import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt class SyntheticDeseaseData: def __init__(self, simulation_time, time_points): """This class is the parent class for every class, that is supposed to generate synthetic data. Args: simulation_time (int): Real time for that the synthetic data is supposed to be generated in days. time_points (int): Number of time sample points. """ self.t = np.linspace(0, simulation_time, time_points) self.data = None self.generated = False def differential_eq(self): """In this function the differential equation of the model will be implemented. """ pass def generate(self): """In this function the data generation will be implemented. """ self.generated = True def plot(self, labels: tuple): """Plot the data which was generated. Args: labels (tuple): The names of each curve. """ if self.generated: fig = plt.figure(figsize=(12,12)) ax = fig.add_subplot(111, facecolor='#dddddd', axisbelow=True) ax.set_facecolor('xkcd:white') color = ('violet', 'darkgreen', 'blue', 'red') for i in range(len(self.data)): # plot each group ax.plot(self.t, self.data[i], color[i], alpha=0.5, lw=2, label=labels[i], linestyle='dashed') ax.set_xlabel('Time per days') ax.set_ylabel('Number') ax.yaxis.set_tick_params(length=0) ax.xaxis.set_tick_params(length=0) ax.grid(which='major', c='black', lw=0.2, ls='-') legend = ax.legend() legend.get_frame().set_alpha(0.5) for spine in ('top', 'right', 'bottom', 'left'): ax.spines[spine].set_visible(False) plt.savefig('visualizations/synthetic_dataset.png') else: print('Data has to be generated before plotting!') # Fabienne war hier class SIR(SyntheticDeseaseData): def __init__(self, N=59e6, I_0=1, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05) -> None: """This class is able to generate synthetic data for the SIR model. Args: N (int, optional): Size of the population. Defaults to 59e6. I_0 (int, optional): Initial size of the infectious group. Defaults to 1. R_0 (int, optional): Initial size of the removed group. Defaults to 0. simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500. time_points (int, optional): Number of time sample points. Defaults to 100. alpha (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Removed'. Defaults to 0.191. beta (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.05. """ self.N = N self.S_0 = N - I_0 - R_0 self.I_0 = I_0 self.R_0 = R_0 self.alpha = alpha self.beta = beta super().__init__(simulation_time, time_points) def differential_eq(self, y, t, alpha, beta): """In this function implements the differential equation of the SIR model will be implemented. Args: y (tuple): Vector that holds the current state of the three groups. t (_): not used alpha (_): not used beta (_): not used Returns: tuple: Change amount for each group. """ S, I, R = y dSdt = -self.beta * ((S * I) / self.N) # -self.beta * S * I dIdt = self.beta * ((S * I) / self.N) - self.alpha * I # self.beta * S * I - self.alpha * I dRdt = self.alpha * I return dSdt, dIdt, dRdt def generate(self): """This funtion generates the data for this configuration of the SIR model. """ y_0 = self.S_0, self.I_0, self.R_0 self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta)).T super().generate() def plot(self): """Plot the data which was generated. """ super().plot(('Susceptible', 'Infectious', 'Removed')) def save(self, name=''): if self.generated: COVID_Data = np.asarray([self.t, *self.data]) np.savetxt('datasets/SIR_data.csv', COVID_Data, delimiter=",") else: print('Data has to be generated before plotting!') class SIDR(SyntheticDeseaseData): def __init__(self, N=59e6, I_0=1, D_0=0, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05, gamma=0.0294) -> None: """This class is able to generate synthetic data for the SIDR model. Args: N (int, optional): Size of the population. Defaults to 59e6. I_0 (int, optional): Initial size of the infectious group. Defaults to 1. D_0 (int, optional): Initial size of the dead group. Defaults to 0. R_0 (int, optional): Initial size of the recovered group. Defaults to 0. simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500. time_points (int, optional): Number of time sample points. Defaults to 100. alpha (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.191. beta (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Dead'. Defaults to 0.05. gamma (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Recovered'. Defaults to 0.0294. """ self.N = N self.S_0 = N - I_0 - D_0 - R_0 self.I_0 = I_0 self.D_0 = D_0 self.R_0 = R_0 self.alpha = alpha self.beta = beta self.gamma = gamma super().__init__(simulation_time, time_points) def differential_eq(self, y, t, alpha, beta, gamma): """In this function implements the differential equation of the SIDR model will be implemented. Args: y (tuple): Vector that holds the current state of the three groups. t (_): not used alpha (_): not used beta (_): not used gamma (_): not used Returns: tuple: Change amount for each group. """ S, I, D, R = y dSdt = - (self.alpha / self.N) * S * I dIdt = (self.alpha / self.N) * S * I - self.beta * I - self.gamma * I dDdt = self.gamma * I dRdt = self.beta * I return dSdt, dIdt, dDdt, dRdt def generate(self): """This funtion generates the data for this configuration of the SIR model. """ y_0 = self.S_0, self.I_0, self.D_0, self.R_0 self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta, self.gamma)).T super().generate() def plot(self): """Plot the data which was generated. """ super().plot(('Susceptible', 'Infectious', 'Dead', 'Recovered')) def save(self, name=''): if self.generated: COVID_Data = np.asarray([self.t, *self.data]) np.savetxt('datasets/SIDR_data.csv', COVID_Data, delimiter=",") else: print('Data has to be generated before plotting!')