmzUJBQYGo+I6IiICmpiacnJzg5OSE3r17i+1nI0TePvroIzqrmUUUtTsy102cOBEBAQHg8/mYMGEC1NTU8OzZM0RFRSExMRFBQUFMRySvUVFReeORbdra2tiwYYMcE8lO//79kZCQoJAFd3Z2tkRvBTaigpuQFhw7dgx9+vShmSeWMzExgYmJCUaPHo2GhgacPXsWkZGRuHjxIit7KSiq4uJiXL16FQKBQKyRmJ6eHqubVU2ZMgU8Hk/q2PPnz5GcnAxXV1c5pyItUcTuyIrA0tISy5Ytw759+xAXF4fOnTujqqoKenp6WLFiBczMzJiO+MGampoQExODhIQElJaWQkdHBwMHDoSvry9NLLRzgwcPxqZNm6CsrCy1l4mWlhYn/o2+Ljc3F+Hh4fDy8mI6ygejgpuQFnTs2BFVVVVUcLNcbW0tbt++jbS0NKSmpqK0tBTdu3eHg4MDZxuQcM2ZM2fw22+/oUuXLjAyMoJAIEB2djbMzc1Zv0LoX//6F7Zt2yZxzAsAFBYWYteuXaxv2MQlitYdWZHY29tj586dyMjIQFlZGXR1dWFjY8OJjtBNTU3YsGEDKioqRE3TBAIB4uPjkZKSgsDAQCq627GQkBDU1dUhLi4OcXFxEuOGhoasXk2zd+9ePH36VOxaeXk5ioqK4Obmho8++oihZG2HCm5CWtCvXz8kJiYq5BIeNhMKhcjMzERqaipSU1ORk5MDY2NjODg4YObMmbCzs2N9AxxFkpaWhsOHD2Px4sViXUpTUlLwn//8541LCtmgtra2xVnQpKQk6o3Rzihad2RFw+PxOHkE4YkTJ1BTU4ONGzeK3f88PDywdu1aREVF4eOPP2YwIXmTH374gekIMmVrayt2CpKSkhI0NDTQs2dPWFlZMResDVHBTUgLPDw8sHPnTigpKcHe3h7KyuK/LlxdwsNmP//8M65fvw4VFRU4ODhg5MiRcHR0pFkmFouNjcW4ceMkjgRxcnKCt7c3QkNDsWjRIobSvZ/Q0FCUlZWJ/nz48GGJl0DFxcV48OABFi9eLO945A0UrTuyomlubkZBQQGqq6vxak9htt/vL1++DD8/P4nvGTU1Nfj6+iI0NJQKbsIYRTj+kgpuQlqwb98+VFdXIzY2FrGxsRLj+vr62LVrFwPJSEu0tbWhpaWF0tJSVFRUoKKiAuXl5VRws1h2djamTZsmdczFxQXx8fFyTtQ2Xj8g5NU/83g82NjYYPbs2WJLlwnzNDU1ERwcLOqO/Pnnn0t0R66qqkJWVhZWrFgBPT09hpKSd3Xx4kUcO3YMlZWVEmNsX7JbXFzc4gkdFhYWKC0tlXMi8q6amppw5swZJCcno7q6GqtWrYKmpiaqq6uhqanJdDzyFlRwE9KCnTt3Mh2BvKMpU6ZgypQpKC4uRmpqKtLS0kQvS+zs7ODg4AAHBwcYGxsznJS8i5ZOr3z+/LlYAzW2eHUmKSEhAZ9++ikVZiyiSN2RFUVSUhIOHjyIqVOnYsCAAZx7SaupqYmysjKpL/BKSkqgo6Mj/1Ck1Z49e4agoCA0NTVhyJAhCA0NRVVVFTQ1NREUFIRPPvmE9dtX6uvrceHCBaSnp6Ompkbsvq+vr4958+YxmO7DUcHNoI4dO0osU27PgoODIRAIJK43NTUhODhYomuioaEhVq1aJa94hIgYGBhgxIgRGDFiBIRCIbKysnD79m1cuXIFv/32G3R0dODg4AA3Nzc4OTkxHZe8QdeuXXHz5k107dpVYuzmzZuwsLBgIFXbCQ4OpmKbEIbFxsZi/PjxGDNmDNNRZMLZ2Rnx8fFwdHSUGIuPj8fAgQMZSEVa6/jx4+jUqRPWr18PZWVlhIaGisbc3d1x8uRJVhfc1dXVWLduHerr69G7d2+J+zoXjs5kT7XHYjk5OSgqKkJDQ4PomqqqKtauXcuqs+UmTJjwTsuOuPALQkt42I/H46FHjx7o0aMHPDw8cPXqVcTExODSpUt48OABFdzt3EcffYQdO3agW7duYg8UqampiImJwfz585kL1waioqIwd+5c+j4hhEG5ubn49NNPmY4hM/7+/li5ciV2794Nf39/mJiY4PHjx4iMjERNTQ38/PyYjkje4Pr16/jiiy+kTtLZ29sjOjqagVRt5+ULhaCgIKiqqjIdRyao4Jah7Oxs7N27FwUFBaIzHYVCIfT09FBbW4tnz56hS5cumDdvXot7a9oTBwcHpiPIlSIs4eG65uZmpKen49atW7h16xby8/Nhbm6OESNGoE+fPrCxsWE6InkLJycnTJkyBdu3b0eXLl1gbGwMgUCAnJwc+Pv7o3///kxH/CA3btzAxx9/TAU3IQxSVlaWWKXHJXw+H2vXrsX+/fuxfPlyifHXu+ybmJhg27Zt8opH3qKmpqbFZf9KSkqsP7ouKSkJc+bM4WyxDVDBLTMFBQXYuHEjRo4cCR8fH6irq+PZs2eIjY3FgwcPsHz5cggEAhw/fhxBQUEICgqifaXtDNeX8HBVWVmZqMC+ffs2mpub0atXL3h7e8PZ2ZlVq0rIC2PGjEGfPn1w7do1lJSUwNnZGf/6179Y3TX4JT6fj5KSEvr+J4RBTk5OuHHjBmeOIJLG2NgYa9asQWlpKYqLiyEUClv8rJaWlhyTkbcxMTFBRkYGunTpIjGWnp7Oikm7N6mqqoKRkRHTMWSKCm4ZiYiIQL9+/TB16lTRNTU1NXz88cfYv38/wsPDMXXqVHzzzTfYvn07wsPD8X//938MJiav4/oSHi7asGED7t27Bz6fD2dnZ8yfPx+Ojo5QUVFhOhr5QMbGxvD19ZW43tjYiI4dO8o/UBsZNmwY4