|
@@ -7,7 +7,7 @@
|
|
% summary of the content in this chapter
|
|
% summary of the content in this chapter
|
|
% Version: 05.08.2024
|
|
% Version: 05.08.2024
|
|
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
-\chapter{Theoretical Background}
|
|
|
|
|
|
+\chapter{Theoretical Background 12}
|
|
\label{chap:background}
|
|
\label{chap:background}
|
|
|
|
|
|
This chapter introduces the theoretical knowledge that forms the foundation of
|
|
This chapter introduces the theoretical knowledge that forms the foundation of
|
|
@@ -24,7 +24,7 @@ in~\Cref{sec:pinn}.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\section{Mathematical Modelling using Functions}
|
|
|
|
|
|
+\section{Mathematical Modelling using Functions 1}
|
|
\label{sec:domain}
|
|
\label{sec:domain}
|
|
|
|
|
|
To model a physical problem using mathematical tools, it is necessary to define
|
|
To model a physical problem using mathematical tools, it is necessary to define
|
|
@@ -51,7 +51,7 @@ In this case, time serves as the domain, while the distance is the codomain.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\section{Basics of Differential Equations}
|
|
|
|
|
|
+\section{Basics of Differential Equations 1}
|
|
\label{sec:differentialEq}
|
|
\label{sec:differentialEq}
|
|
|
|
|
|
Often, the change of a system is more interesting than its current state.
|
|
Often, the change of a system is more interesting than its current state.
|
|
@@ -123,7 +123,7 @@ describe the application of these principles in epidemiological models.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\section{Epidemiological Models}
|
|
|
|
|
|
+\section{Epidemiological Models 3}
|
|
\label{sec:epidemModel}
|
|
\label{sec:epidemModel}
|
|
|
|
|
|
Pandemics, like \emph{COVID-19}, which has resulted in a significant
|
|
Pandemics, like \emph{COVID-19}, which has resulted in a significant
|
|
@@ -150,7 +150,7 @@ and relations that are pivotal to understanding the problem.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\subsection{SIR Model}
|
|
|
|
|
|
+\subsection{SIR Model 2}
|
|
\label{sec:pandemicModel:sir}
|
|
\label{sec:pandemicModel:sir}
|
|
|
|
|
|
In 1927, Kermack and McKendrick~\cite{1927} introduced the \emph{SIR Model},
|
|
In 1927, Kermack and McKendrick~\cite{1927} introduced the \emph{SIR Model},
|
|
@@ -328,7 +328,7 @@ next~\Cref{sec:pandemicModel:rsir}.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\subsection{Reduced SIR Model and the Reproduction Number}
|
|
|
|
|
|
+\subsection{Reduced SIR Model and the Reproduction Number 1}
|
|
\label{sec:pandemicModel:rsir}
|
|
\label{sec:pandemicModel:rsir}
|
|
The~\Cref{sec:pandemicModel:sir} presents the classical SIR model. The model
|
|
The~\Cref{sec:pandemicModel:sir} presents the classical SIR model. The model
|
|
comprises two parameters $\beta$ and $\alpha$, which describe the course of a
|
|
comprises two parameters $\beta$ and $\alpha$, which describe the course of a
|
|
@@ -406,7 +406,7 @@ systems, as we describe in~\Cref{sec:mlp}.
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\section{Multilayer Perceptron}
|
|
|
|
|
|
+\section{Multilayer Perceptron 2}
|
|
\label{sec:mlp}
|
|
\label{sec:mlp}
|
|
In~\Cref{sec:differentialEq} we show the importance of differential equations to
|
|
In~\Cref{sec:differentialEq} we show the importance of differential equations to
|
|
systems, being able to show the change of it dependent on a certain parameter of
|
|
systems, being able to show the change of it dependent on a certain parameter of
|
|
@@ -460,19 +460,38 @@ Hornik \etal~\cite{Hornik1989} shows, MLP's are universal approximators.\\
|
|
\label{fig:mlp_example}
|
|
\label{fig:mlp_example}
|
|
\end{figure}
|
|
\end{figure}
|
|
|
|
|
|
-The process of optimizing the parameters $\theta$ is called \emph{learning}.
|
|
|
|
-Here, we define a metric for the quality of the results, of our neural network.
|
|
|
|
-This metric is called a loss function
|
|
|
|
|
|
+The process of optimizing the parameters $\theta$ is called \emph{training}.
|
|
|
|
+For trainning we will have to have a set of \emph{training data}, which
|
|
|
|
+is a set of pairs (also called training points) of the input data
|
|
|
|
+$\boldsymbol{x}$ and its corresponding true solution $\boldsymbol{y}$ of the
|
|
|
|
+function $f^{*}$. For the training process we must define the
|
|
|
|
+\emph{loss function} $\Loss{ }$, using the model prediction
|
|
|
|
+$\hat{\boldsymbol{y}}$ and the true value $\boldsymbol{y}$, which will act as a
|
|
|
|
+metric of how far the model is away from the correct answer. One of the most
|
|
|
|
+common loss function is the \emph{mean square error} (MSE) loss function. Let
|
|
|
|
+$N$ be the number of points in the set of training data, then
|
|
|
|
+\begin{equation}
|
|
|
|
+ \Loss{MSE} = \frac{1}{N}\sum_{n=1}^{N} ||\hat{\boldsymbol{y}}^{(i)}-\boldsymbol{y}^{(i)}||^2,
|
|
|
|
+\end{equation}
|
|
|
|
+calculates the squared differnce between each model prediction and true value
|
|
|
|
+of a training and takes the mean across the whole training data. Now, we only
|
|
|
|
+need a way to change the parameters using our loss. For this gradient descent
|
|
|
|
+is used in gradient-based learning.
|
|
|
|
+- gradient descent/gradient-based learning
|
|
|
|
+- backpropagation
|
|
|
|
+- optimizers
|
|
|
|
+- learning rate
|
|
|
|
+- scheduler
|
|
|
|
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\section{Physics Informed Neural Networks}
|
|
|
|
|
|
+\section{Physics Informed Neural Networks 5}
|
|
\label{sec:pinn}
|
|
\label{sec:pinn}
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|
|
|
|
|
|
-\subsection{Disease Informed Neural Networks}
|
|
|
|
|
|
+\subsection{Disease Informed Neural Networks 2}
|
|
\label{sec:pinn:dinn}
|
|
\label{sec:pinn:dinn}
|
|
|
|
|
|
% -------------------------------------------------------------------
|
|
% -------------------------------------------------------------------
|