瀏覽代碼

finish last results

Phillip Rothenbeck 9 月之前
父節點
當前提交
850b74ace6
共有 3 個文件被更改,包括 144 次插入49 次删除
  1. 142 47
      chapters/chap04/chap04.tex
  2. 二進制
      thesis.pdf
  3. 2 2
      thesis.tex

+ 142 - 47
chapters/chap04/chap04.tex

@@ -144,10 +144,14 @@ all five iterations.\\
 
 
 \begin{table}[h]
 \begin{table}[h]
     \begin{center}
     \begin{center}
-        \begin{tabular}{ccc|ccc}
-            true $\alpha$ & $\mu(\alpha)$ & $\sigma(\alpha)$ & true $\beta$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
-            \hline
-            0.3333        & 0.3334        & 0.0011           & 0.5000       & 0.5000       & 0.0017          \\
+        \begin{tabular}{ccc ccc}
+            \toprule
+            \multicolumn{3}{c}{$\alpha$} & \multicolumn{3}{c}{$\beta$}                                         \\
+            \cmidrule{1-3}\cmidrule{4-6}
+            true                         & $\mu$                       & $\sigma$ & true   & $\mu$  & $\sigma$ \\
+            \midrule
+            0.3333                       & 0.3334                      & 0.0011   & 0.5000 & 0.5000 & 0.0017   \\
+            \bottomrule
         \end{tabular}
         \end{tabular}
         \caption{The mean $\mu$ and standard deviation $\sigma$ across the 5
         \caption{The mean $\mu$ and standard deviation $\sigma$ across the 5
             independent iterations of training our PINNs with the synthetic dataset.}
             independent iterations of training our PINNs with the synthetic dataset.}
@@ -161,7 +165,7 @@ While the predicted value is not precisely accurate, the standard deviation is
 sufficiently small, and taking the mean of multiple iterations produces an
 sufficiently small, and taking the mean of multiple iterations produces an
 almost perfect result.\\
 almost perfect result.\\
 
 
-In~\Cref{table:alpha_beta} we present the results of the training for the
+In~\Cref{table:state_mean_std} we present the results of the training for the
 real-world data. The results are presented from top to bottom, in the order of
 real-world data. The results are presented from top to bottom, in the order of
 the community identification number, with the last entry being Germany. Both
 the community identification number, with the last entry being Germany. Both
 the mean $\mu$ and the standard deviation $\sigma$ are calculated across all
 the mean $\mu$ and the standard deviation $\sigma$ are calculated across all
@@ -171,30 +175,34 @@ has the lowest $\sigma$.\\
 