uPjYW9vz3QUQhSWn58f1q5dCy0tLTg5OUnMdqurq0NdXZ2hdG1LV1eXE1v+FImXlxeOHDkCKysr9OjRQ3T9yZMniImJwZw5cxhM9+GMjY1RVFTE6VM5qOCWkTt37mDhwoVSxzw9PbFnzx5RMT5mzBj8+OOP8oxHWoHrS3i4aMyYMZgxY8Y7zVIsXboUAQEB9EafhcrKyrBixQr8/PPPTEd5b507d8a9e/ewdu1a2NnZSbzg4/P5GDZsGEPpCFEMGzduRE1NDQ4dOiR1nM/n46effpJzqrbzxx9/wN/fn9NLdrls2LBhyM3Nxbp162BtbY3m5mb897//RVZWFsaMGQM3NzemI36Q8ePHIzIyktMTJFRwy8izZ8+goaEhdUxdXV3snMfOnTujrq5OXtFIK3F9CQ8Xubq6vvN/U1RUhJqaGiq424na2lrU1ta+9XONjY04ffo0tLW15ZBKdu7fvy96QZSRkSExTgU3IbK3ZcsW1NTUtDjO9tnt06dPY+TIkVRws9isWbPg6emJpKQkWFhYQEdHBzNnzmTls2hYWBhKSkrEruXl5WHp0qWwtbWVWGGiq6uLyZMnyzNim6OCW0aMjIyQnZ0t9cia7Oxs6Ovri/6cmZkJExMTecYjrcD1JTyEtEfLly9HWVlZqz5ramqKr776SsaJZIvtXdYJ4QIuLRmXRkNDA2VlZZzfJ8t1Xbt2lXpEJhu9es42ALFZ+tfHuIAKbhnx9PREeHg4nJycxJYlV1RUICIiAkOGDAEAlJaWIiIiAj4+PgwlJS3h+hIeQtqjt800vaSmpsa5zt5CofCNq6MIIbKXmZkJgUCApqYm0TU+ny/1DGu2cHd3x19//QVbW1umo5D3dOfOHXTv3l20SiExMRF3796Fs7Mz64431dbWxsSJE8Hj8ZiOIjdUcMvI6NGjkZqaihUrVmDo0KEwMjKCQCDApUuXYGJiAh8fHwiFQqxZswY9evSAl5cX05GJFFxawkMIG3B9pkmawsJC/PHHH0hJSYFQKMTu3buhq6uLlJQUODo6KtRDCSFMyczMREhICIqLi8WOclVTU4OZmRmrC24bGxv8/PPPqK+vh4ODg8SSXR0dHfTu3ZuhdORtbt68iZ07d2Lbtm1QVVXFX3/9hV9//RX29vbYuXMnvv766/faUseUX3/9FU5OTjA0NGQ6itxQwS0jPB4Py5cvx7lz53D9+nUkJSVBR0cHvr6+GDlypOjLbtGiRejWrRvDacmbcGkJDyFsVVlZiaysLFRXV4stN2P7zFNBQQHWrFmD/v37Y+3atVi3bh3q6+sBAOHh4SgqKoK3tzfDKQnhtoKCAmzatAkjRoyAr68v1NXVUVtbi5iYGCQlJUk9u5pNTp48CXV1dWRmZiIzM1NiXE9Pjwrudiw6OhpjxowRHWsaFxeHOXPmYPDgwYiPj0dsbCyrCm6Am8vG34QKbhni8Xjw8vJ64+y1tbW1HBMRQgj7hIWFISYmBjweT6JJmoGBAasL7qNHj8LNzQ1ffPGFxNjIkSMRHx9PBTchMhYZGQlXV1dMmzZNdE1dXR1Tp05FRUUFwsPDMXPmTAYTfpiAgACmI5APkJubi+nTpwMAqqurkZeXJ9rWaGdnh2PHjjEZj7QCFdyE/P+Cg4MhEAhaHFdWVoa+vj7c3d3h6ekpx2SEKK6LFy8iPj4eCxcuhKurK+eO47t37x6WLl0qdczKygr5+flyTkSI4rl9+3aLR7kOGTIEe/bsYXXBTdhNWVlZdGTkgwcPYGVlJTo+q76+npXbjrh2L38bKrjbyOnTp6Gjo4P+/fsDeNHe/tWjv16npaUFMzMzecUjreDj4yPRHfns2bMoLCyEu7s7LC0tUVBQgN9//x3Jycn45ptvmAlK2lTHjh0lzj4m7cfp06cxceJE9O3bl+koMiEUClt8WKqtraVjfAiRgzc1K9TQ0EBVVZWcE8lGUVERrl69irKyMvD5fLi5udEpOSzQvXt3nD9/Hp988glOnTqFPn36iMYyMzNZ2Vdo0aJFrf6siYkJtm3bJsM0skdPmW0kJiYGhoaGooJ7+/btKCoqavHzhoaG2LFjh7zikVZ4fVnqjRs3UFJSguDgYNG+GQAYNWoUAgMDcfr0aVrqyQGbNm0S+/mS9qWgoAB2dnZMx5CZbt26ITExUer2osTEROoqTIgcmJiYICsrS+pRrllZWZy4R8TFxeHIkSPo0qWL6Oja8PBwTJkyBR999BHT8cgbTJkyBRs3bsT58+dhbm6O0aNHAwDKysoQGRkpWm7OJvPnz4eurm6rPvv6VjI2ooK7jQQGBqJTp06iP//www8MpiFt4cSJE/D395e40erp6cHf358KbpZ4/PgxwsLCkJ6ejurqarExIyMj+l1t51RVVcWO5+EaPz8/fP/999DU1IS3tzeUlJQgFApx4cIFnD9/nvZeEiIHQ4cORVhYGHr37i1WBJSVlSEiIoL1J8ncvHkTx48fx7Jly8Sao6WlpeGHH36Aubk5nJ2dmQtI3sjKygq7d+9GYWEhzM3NRavyeDweRo8eLTpqmE2sra0V6lx4KrjbCBfefhJxDx8+xJw5c6SOWVtb47fffpNzIvKunjx5goCAADg6OmLWrFng8/li4507d2YoGWmt/v37IyEhgbMNJnv16oX58+fj4MGDCAsLQ1NTEwICAtCpUyf8+9//phMSCJEDLy8v3LlzB99++y2GDh0KY2NjFBUV4dKlS+jatSvGjRvHdMQPcuLECUyYMEGiE7mjoyN8fX1x4sQJKrjbOVVVVVhZWYlde3meNWn/qOCWkdWrV8PY2BgDBw6Ek5MT7RFloU6dOqGmpkbqWHV1NdTU1OSciLyr48ePw9XVFV9//TXTUch7Gjx4MDZt2gRlZWU4OTlJnB/LhX4Ybm5ucHV1RUZGBsrLy8Hn82FjYyPxdyWEyIaSkhIWLVqES5cuISEhAcnJyeDz+Zg8eTKGDRvGyqZUr3r48CFmzJghdczJyQmxsbFyTkSIYqEqUEZmzpyJv//+G7/88gsaGxvh4uKCAQMGoHfv3lR8s4StrS0uXryIXr16SYxdvHiR0/tKueLevXvU3I7lQkJCUFdXh7i4OMTFxUmMc6UfhrKyMn2nEMKwIUOGsHJ5bmu0dO6xop2HzFZc2h7n5ubGiX3Z74IqPxmxsbGBjY0N5syZg3v37uGff/7B/v370djYiL59+2LIkCFSCznSfkycOBEBAQHg8/mYMGEC1NTU8OzZM0RFRSExMRFBQUFMRyRv0djYCC0tLaZjkA/ApoeI91FbW4va2toWx9XV1aGuri7HRIQonvj4eAwfPlx01BLXWFlZ4ebNm1K3qNy8eVNiqTJpX7i2Pa6lI/i4jApuGePxeLC3t4e9vT0GDx6MI0eO4O+//8bdu3exe/dupuORN7C0tMSyZcuwb98+xMXFoXPnzqiqqoKenh5WrFjB+mWsiqB79+548OABzM3NmY5CiFTLly+XOI7wVbq6uvjxxx/lmIgQxXPs2DH06dOHs02cxowZg59++gndu3eHk5OT6HpqaipiY2OxYMECBtORt6HtcexHBbcMNTQ04Pbt20hOTsbNmzfB4/Hg7OwMHx8fODg4MB2PtIK9vT127tyJjIwMlJWVQVdXFzY2NlBSUmI6GmmFadOmYefOnejevTsrz6kk3Ld582aJGe7m5mbcvHkTERER+O677xhKRoji6NixI6qqqjhbcLu6usLPzw9bt25F165dYWRkBIFAgJycHPj7+8PFxYXpiOQNaHsc+yk9p80bMhESEoLExEQYGxvD1dUVLi4u6NatG9OxCFEowcHByMjIQHNzM3R0dCSaUBkYGGD16tUMpSPSBAYGwsjICPPnzwcAhIWFoaSkpMXP6+rqYvLkyfKKJ1dhYWEQCASi/18QQmRj//790NTUxCeffMJ0FJnKy8vD9evXUVpaCj6fDzc3N1qtxwJz5sxBUFAQrdZjMZrhlhEjIyNoa2ujsrISFRUVqKioQFNTEzVMY5nq6mpERkbixo0bqKmpwfbt26GtrY3Hjx/DwsKC6XjkLXx8fN64XFdHR0d+YUir6OnpSfxcFPW9cN++fbFx40amYxDCeR4eHti5cyeUlJRgb28v8azGttMQ6uvr0alTJ4nrZmZm8PPzYyAR+RC0PY79aIZbxnJzc5GUlISkpCQUFBTAwcEBrq6u6NOnD+uaHCia8vJyrFmzBiYmJhgxYgRCQkLw/fffw8TEBCtXrsS4cePg4eHBdExCCEdlZWUhODgYBw4cYDoKIZz2zTffoLi4uMVxfX197Nq1S46JPsz8+fOhp6eHUaNGYcCAATTZw3LZ2dnYuXMnli5dStvjWIoKbjkqKCjAgQMHcPfuXejo6GDPnj1MRyJvsHfvXtTU1GDJkiUAgFmzZokK7jNnzuDKlSsIDAxkOCUhhKsiIiKQkpKCdevWMR2FEMIiAoEAZ86cwaVLl6CsrIzhw4djxIgREt2tSfsUHBwMgUAgdq28vJy2x7EYvfKSsfr6ety8eRPXrl1DSkoKOnfuTDOjLJGSktJi584ePXrg8OHDck5E3ub06dPQ0dFB//79AbzYr1ZZWdni59m2TFBRKdrWjoqKCly/fh2xsbG0f5sQOWtoaMCFCxeQn58PU1NTeHp6Qk1NjelY78TQ0BDTp0/H5MmTkZCQgDNnziAmJgb9+/fHqFGj0KNHD6Yjkjd423a419H2uPaPCm4ZSU5OxqVLl5CamgoNDQ24ublh1apVsLa2ZjoaaaX6+voWb7INDQ3o2LGjnBORt4mJiYGhoaGo4N6+fTuKiopa/LyhoSF27Nghr3jkPby6tWPatGkICQlBbW0ttLW1ERISwvoXmEuWLEFhYaHE9c6dO2PGjBno168fA6kI4b7s7GzExMQgLy8P+vr6mDBhAqytrbFhwwZUVVWhS5cuuHnzJk6fPo3AwEBoaWkxHfmdqaioYNiwYRg2bBgyMjJw5swZbNiwARYWFhg1ahQGDhxIy83bIUdHR6YjkDZGv2UycurUKZiammLFihWwtbVlOg55D5aWlkhLS0PXrl0lxtLS0qjrfDsUGBgo1ijmhx9+YDANaQtHjx6FlZWVaGtHSEiIaGz48OE4d+4cqwvuxYsXS6zC0NDQgKmpKT0IEyIj9+7dw+bNm+Hh4QFvb2/k5+dj69atGDRoEFRUVLB161YoKyujoaEBmzdvRlhYGObOnct07A9iY2MDGxsbfPrppzh//jyOHz+OP/74AyNGjMDIkSNpuXk719DQAGVlZfB4PKajkPdAPzUZWblyJWbNmiVRbFdXVzOUiLyrcePGITIyEteuXRO7npaWhri4OIwfP56hZKQlBgYGrJyFIC1LSUnBmDFjpI716NEDDx8+lG+gNmZmZoZevXqJ/c/S0pKKbUJkKDQ0FBMnTsTnn38OLy8vzJo1C1988QXOnz+Pjz76SPT7p6KigvHjxyM5OZnhxG1HS0sLvr6+2LFjB1xdXREVFYVVq1YxHYu8QVVVFVauXInExESJsZUrVyI3N5eBVORd0B1dRmpqarBjxw7MmTMHZmZmKC0txZYtW/D48WNYW1tj2bJl0NTUZDomeYN+/fph8uTJCAkJwe+//46mpiZs27YNpaWlmDlzJuzt7ZmOSFrp0aNHSEpKQnV1NT755