Browse Source

add second setup section

FlipediFlop 9 months ago
parent
commit
18eba7fc7f
2 changed files with 107 additions and 26 deletions
  1. 107 26
      chapters/chap04/chap04.tex
  2. BIN
      thesis.pdf

+ 107 - 26
chapters/chap04/chap04.tex

@@ -44,7 +44,7 @@ The parameters are set to $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2
 The size of the population is $N = \expnumber{7.6}{6}$ and the initial amount of
 The size of the population is $N = \expnumber{7.6}{6}$ and the initial amount of
 infectious individuals of is $I_0 = 10$. We simulate over 150 days and get a
 infectious individuals of is $I_0 = 10$. We simulate over 150 days and get a
 dataset of the form of~\Cref{fig:synthetic_SIR}.\\For the real-world RKI data we
 dataset of the form of~\Cref{fig:synthetic_SIR}.\\For the real-world RKI data we
-preprocess the row data data of each state and Germany separately using a
+preprocess the raw data of each state and Germany separately using a
 recovery queue with a recovery period of 14 days. As for the population size of
 recovery queue with a recovery period of 14 days. As for the population size of
 each state we set it to the respective value counted at the end of 2019\footnote{\url{https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/\#overview}}.
 each state we set it to the respective value counted at the end of 2019\footnote{\url{https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/\#overview}}.
 The initial number of infectious individuals is set to the number of infected
 The initial number of infectious individuals is set to the number of infected
@@ -117,30 +117,34 @@ setups that we describe in this section.
 