 
 \begin{table}[h]
 \begin{table}[h]
     \begin{center}
     \begin{center}
-        \begin{tabular}{c|cc|cc}
-                                   & $\mu(\alpha)$ & $\sigma(\alpha)$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
-            \hline
-            Schleswig Holstein     & 0.0771        & 0.0010           & 0.0966       & 0.0013          \\
-            Hamburg                & 0.0847        & 0.0035           & 0.1077       & 0.0037          \\
-            Lower Saxony           & 0.0735        & 0.0014           & 0.0962       & 0.0018          \\
-            Bremen                 & 0.0588        & 0.0018           & 0.0795       & 0.0025          \\
-            North Rhine-Westphalia & 0.0780        & 0.0009           & 0.1001       & 0.0011          \\
-            Hesse                  & 0.0653        & 0.0016           & 0.0854       & 0.0020          \\
-            Rhineland-Palatinate   & 0.0808        & 0.0016           & 0.1036       & 0.0018          \\
-            Baden-Württemberg      & 0.0862        & 0.0014           & 0.1132       & 0.0016          \\
-            Bavaria                & 0.0809        & 0.0021           & 0.1106       & 0.0027          \\
-            Saarland               & 0.0746        & 0.0021           & 0.0996       & 0.0024          \\
-            Berlin                 & 0.0901        & 0.0008           & 0.1125       & 0.0008          \\
-            Brandenburg            & 0.0861        & 0.0008           & 0.1091       & 0.0010          \\
-            Mecklenburg-Vorpommern & 0.0910        & 0.0007           & 0.1167       & 0.0008          \\
-            Saxony                 & 0.0797        & 0.0017           & 0.1073       & 0.0022          \\
-            Saxony-Anhalt          & 0.0932        & 0.0019           & 0.1207       & 0.0027          \\
-            Thuringia              & 0.0952        & 0.0011           & 0.1248       & 0.0016          \\
-            Germany                & 0.0803        & 0.0012           & 0.1044       & 0.0014          \\
+        \begin{tabular}{lccccc}
+            \toprule
+                                   & \multicolumn{2}{c}{$\alpha$} & \multicolumn{2}{c}{$\beta$} &                                        \\
+            \cmidrule{2-3}\cmidrule{4-5}
+            state name             & $\mu$                        & $\sigma$                    & $\mu$  & $\sigma$ & $e_{\text{synth}}$ \\
+            \midrule
+            Schleswig Holstein     & 0.0771                       & 0.0010                      & 0.0966 & 0.0013   & 0.0849             \\
+            Hamburg                & 0.0847                       & 0.0035                      & 0.1077 & 0.0037   & 0.0948             \\
+            Lower Saxony           & 0.0735                       & 0.0014                      & 0.0962 & 0.0018   & 0.0774             \\
+            Bremen                 & 0.0588                       & 0.0018                      & 0.0795 & 0.0025   & 0.0933             \\
+            North Rhine-Westphalia & 0.0780                       & 0.0009                      & 0.1001 & 0.0011   & 0.0777             \\
+            Hesse                  & 0.0653                       & 0.0016                      & 0.0854 & 0.0020   & 0.1017             \\
+            Rhineland-Palatinate   & 0.0808                       & 0.0016                      & 0.1036 & 0.0018   & 0.0895             \\
+            Baden-Württemberg      & 0.0862                       & 0.0014                      & 0.1132 & 0.0016   & 0.0796             \\\addlinespace
+            Bavaria                & 0.0809                       & 0.0021                      & 0.1106 & 0.0027   & 0.0952             \\
+            Saarland               & 0.0746                       & 0.0021                      & 0.0996 & 0.0024   & 0.1080             \\
+            Berlin                 & 0.0901                       & 0.0008                      & 0.1125 & 0.0008   & 0.0667             \\
+            Brandenburg            & 0.0861                       & 0.0008                      & 0.1091 & 0.0010   & 0.0724             \\
+            Mecklenburg-Vorpommern & 0.0910                       & 0.0007                      & 0.1167 & 0.0008   & 0.0540             \\
+            Saxony                 & 0.0797                       & 0.0017                      & 0.1073 & 0.0022   & 0.1109             \\
+            Saxony-Anhalt          & 0.0932                       & 0.0019                      & 0.1207 & 0.0027   & 0.0785             \\
+            Thuringia              & 0.0952                       & 0.0011                      & 0.1248 & 0.0016   & 0.0837             \\\addlinespace
+            Germany                & 0.0803                       & 0.0012                      & 0.1044 & 0.0014   & 0.0804             \\
+            \bottomrule
         \end{tabular}
         \end{tabular}
         \caption{Mean and standard deviation across the 5 iterations, that we
         \caption{Mean and standard deviation across the 5 iterations, that we
             conducted for each German state and Germany as the whole country.}
             conducted for each German state and Germany as the whole country.}
-        \label{table:alpha_beta}
+        \label{table:state_mean_std}
     \end{center}
     \end{center}
 \end{table}
 \end{table}
 