BPaDsAiXNvasWDBAlhZWcHZ2RlOTk7Q19dnOhIhCic7O1tixrpv377g8XgwMDAQu25kZITy8nI5ppOt2tpaXLp0CWfOnEFFRQW8vb0xevRopmORNwgLC4Oenp5ou9yrbGxscPz4cdEqMNI+UcEtI2FhYaiqqoKJiQmAF8si9fT0MG/ePPzxxx84fvw45syZw3BK8jZjx46Fu7s7bt26hYqKCujo6MDZ2ZlmUVnkwIED+Pvvv2FnZ4fU1FR4eXnBxMQEmzdvxvTp0+lcy3aOa1s7li1bhsTERFy6dAkHDx6EqakpnJyc4OzsDFtbW4nus4SQttfU1AQVFRWxay+X676+ZJfH44ELB/rk5ubi1KlTuHLlCnR1dTFq1CgMGTIEqqqqTEcjb5GUlIR58+ZBSUlJYmzgwIHYvn07A6nIu6CCW0YSExMxa9Ys8Hg8CIVCJCUlYf369TAzM8OECROwd+9eKrhZQltbG0OGDGE6BnkP8fHxuHXrFjZu3AgTExPMmjVLNGZkZITo6Gj83//9H4MJyduMGzcOISEhMDQ0xIABA0TXX27tWLx4MYPp3p2lpSUsLS3h7++PqqoqpKSk4NatW9i9ezeamprg4OAAJycnODk5QU9Pj+m4hBAWa25uxj///IMzZ87gwYMHcHR0xDfffAMnJyemo5F3UF1d3WIncg0NDTQ1Nck3EHlnVHDLyKuz23l5eVBRUREdP6Sjo4Oqqiom4xGiEM6dO4ePP/5Y9Lv4Kjc3N+zevZuBVORdcHlrR+fOneHh4QEPDw88f/4cDx48QGpqKs6fP48DBw7A3NwcgwYNgo+PD9NRCeEcabOFXFFWVoZz587h/PnzqK+vh6enJ7788kup90LS/hkZGeHRo0dSV+Q9ePCAjjdlASq4ZURPTw8FBQUwNzdHamqqWPO0oqIiaGtrM5iOSBMYGAgjIyPRubdhYWEoKSlp8fO6urqYPHmyvOKR91BcXAxLS0upYxoaGqirq5NzIvI+FGFrh5KSEgwNDWFoaAhjY2MUFhaioKAAjx49YjoaIZzD4/EQFBQksXy8qakJwcHBYls7mpubWdfEcNWqVVBTU8OECRNavWxcIBDA0NBQDunIuxo6dChCQ0Nha2srtvKpsLAQYWFh9CzKAuz6BmGRwYMH49ChQ0hPT8elS5fElj1evHgRvXv3ZjAdkUZPT09iyQ4X9m0pMm1tbRQVFUktuh8/fkwPFyzCxa0djY2NuHfvHtLS0pCamor8/HxYWFjA0dER//73v9GzZ0+JfaaEkA+3YsUKlJaWtvrzurq6MkzT9r7//vt3fiH57bffYvPmzRJN4wjzRo8ejczMTCxfvhwuLi4wMDCAQCBAUlISPDw8MGzYMKYjkreggltGfH19wePxkJmZidmzZ8POzg7Ai27J9+7dw6ZNmxhOSF63cOFCsT9PmjSJoSSkrQwcOBDHjx+HnZ0dNDQ0RNfr6uoQExMDd3d3BtORd1VXV4eamhqxF2Hq6upQV1dnMNW7KSgoQFJSEtLS0nD//n1oa2vDwcEBfn5+sLe3R+fOnZmOSAjnOTg4MB1Bpt5n9U9jYyPtBW6nlJSUsGDBAiQlJSExMRE5OTng8/lYtGgRTeCxhNJzmsKTu7q6OuoKSYgcNDQ0YP369SgvL4enpyf+/PNPjBkzBsnJydDW1sbKlSupKzQLpKWl4ciRI1KXV/P5fPz0008MpHo///d//4fy8nLo6+vD398fHh4eEstaCSFE3j799FNs2bKF9nkTIgNUcMtBSUkJqqqqYGVlxXQU8gZLlixBYWFhqz9vYmKCbdu2yTARaQtNTU04deoUkpOTUV5eDj6fj379+mHkyJFUbLNAeno6goOD4e3tDTc3N/D5fLFxdXV1sdUL7V1lZSXS0tKQlpaG27dv49mzZ7C1tYWDgwMcHR3pmDpCCCOo4GaH8vJyCAQCNDc3i65paWlR47R2jgpuGUpPT8ehQ4eQm5sLJSUl7NixAwYGBrhw4QLc3d1pb147k5+fj4qKijd+pqGhAUePHkVRURE+//xzDBo0SE7pCFFMmzZtgqmpqdiRblzy+PFjUQGenp4ONTU12Nvbw8HBAQ4ODnQ0GCFELqjgbt+Ki4vx888/4+7duxJj+vr62LVrFwOpSGvRHm4ZyczMxObNm+Hj44OVK1diwYIFor0xV65cQUVFBXx9fZkNScSYmprC1NS0xXGBQICdO3eiubkZQUFB9DaREDnIysrCxIkTmY4hMxYWFrCwsMDYsWPR1NSE+/fvIzU1Fb///jtqa2vRs2dPBAQEMB2TEEIIQ8rLyxEYGAhbW1ts3rwZRkZGKCoqQlRUFAQCAb777jumI5K3oIJbRsLCwuDt7Q0/Pz+JsREjRiA8PJwKbhZJTEzEvn374OLigs8++wydOnViOhJppfr6ely4cAHp6ekSDbf09fUxb948BtORt3n+/DmrmqK9r9raWqSmpuLWrVu4desW6uvrYWdnBw8PD6ajEUIIYVBERASsrKzEmvuam5vj66+/xvbt2/Hnn39So992jgpuGXnw4EGL5+KZmZlBIBDIORF5H0KhEIcPH8bZs2cxY8YMjBw5kulI5B1UV1dj3bp1qK+vR+/evWFhYSE2zrajXhRRr169kJqaKvGz44Lc3FxRgf3gwQNoamrCyckJc+fOhaOjI9TU1JiOSAghhGHJycn417/+JXXM29sbBw4coIK7naOCW0Y6dOiAxsZGqWMVFRXQ1NSUcyLyrsrKyrBr1y6Ul5cjICAA3bp1YzoSeUfHjx9Hp06dEBQURCcDsNSMGTOwfv16mJqawsnJifUdvW/fvo1r164