 
 \subsection{Results    4}
 \subsection{Results    4}
 \label{sec:sir:results}
 \label{sec:sir:results}
-\begin{center}
-    \begin{tabular}{c|cc|cc}
-                               & $\alpha$ & $\sigma(\alpha)$ & $\beta$ & $\sigma(\beta)$ \\
-        \hline
-        Schleswig Holstein     & 0.0771   & 0.0010           & 0.0966  & 0.0013          \\
-        Hamburg                & 0.0847   & 0.0035           & 0.1077  & 0.0037          \\
-        Niedersachsen          & 0.0735   & 0.0014           & 0.0962  & 0.0018          \\
-        Bremen                 & 0.0588   & 0.0018           & 0.0795  & 0.0025          \\
-        Nordrhein-Westfalen    & 0.0780   & 0.0009           & 0.1001  & 0.0011          \\
-        Hessen                 & 0.0653   & 0.0016           & 0.0854  & 0.0020          \\
-        Rheinland-Pfalz        & 0.0808   & 0.0016           & 0.1036  & 0.0018          \\
-        Baden-Württemberg      & 0.0862   & 0.0014           & 0.1132  & 0.0016          \\
-        Bayern                 & 0.0809   & 0.0021           & 0.1106  & 0.0027          \\
-        Saarland               & 0.0746   & 0.0021           & 0.0996  & 0.0024          \\
-        Berlin                 & 0.0901   & 0.0008           & 0.1125  & 0.0008          \\
-        Brandenburg            & 0.0861   & 0.0008           & 0.1091  & 0.0010          \\
-        Mecklenburg Vorpommern & 0.0910   & 0.0007           & 0.1167  & 0.0008          \\
-        Sachsen                & 0.0797   & 0.0017           & 0.1073  & 0.0022          \\
-        Sachsen-Anhalt         & 0.0932   & 0.0019           & 0.1207  & 0.0027          \\
-        Thüringen              & 0.0952   & 0.0011           & 0.1248  & 0.0016          \\
-        Germany                & 0.0803   & 0.0012           & 0.1044  & 0.0014          \\
-    \end{tabular}
-\end{center}
-
+\begin{table}[h]
+    \begin{center}
+        \begin{tabular}{c|cc|cc}
+                                   & $\mu(\alpha)$ & $\sigma(\alpha)$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
+            \hline
+            Schleswig Holstein     & 0.0771        & 0.0010           & 0.0966       & 0.0013          \\
+            Hamburg                & 0.0847        & 0.0035           & 0.1077       & 0.0037          \\
+            Niedersachsen          & 0.0735        & 0.0014           & 0.0962       & 0.0018          \\
+            Bremen                 & 0.0588        & 0.0018           & 0.0795       & 0.0025          \\
+            Nordrhein-Westfalen    & 0.0780        & 0.0009           & 0.1001       & 0.0011          \\
+            Hessen                 & 0.0653        & 0.0016           & 0.0854       & 0.0020          \\
+            Rheinland-Pfalz        & 0.0808        & 0.0016           & 0.1036       & 0.0018          \\
+            Baden-Württemberg      & 0.0862        & 0.0014           & 0.1132       & 0.0016          \\
+            Bayern                 & 0.0809        & 0.0021           & 0.1106       & 0.0027          \\
+            Saarland               & 0.0746        & 0.0021           & 0.0996       & 0.0024          \\
+            Berlin                 & 0.0901        & 0.0008           & 0.1125       & 0.0008          \\
+            Brandenburg            & 0.0861        & 0.0008           & 0.1091       & 0.0010          \\
+            Mecklenburg Vorpommern & 0.0910        & 0.0007           & 0.1167       & 0.0008          \\
+            Sachsen                & 0.0797        & 0.0017           & 0.1073       & 0.0022          \\
+            Sachsen-Anhalt         & 0.0932        & 0.0019           & 0.1207       & 0.0027          \\
+            Thüringen              & 0.0952        & 0.0011           & 0.1248       & 0.0016          \\
+            Germany                & 0.0803        & 0.0012           & 0.1044       & 0.0014          \\
+        \end{tabular}
+        \caption{Mean and standard variation across the 5 iterations, that we
+            conducted for each German state and Germany as the whole country.}
+        \label{table:alpha_beta}
+    \end{center}
+\end{table}
 \begin{figure}[h]
 \begin{figure}[h]
     \centering
     \centering
     \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
     \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
@@ -164,7 +168,84 @@ are described in~\Cref{sec:pinn:rsir}.
 \label{sec:rsir:setup}
 \label{sec:rsir:setup}
 In this section we describe the choice of parameters and configuration for data
 In this section we describe the choice of parameters and configuration for data
 generation, preprocessing and the neural networks. We use these setups to train
 generation, preprocessing and the neural networks. We use these setups to train
-the PINNs to find the reproduction number on both synthetic and real-world data.
+the PINNs to find the reproduction number on both synthetic and real-world data.\\
+
+For validation reasons we create a synthetic dataset, by setting the parameters
+of $\alpha$ and $\beta$ each to a specific value, and solving~\Cref{eq:modSIR}
+for a given time interval. We set $\alpha=\nicefrac{1}{3}$ and
+$\beta=\nicefrac{1}{2}$ as well as the population size $N=\expnumber{7.6}{6}$
+and the initial amount of infected people to $I_0=10$. Furthermore, we set our
+simulated time span to 150 days.We will use this dataset to show, that our
+method is working on a simple and minimal dataset.\\ For the real-world data we
+we processed the data of the dataset \emph{COVID-19-Todesfälle in Deutschland}
+to extract the number of infections in the whole of Germany, while we used the
+data of \emph{SARS-CoV-2 Infektionen in Deutschland} for the German states. For
+the preprocessing we use a constant rate for $\alpha$ to move individual into
+the removed compartment. First we choose $\alpha = \nicefrac{1}{14}$ as this is
+covers the time of recovery\footnote{\url{https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git}}.
+Second we use $\alpha=\nicefrac{1}{5}$ since the peak of infectiousness is
+reached right in front or at 5 days into the infection\footnote{\url{https://www.infektionsschutz.de/coronavirus/fragen-und-antworten/ansteckung-uebertragung-und-krankheitsverlauf/}}.
+Just as in~\Cref{sec:sir} we set the population size $N$ of each state and
+Germany to the corresponding size at the end of 2019. Also, for the same reason
+we restrict the data points to an interval of 1200 days starting from March 09.
+2020.
+\begin{figure}[h]
+    %\centering
+    \setlength{\unitlength}{1cm} % Set the unit length for coordinates
+    \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
+        \put(1.5, 4.5){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{SIR_synth.pdf}
+                \label{fig:synthetic_I}
+            \end{subfigure}
+        }
+        \put(8, 4.5){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
+                \label{fig:germany_I}
+            \end{subfigure}
+        }
+        \put(0, 0){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
+                \label{fig:schleswig_holstein_I}
+            \end{subfigure}
+        }
+        \put(4.75, 0){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
+                \label{fig:berlin_I}
+            \end{subfigure}
+        }
+        \put(9.5, 0){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
+                \label{fig:thüringen_I}
+            \end{subfigure}
+        }
+
+    \end{picture}
+    \caption{Synthetic and real-world training data. The synthetic data is
+        generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
+        and~\Cref{eq:modSIR}. The Germany data is taken from the death case
+        data set. Exemplatory we show illustrations of the datasets of Schleswig
+        Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
+    \label{fig:datasets}
+\end{figure}
+
+For this task the chosen architecture of the neural network consists of 4 hidden
+layers with each 100 neurons. The activation function is the tangens
+hyperbolicus function tanh. We weight the data loss with a weight of
+$\expnumber{1}{6}$ into the total loss. The model is trained using a base
+learning rate of $\expnumber{1}{-3}$ with the same scheduler and optimizer as
+we use in~\Cref{sec:sir:setup}. We train the model for 20000 epochs. Also, we
+conduct each experiment 15 times to reduce the standard deviation.
+
 
 
 
 
 % -------------------------------------------------------------------
 % -------------------------------------------------------------------

BIN
thesis.pdf