| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- import numpy as np
- import pandas as pd
- from datetime import timedelta
- from src.plotter import Plotter
- def transform_general_to_SIR(plotter:Plotter, dataset_path='datasets/COVID-19-Todesfaelle_in_Deutschland/', plot_name='', plot_title='', sample_rate=1, exclude=[], plot_size=(12,6), yscale_log=False, plot_legend=True):
- """Function to generate the SIR split from the data in the COVID-19-Todesfaelle_in_Deutschland dataset.
- Args:
- plotter (Plotter): Plotter object to plot dataset curves.
- dataset_path (str, optional): Path to the dataset directory. Defaults to 'datasets/COVID-19-Todesfaelle_in_Deutschland/'.
- plot_name (str, optional): Name of the plot file. Defaults to ''.
- plot_title (str, optional): Title of the plot. Defaults to ''.
- sample_rate (int, optional): Sample rate used to sample the timepoints. Defaults to 1.
- exclude (list, optional): List of groups that are to excluded from the plot. Defaults to [].
- plot_size (tuple, optional): Size of the plot in (x, y) format. Defaults to (12,6).
- yscale_log (bool, optional): Controls if the y axis of the plot will be scaled in log scale. Defaults to False.
- plot_legend (bool, optional): Controls if the legend is to be plotted. Defaults to True.
- """
- # read the data
- df = pd.read_csv(dataset_path + 'COVID-19-Todesfaelle_Deutschland.csv')
- df = df.drop(df.index[1200:])
-
- # population of germany at the end of 2019
- N = 83100000
- S, I, R = np.zeros(df.shape[0]), np.zeros(df.shape[0]), np.zeros(df.shape[0])
- # S_0 = N - I_0
- S[0] = N - df['Faelle_gesamt'][0]
- # I_0 = overall cases at the day - overall death cases at the day
- I[0] = df['Faelle_gesamt'][0] - df['Todesfaelle_gesamt'][0]
- # R_0 = overall death cases at the day
- R[0] = df['Todesfaelle_gesamt'][0]
- # the recovery time is 14 days
- recovery_queue = np.zeros(14)
-
- for day in range(1, df.shape[0]):
- infections = df['Faelle_gesamt'][day] - df['Faelle_gesamt'][day-1]
- deaths = df['Todesfaelle_neu'][day]
- recoveries = recovery_queue[0]
- S[day] = S[day-1] - infections
- I[day] = I[day-1] + infections - deaths - recoveries
- R[day] = R[day-1] + deaths + recoveries
- # update recovery queue
- if I[day] < 0:
- recovery_queue[-1] -= I[day]
- I[day] = 0
- recovery_queue[:-1] = recovery_queue[1:]
- recovery_queue[-1] = infections
- t = np.arange(0, df.shape[0], 1)
- if plotter != None:
- # plot graphs
- plots = []
- labels = []
- if 'S' not in exclude:
- plots.append(S)
- labels.append('S')
-
- if 'I' not in exclude:
- plots.append(I)
- labels.append('I')
- if 'R' not in exclude:
- plots.append(R)
- labels.append('R')
- plotter.plot(t, plots, labels, plot_name, plot_title, plot_size, y_log_scale=yscale_log, plot_legend=plot_legend, xlabel='time / days', ylabel='amount of poeple')
- COVID_Data = np.asarray([t[0::sample_rate],
- S[0::sample_rate],
- I[0::sample_rate],
- R[0::sample_rate]])
- np.savetxt(f"datasets/SIR_RKI_{sample_rate}.csv", COVID_Data, delimiter=",")
- def get_state_cases(county_id, state_id):
- id = county_id // 1000
- return id == state_id
- def state_based_data(plotter:Plotter, state_name:str, time_range=1200, sample_rate=1, dataset_path='datasets/state_data/Aktuell_Deutschland_SarsCov2_Infektionen.csv'):
- """Transforms the RKI infection cases dataset to a SIR dataset.
- Args:
- plotter (Plotter): Plotter object to plot dataset curves.
- state_name (str): Name of the state that is to be singled out in the new dataset.
- time_range (int, optional): Number of days that will be looked at in the new dataset. Defaults to 1200.
- sample_rate (int, optional): Sample rate used to sample the timepoints. Defaults to 1.
- dataset_path (str, optional): Path to the CSV file, where the data is stored. Defaults to 'datasets/state_data/Aktuell_Deutschland_SarsCov2_Infektionen.csv'.
- """
- df = pd.read_csv(dataset_path)
- state_lookup = {'Schleswig Holstein' : (1, 2897000),
- 'Hamburg' : (2, 1841000),
- 'Niedersachsen' : (3, 7982000),
- 'Bremen' : (4, 569352),
- 'Nordrhein-Westfalen' : (5, 17930000),
- 'Hessen' : (6, 6266000),
- 'Rheinland-Pfalz' : (7, 4085000),
- 'Baden-Württemberg' : (8, 11070000),
- 'Bayern' : (9, 13080000),
- 'Saarland' : (10, 990509),
- 'Berlin' : (11, 3645000),
- 'Brandenburg' : (12, 2641000),
- 'Mecklenburg-Vorpommern' : (13, 1610000),
- 'Sachsen' : (14, 4078000),
- 'Sachsen-Anhalt' : (15, 2208000),
- 'Thüringen' : (16, 2143000)}
- state_ID, N = state_lookup[state_name]
- # single out a state
- state_IDs = df['IdLandkreis'] // 1000
- state_df = df.loc[state_IDs == state_ID]
- # sort entries by state
- state_df = state_df.sort_values('Refdatum')
- state_df = state_df.reset_index(drop=True)
- # collect cases
- infections = np.zeros(time_range)
- dead = np.zeros(time_range)
- recovered = np.zeros(time_range)
- entry_idx = 0
- day = 0
- date = state_df['Refdatum'][entry_idx]
- # check for each date all entries
- while day < time_range:
- # use the date sorted characteristic and take all entries with current date
- while state_df['Refdatum'][entry_idx] == date:
- # TODO use further parameters
- infections[day] += state_df['AnzahlFall'][entry_idx]
- dead[day] += state_df['AnzahlTodesfall'][entry_idx]
- recovered[day] += state_df['AnzahlGenesen'][entry_idx]
- entry_idx += 1
- # move day index by difference between the current and next date
- day += (pd.to_datetime(state_df['Refdatum'][entry_idx])-pd.to_datetime(date)).days
- date = state_df['Refdatum'][entry_idx]
- S = np.zeros(time_range)
- I = np.zeros(time_range)
- S[0] = N - infections[0]
- I[0] = infections[0]
- for day in range(1, time_range):
- S[day] = S[day-1] - infections[day]
- I[day] = I[day-1] + infections[day] - I[day-1]/14
- t = np.arange(0, time_range, 1)
- plotter.plot(t, [S, I], ['S', 'I'], state_name.replace(' ', '_').replace('-', '_'), state_name+' SI', (6,6), xlabel='time / days', ylabel='amount of people')
- COVID_Data = np.asarray([t[0::sample_rate],
- S[0::sample_rate],
- I[0::sample_rate]])
- np.savetxt(f"datasets/SIR_RKI_{state_name.replace(' ', '_').replace('-', '_')}_{sample_rate}.csv", COVID_Data, delimiter=",")
-
|