hJSUFpaWl6NKlC/r06YNp06bB2tqa6XiEEAVlaGjIqgaUiqS6ulqiYehLfD7/nc6UJ8yggltGbG1t8ffff8PW1lZi7PLly5w/A5Lt0tLSsGfPHvTo0QPLli2jmxBLJSUlYc6cOVRss0hLpwW0dCKAoaEhduzYIetYbSY0NBTa2tqYOHEinJ2dW3yIelVCQgIGDRoEJSUlOSQkhHBVaWkprl69iqKiIrFJoU6dOsHb2xvUR7l9MjAwwOPHj6WeYvHkyRNarccCVHDLiL+/P9auXYsOHTpg7NixUFJSQk1NDUJDQ3Hjxg0EBwczHZG0ICwsDDExMZg0aRJ8fHyYjkM+QFVVFYyMjJiOQd7B4sWLUVlZ2erPd+7cWYZp2t769evf+b/Zt28funXrRt2DCSHv7dy5c/jtt99gYWEBIyMjCAQCZGdnw9HRESoqKrh+/TqOHj2K2bNnY8iQIUzHJa8YNGgQIiIi0KdPH7EJhLq6OkRGRsLNzY3BdKQ1qOCWkS5dumDlypU4ePAglixZAgAIDAxE165dsXr1aioC2qHKykrs2bMHeXl5+O6776SuTiDsYmxsjKKiIjrbmEXMzMxgZmYmOqe6sbERXbt2xaBBgyTOTT9z5gz+/vvv9ypi2YRmnQghHyItLQ1//PEHlixZgt69e4uu3759G7/88gvWrFkDXV1dnD59Gv/973+hp6dHKzHbkfHjx+PmzZtYuXIlxo4dK3q2OXnyJDp16sTpkzy4gs7hloPi4mKUl5dDR0cHBgYGTMchLVi2bBny8/OhoaHRqmZFhoaGWLVqlRySkfd1+fJlxMfHIyAggM69ZwmhUIjdu3fj5s2bsLOzg6qqKu7duwc+n49vv/0W2traovNIs7OzMW3aNIwYMYLp2DJF5+MSQj7Exo0b0atXL6kn58TExCA3Nxdff/01AODIkSPIzs6m55t2prGxEdHR0UhISEBpaSn4fD4GDBgAPz8/OjmHBWiGWw4MDAzECm2hUIhr165h0KBBDKYir5s1a9Y7NZ5ozd5LIl9hYWEoKSkRu5aXl4elS5fC1tZWYoZUV1e3xdMECDNOnDiBrKwsbNmyRbQS6NmzZ9i2bRsOHjwIOzs7HD16FF27dsWmTZtgaGjIcGJCCGnfXr6clKZ37944ceKE6M8DBgzAuXPn5BWNtFLHjh0xadIk6kbOUlRwM+DJkyfYv38/FdztDC2f4obXF+28ureJFvS0f5cuXcKUKVPEtt2oqalh1qxZWLlyJVJTUzFlyhSMGjWKwZSEEMIuLd3/nj9/jqamprd+jshXbm4urly5gqlTp4pdj46Oxrlz51BVVQULCwtMmTIF9vb2DKUkrUUFdxu5ePFiq2ZHGxoakJiYiD59+sghFSGKhd78sp9AIJB6BJ+lpSV4PB6+/fZb2NjYMJCMEELYycrKCrdu3ULXrl0lxlJSUmBmZib6882bN+kYVIYJBAKsX78eQ4cOFbseFhaG2NhY+Pj4oGvXrrh9+za2bNmCgIAAdO/enZmwpFWo4G4jd+/ebVXBraamhqFDh9LsDCFykJmZie7du9NxSizS3NwssfT/JR6Px7qu5IQQwrQxY8bgp59+Qvfu3cWapt25cwfR0dH47LPPAACpqamIjY0VNfslzIiIiICzszNmzJghulZXV4cTJ05g5syZor4lLi4uaG5uRlRUFP3M2jkquNvI/PnzmY5ACHnNli1bEBwcTM0KWYZekBBCSNtxdXXFhAkTsHnzZnTr1k3sWLCPPvoIHh4eEAqF+PHHHzFlyhQ4OjoyHVmhpaamYsGCBWLX0tPTAUBi1nvgwIHYsWOHvKKR90QFNyGEsxobG/Hs2TOmY5B3wOPxEBQUBB6PJzHW1NSE4OBgsRlwAwMDrF69Wp4R5W7IkCHUpJEQ8kF8fX3Rt29fXL9+HWVlZXBycsLnn38OS0tLAC++e/ft2yf1u5fIV01NjcRqrpycHHTr1k1iBZimpibq6+vlGY+8Byq4Zai+vh4XLlxAeno6ampqxBpR6OvrY968eQymI4T7evbsifT0dNEDBWn/VqxYoZCnBTx69Aj3799HdXW12HVdXV18/vnnDKUihHCJubk5zM3NWxynYrt90NXVhUAgEPtZ3b17Fz179pT4rEAg4Mx9kMuo4JaR6upqrFu3DvX19ejduzcsLCzExnV1dRlKRojimDZtGnbs2AEjIyM4ODi0uDeYtB+KdlqAUCjEvn37kJCQACMjI4kHJz09PYklhIQQ8i52796NuXPnQlNTk+kopBVcXV0RGxsLR0dHdOzYEcnJycjIyMDcuXMlPnvhwgU4OzvLPyR5J0rPqf+/TBw8eBBZWVlYvXo1VFVVmY5DiEJatGgRBAJBi+P6+vrYtWuXHBMRIu7PP/9EXFwcli1bJrWDMCGEfKiZM2diy5YtMDY2ZjoKaYWXk3ZVVVXQ1dXF48ePMWXKFHz00UeizwiFQhw6dAhXr17Fpk2boKenx2Bi8jY0wy0jSUlJmDNnDhXbhDBoyZIlqKqqanGc3vYTpl26dAmTJ0+mYpsQIjN8Ph8lJSVUcLOEpqYmgoODce3aNVRUVODzzz+XOKqtqqoKWVlZWLFiBRXbLEAFt4xUVVXByMiI6RiEKLQ37VUjpD0QCAR0fiohRKaGDRuG+Ph42NvbMx2FtJKKigo8PT1bHNfW1saGDRvkmIh8CCq4ZcTY2BhFRUX0wE8IIaRFWlpaqK2tZToGIYTDOnfujHv37mHt2rWws7ODsrL44z+fz8ewYcMYSkcI91HBLSPjx49HZGQkHB0doaKiwnQcQhTC3r178fTp0xbHO3ToAAMDA7i7u6NXr15yTEaIdIMHD8bZs2dha2vLdBRCCEfdv38fVlZWAICMjAyJcSq4CZEtaprWRsLCwlBSUiJ27dq1a+jcuTNsbW0luiPr6upi8uTJ8oxICOddvHhR4vfw5s2bePz4sei0gIKCAiQnJ8PLywszZsxgKCkhL9y8eRO7d++Gk5MTnJycJO4VfD4fjo6ODKUjhBBCyIeiGe429Pq7Czc3txbHCCFt7/Xjk9LT03Hq1CkEBASI7ZN9+PAhgoOD0a1bNwwaNEjOKQn5f06cOAEtLS3k5OQgJydHYtzAwIAKbkIIIYTFaIabEMJZ33//PRwdHTFu3DiJsbi4OPzzzz9Yt24dA8kIIYQQ+cjLy0NlZWWL49ra2jA1NZVjIkIUC81wE0I468GDB5gyZYrUMQcHB4SHh8s5ESGEECJf27Ztg0AgaHHc2NgY27dvl2MiQhQLFdwyIhQKsXfvXgwaNAjOzs5iYwcPHsSkSZPQuXNnZsIRoiB4PB6am5uljtXX10vslyWECdXV1YiMjMSNGzdQU1OD7du3Q1tbG48fP4aFhQXT8QghLLdjxw6Ja83Nzbh58yYOHDiA5cuXM5CKEMXBYzoAV504cQKZmZno0aOHxNjTp08RFhbGQCpCFIu1tTWuXr0qdezq1auwsbGRcyJCxJWXl2PlypV4/Pgxpk2bhsbGRtExYSEhIbh8+TLDCQkhXNShQwf07dsX48aNw++//850HEI4jQpuGbl06RImT54MDQ0NiTEvLy8kJSUxkIoQxTJhwgScOXMG586dEzUufP78uejahAkTGE5IFN3Ro0dhZWWF7777TqzRJgAMHz4c586dYygZIUQRODo64u7du0zHIITTaEm5jBQXF8PS0lLqmL6+PqqqquSciBDFY2triy+//BIHDhxAeHg4DA0NIRAI0NDQgK+++krqChRC5CklJQULFiyQOtajRw8cPnxYzokIIYqkrq4OSkpKTMcghNOo4JYRbW1tlJSUwMzMTGKssLAQurq6DKQiRPF4eHjAxcUFycnJKC0tha6uLlxcXKCurs50NEJQX18PNTU1qWMNDQ3o2LGjnBMRQhTJP//8g27dujEdgxBOo4JbRvr27Yvo6Gg4ODiAx/t/K/ebmpoQHR2NgQMHMpiOEMWirq4ODw8PpmMQIsHS0hJpaWno2rWrxFhaWho9CBNCPlhtba2oN8RL5eXluH79Os6ePYtvv/2WoWSEKAYquGVk0qRJWLNmDVavXg0vLy/o6+ujuLgYp06dQocOHeDr68t0REI4LyAgAEuXLoWWlhbTUQiRaty4cQgJCYGhoSEGDBggup6Wloa4uDgsXryYwXSEEC5YsWIFSktLJa5bWFhg8eLF6NWrFwOpCFEcSs9fdhIiba62thYRERFITExEeXk5+Hw+BgwYAD8/P3Tq1InpeIRw3syZM7F582aYmJgwHYWQFsXFxeHo0aPQ0tJCWVkZjI2NUVpaipkzZ2LYsGFMxyOEsFxNTY3YDLeSkhI0NTWhqqrKYCpCFAcV3IQQzlq6dCmmT5+OPn36MB2FkDeqqKjArVu3UFFRAR0dHTg7O9PKDEIIIYQDqOBuQ7m5ubhy5QqmTp0qdj06Ohrnzp1DVVUVLCwsMGXKFNjb2zOUkhDFce7cOSQkJGDlypXUfIoQQohCq62tRXJyMsrKyqCnpwcXFxea5SZEDqjgbiMCgQDfffcdhg4dihkzZoiuh4WFITY2Fj4+PujatStu376Nc+fOISAgAN27d2cwMSHcFxoaitOnT0NDQwM2NjZQVhZvW8Hn8/Hxxx8zlI4QQgiRjytXruCXX36Bqqoq9PX18fTpUzQ0NODLL79E//79mY5HCKdR07Q2EhERAWdnZ7Fiu66uDidOnMDMmTMxYsQIAICLiwuam5sRFRWFJUuWMBWXEIXRt29f0f/9+vtFoVAo7zhEwS1ZsgSFhYUtjnfo0AEGBgZwd3eHj4+PxEsiQgh5V+np6di3bx8+/fRTDB8+HDweD0KhEOfOncOePXugp6dHk0CEyBDdydtIamoqFixYIHYtPT0dADB06FCx6wMHDsSOHTvkFY0QhUWz16S9Wbx4MSorK0V/fv78OY4ePYrKykp4e3vDwsICBQUFiI+PR2pqKlavXk1FNyHkg0RHR2PEiBEYOXKk6BqPx4OXlxfy8/NpEogQGeO9/SOkNWpqatC5c2exazk5OejWrRs6dOggdl1TUxP19fXyjEcIIaQdMDMzQ69evUT/EwgEqKmpQXBwMMaOHQtHR0d4e3tjw4YNqKmpwZ9//sl0ZEIIy2VmZmLQoEFSx9zd3XH//n05JyJEsdBr8zaiq6sLgUAAc3Nz0bW7d++iZ8+eEp8VCATg8/nyjEeIQvvrr7+QkJCA0tJS8Pl8DBo0SGLlCSFMOHPmDCZOnAgNDQ2x6+rq6vDz80NERAR8fX2ZCUcI4QShUCgx+fNSx44d0dzcLOdEhCgWmuFuI66uroiNjUVjYyMAIDk5GRkZGRg8eLDEZy9cuABnZ2c5JyRE8Tx//hzbt2/H77//ji5dumD06NHo2rUrjh49iu3bt0vs6SZE3vLy8mBpaSl1zNLSEk+fPpVzIkII11hbW+Pu3btSx+7evSs2WUQIaXs0w91GfH19sW7dOixYsAC6urp4/PgxpkyZAhMTE9FnhEIhDh06hPv372P27NnMhSVEQZw6dQqPHj3C5s2bxVaVjB49GmvXrsXp06cxatQoBhMSRaeuro7y8nJYWFhIjJWWlkJTU5OBVIQQLvHz88OOHTvQq1cvdOvWTXT90aNHCA8Pp2dSQmSMCu42oqmpieDgYFy7dg0VFRX4/PPPxb7UAKCqqgpZWVlYsWIF9PT0GEpKiOK4dOkS/P39JbZw8Pl8+Pv74+TJk1RwE0b17t0b8fHxcHR0lBg7deoUnJycGEhFCGGzv/76S2J1jIGBAdatWwcnJyeYm5ujsLAQSUlJGD58ODw8PBhKSohioHO4CSGcNWfOHAQFBUldLvfkyROsWbMGBw8eZCAZIS88ffoU3333HXr37g0/Pz8YGRmhqKgI4eHhuHv3LjZu3AhdXV2mYxJCWGTv3r1v3I7C4/FExw/a2dnJMRkhiolmuAkhnKWqqoqqqiqpY9XV1VBVVZVzIkLE6evrIyAgAL/88guWL18uum5ra4vAwEAqtgkh72zevHlMRyCEvIIKbkIIZ/Xq1QsXL15Er169JMYuXbok9Toh8mZubo61a9eipKQEZWVl0NXVpUKbEEII4QgquAkhnOXr64vAwEDw+XxMmDABampqqKurQ1RUFK5du4agoCCmIxIioqenR/09CCEyU1lZiaysLFRXV4ud0sHn86X2kSCEtA3aw00I4bS7d+9i7969KC8vR+fOnVFVVQVtbW3MmzcP9vb2TMcjBABw//59XL58GQKBQOxMXH19fVoeSgj5YGFhYYiJiQGPx4O2trbYmIGBAVavXs1QMkK4jwpuQgjnCYVCZGRkoKysDHw+HzY2NuDxeEzHIgQAcPjwYZw6dQp9+vSBsbExBAIBkpKSYGFhgSFDhsDLy4vpiIQQFrt48SJ+//13zJs3D66urlBSUmI6EiEKhZaUE0I4j8fjwdbWlukYhEi4evUqLly4gHXr1sHKykp0PTc3Fxs3bkSXLl2YC0cI4YTTp09j4sSJ6Nu3L9NRCFFIVHATQjhjyZIlKCwsbPXnTUxMsG3bNhkmIuTNTp06hYkTJ4oV2wBgaWkJX19fRERE4Ntvv2UmHCGEEwoKCuj4L0IYRAU3IYQzlixZgoqKijd+pqGhAUePHkVRUREmTpwop2SESPf48WPMnTtX6pidnR3CwsLknIgQwjWqqqpoampiOgYhCosKbkIIZ5iamsLU1LTFcYFAgJ07d6K5uRlBQUEwMzOTYzpCJCkrK6OhoUHqWEvXCSHkXfTv3x8JCQmwtrZmOgohCokKbkKIQkhMTMS+ffvg4uKCzz77DJ06dWI6EiGwsbHB1atXpT4IX7t2Dd27d2cgFSGESwYPHoxNmzZBWVkZTk5O6NChg9i4lpYWvYAmRIaoSzkhhNOEQiEOHz6Ms2fPYsaMGRg5ciTTkQgRyczMRFBQkOjf5svuwefOncNvv/2GFStW0N5LQsgHWbx4MYqKilocNzQ0xI4dO+SYiBDFQgU3IYSzysrKsGvXLpSXl2PhwoXo1q0b05EIkfDPP/9g//79UFFRgaGhIYqLi1FbW4u5c+di8ODBTMcjhBBCyAeggpsQwklpaWnYs2cPevTogXnz5kFDQ4PpSIS06NmzZ0hKSkJpaSn4fD5cXFzo3ywhhBDCAVRwE0I4JywsDDExMZg0aRJ8fHyYjkNIqzQ0NODChQvIz8+HqakpPD09oaamxnQsQggHNDU14cyZM0hOTkZ1dTVWrVoFTU1NVFdXQ1NTk+l4hHAaNU0jhHBGZWUl9uzZg7y8PHz33XewtbVlOhIhErKzsxETE4O8vDzo6+tjwoQJsLa2xoYNG1BVVYUuXbrg5s2bOH36NAIDA6GlpcV0ZEIIiz179gxBQUFoamrCkCFDEBoaiqqqKmhqaiIoKAiffPIJnJ2dmY5JCGdRwU0I4YygoCDk5+dDQ0MD//nPf976eUNDQ6xatUoOyQh54d69e9i8eTM8PDzg7e2N/Px8bN26FYMGDYKKigq2bt0qOips8+bNCAsLa/GcbkIIaY3jx4+jU6dOWL9+PZSVlREaGioac3d3x8mTJ6ngJkSGqOAmhHDGrFmzUFpa2urP8/l8GaYhRFJoaCgmTpwottWhZ8+e+PHHH7Fs2TIoK7+4LauoqGD8+PH45ZdfqOAmhHyQ69ev44svvhB9v7zK3t4e0dHRDKQiRHFQwU0I4QwHBwemIxDyRtnZ2RIFdN++fcHj8WBgYCB23cjICOXl5XJMRwjhopqaGujo6EgdU1JSEh1HSAiRDR7TAQghhBBF0dTUBBUVFbFrysrK4PF44PHEb8k8Hg/U15QQ8qFMTEyQkZEhdSw9PR2WlpZyTkSIYqGCmxBCCCGEEI7y8vLC8ePH8eDBA7HrT548QUxMDEaNGsVQMkIUAy0pJ4QQQuSIlm8SQuRp2LBhyM3Nxbp162BtbY3m5mb897//RVZWFsaMGQM3NzemIxLCaXQONyGEECInn376KXR0dCSWjz99+hR8Ph8dOnQQXWtubkZVVRUOHTok75iEEA7KyclBUlISKioqoKOjg379+tFyckLkgApuQgghRE5u3779Tp30dXV1qRkgIUSmGhsb0bFjR6ZjEMJZVHATQgghhBCigMrKyrBixQr8/PPPTEchhLNoDzchhBBCCCEcUVtbi9ra2rd+rrGxEadPn4a2trYcUhGiuKjgJoQQQgghhCOWL1+OsrKyVn3W1NQUX331lYwTEaLYaEk5IYQQQgghHFFbW4uampq3fk5NTQ2amppySESIYqOCmxBCCCGEEEIIkQHe2z9CCCGEEEIIYaMjR46goqJC6tijR4+wf/9+OSciRLFQwU0IIYQQQghHlZaWYuvWrWhoaBC7npiYiLVr11LTNEJkjJaUE0IIIYQQwlFNTU3YuHEj1NTUsGTJEvB4PERFRSEqKgqzZ8/G0KFDmY5ICKdRwU0IIYQQQgiHVVdXY926dbCxsUFDQwNSUlKwaNEi9OrVi+lohHAeFdyEEEIIIYRwXHFxMQICAqCkpITAwEAYGRkxHYkQhUB7uAkhhBBCCOE4AwMDLF++HPX19cjJyWE6DiEKg2a4CSGEEEII4YjFixejqKio1Z83NDTEjh07ZJiIEMVGBTchhBBCCCEckZeXh8rKylZ/vnPnzjA3N5dhIkIUGxXchBBCCCGEEEKIDNAebkIIIYQQQjisrKwMdXV1EtebmpoYSEOIYqGCmxBCCCGEEI56+vQpVq1ahTt37kiMLV68GOnp6QykIkRxUMFNCCGEEEIIR4WGhsLW1haurq4SYx4eHoiIiGAgFSGKgwpuQgghhBBCOCo1NRXe3t5Sx1xcXJCVlSXnRIQoFiq4CSGEEEII4aj6+npoampKHevYsaOc0xCieKjgJoQQQgghhKPMzMxw//59qWO3b99Gly5d5JyIEMVCBTchhBBCCCEcNWrUKISGhiI7O1vsenp6OiIiIjBmzBiGkhGiGOgcbkIIIYQQQjjsyJEjOHHiBKytrWFgYIDi4mJkZWVh0qRJmDBhAtPxCOE0KrgJIYQQQgjhuNzcXCQmJqK8vBx8Ph9ubm4wMzNjOhYhnEcFNyGEEEIIIYQQIgPKTAcghBBCCCGEyNaNGzeQnJyM6upqzJ8/H6qqqnj+/DmUlJSYjkYIp1HTNEIIIYQQQjiqqakJW7ZswYEDB6CiooJbt26hrKwMALBq1SpkZGQwnJAQbqOCmxBCCCGEEI6Kjo5GSUkJtmzZgtmzZ4vNaDs5OeHPP/9kMB0h3EcFNyGEEEIIIRz1119/YdKkSdDU1JQY69OnD9LT0xlIRYjioIKbEEIIIYQQjqqoqICRkZHUMRUVFTQ1Nck5ESGKhQpuQgghhBBCOEpfXx+PHj2SOpadnQ1TU1M5JyJEsVDBTQghhBBCCEcNGTIEx48fh0AgELteVlaG6OhoDBs2jKFkhCgGOoebEEIIIYQQjhIKhdixYwfu3r0LFxcXXLt2DQMHDsTt27fh4OCA+fPnMx2REE6jgpsQQgghhBCOu379OpKTk1FeXg4dHR30798fLi4uTMcihPOo4CaEEEIIIYQQQmRAmekAhBBCCCGEkLYRHh6Op0+ftvrz+vr68Pf3l2EiQhQbFdyEEEIIIYRwRHFxMS5fvoznz5+jZ8+eMDQ0ZDoSIQqNlpQTQgghhBDCIXl5eYiOjsY///yD/v37Y8KECTA3N2c6FiEKiQpuQgghhBBCOKi4uBgxMTG4fPkynJyc4OvrCysrK6ZjEaJQqOAmhBBCCCGEw0pLS/Hnn3/iwoUL6NWrF3x9fWFjY8N0LEIUAhXchBBCCCGEKIDKykrExcXh7NmzsLKygp+fH+zt7ZmORQinUcFNCCGEEEKIAqmtrcXJkycRFRWFXr164bvvvmM6EiGcxWM6ACGEEEIIIUQ+nj9/juTkZFy9ehWdOnWCg4MD05EI4TQ6FowQQgghhBCOEwqFuHz5MqKjo1FZWYlRo0ZhzJgx0NDQYDoaIZxGBTchhBBCCCEcJRQKcenSJcTExKCmpgZjxozBqFGjoK6uznQ0QhQCFdyEEEIIIYRwTFNTEy5duoTo6GjU19dj7NixGDVqFFRVVZmORohCoYKbEEIIIYQQjmhqasL58+cRGxuLpqYmjB07Ft7e3ujUqRPT0QhRSNSlnBBCCCGEEI5YsmQJCgsLAQBaWlpQUVF54+eNjIyoSzkhMkQFNyGEEEIIIRxx+/ZtlJaWtvrzurq61KmcEBmigpsQQgghhBBCCJEBOoebEEIIIYQQQgiRASq4CSGEEEIIIYQQGaCCmxBCCCGEEEIIkQEquAkhhBBCCCGEEBmggpsQQgghhBBCCJEBKrgJIYQQQgghhBAZoIKbEEIIIYQQQgiRgf8PAKEEnt8n2gsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "params = list(state_params.values())\n", "alphas = np.array([pair[0] for pair in params])\n", "betas = np.array([pair[1] for pair in params])\n", "\n", "norm_alphas=np.array([pair[0] for pair in params])\n", "norm_betas = np.array([pair[1] for pair in params])\n", "\n", "for i, state in enumerate(state_lookup.values()):\n", " norm_alphas[i] = norm_alphas[i] / state\n", " norm_betas[i] = norm_betas[i] / state\n", "\n", "\n", "plotter.plot(list(state_params.keys()), [alphas, betas], ['alpha', 'beta'], 'state_parameter', 'SIR Parameter for German States', (12, 6), xlabel_rotation=90)\n", "plotter.plot(list(state_params.keys()), [norm_alphas, norm_betas], ['alpha', 'beta'], 'state_parameter', 'normed SIR Parameter for German States', (12, 6), xlabel_rotation=90)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "PINN", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 2 }