 
@@ -259,12 +267,12 @@ real-world data.\\
 For the purposes of validation, we create a synthetic dataset, by setting the parameter
 For the purposes of validation, we create a synthetic dataset, by setting the parameter
 of $\alpha$ and the reproduction value each to a specific values, and solving~\Cref{eq:reduced_sir_ODE}
 of $\alpha$ and the reproduction value each to a specific values, and solving~\Cref{eq:reduced_sir_ODE}
 for a given time interval. We set $\alpha=\nicefrac{1}{3}$ and $\Rt$ to the
 for a given time interval. We set $\alpha=\nicefrac{1}{3}$ and $\Rt$ to the
-values as can be seen in~\Cref{fig:synthetic_I_r_t} as well as the population
+values as can be seen in~\Cref{fig:Rt_dataset} as well as the population
 size $N=\expnumber{7.6}{6}$ and the initial amount of infected people to
 size $N=\expnumber{7.6}{6}$ and the initial amount of infected people to
 $I_0=10$. Furthermore, we set our simulated time span to 150 days. We use this
 $I_0=10$. Furthermore, we set our simulated time span to 150 days. We use this
 dataset to demonstrate, that our method is working on a simple and minimal
 dataset to demonstrate, that our method is working on a simple and minimal
 dataset.\\ To obtain a dataset of the infectious group, consisting of the
 dataset.\\ To obtain a dataset of the infectious group, consisting of the
-real-world data, we we processed the data of the dataset
+real-world data, we processed the data of the dataset
 \emph{COVID-19-Todesfälle in Deutschland} to extract the number of infections
 \emph{COVID-19-Todesfälle in Deutschland} to extract the number of infections
 in Germany as a whole. For the German states, we use the data of \emph{SARS-CoV-2
 in Germany as a whole. For the German states, we use the data of \emph{SARS-CoV-2
     Infektionen in Deutschland}. In the preprocessing stage, we employ a constant
     Infektionen in Deutschland}. In the preprocessing stage, we employ a constant
@@ -298,6 +306,7 @@ we restrict the data points to an interval of 1200 days, beginning on March 09.
         infectious group (left) and the corresponding true reproduction value
         infectious group (left) and the corresponding true reproduction value
         $\Rt$ (right) for the synthetic data. The lower graphic exemplary
         $\Rt$ (right) for the synthetic data. The lower graphic exemplary
         illustrates the different curves for Germany.}
         illustrates the different curves for Germany.}
+    \label{fig:Rt_dataset}
 \end{figure}
 \end{figure}
 
 
 In order to achieve the desired output, the selected neural network
 In order to achieve the desired output, the selected neural network
@@ -319,13 +328,13 @@ reduced SIR model and the reproduction number $\Rt$. First, we present
 our findings for the synthetic dataset. Then, we provide and discuss the
 our findings for the synthetic dataset. Then, we provide and discuss the
 results for the real-world data.\\
 results for the real-world data.\\
 
 
-\Cref{fig:synth_results} illustrates that the model successfully learns the
-synthetic training data, with an error of $e_{\text{synth}} = 0.0016$. Meanwhile,
-the prediction for the reproduction number $\Rt$ for the synthetic data, is accuracy,
-while having by far the highest standard deviation in the first 30 days. The
-error concerning the reproduction number is $e_{\Rt} = 0.0521$.
+\Cref{fig:synth_results} illustrates the results of our experiments conducted on
+the synthetic dataset, which can be seen in~\Cref{fig:Rt_dataset}. It is evident
+that the model is capable of learning the infection data across all data points.
+The error for this is, $e_{\text{synth}} = 0.0016$, which is of a negligible
+magnitude.\\
 
 
-\begin{figure}[t]
+\begin{figure}[h]
     \centering
     \centering
     \begin{subfigure}{0.45\textwidth}
     \begin{subfigure}{0.45\textwidth}
         \includegraphics[width=\textwidth]{synthetic_I_prediction.pdf}
         \includegraphics[width=\textwidth]{synthetic_I_prediction.pdf}
@@ -341,34 +350,120 @@ error concerning the reproduction number is $e_{\Rt} = 0.0521$.
         standard deviation.}
         standard deviation.}
 \end{figure}
 \end{figure}
 
 
+An examination of the predictions for the representation value $\Rt$ reveals
+that here as well, the model is capable of accurately delineating the value at
+each time point. However, during the first 30 days, the standard deviation is
+exhibits an upward trend, while during the final 120 days, the predictions
+demonstrate remarkable precision. The overall prediction of $\Rt$ has an error
+of $e_{\Rt} = 0.0521$.\\
+
+In~\Cref{fig:state_results}, we present the graphs of $\Rt$ for the state with
+the highest value of $\beta$, namely Thuringia, and for the state with the lowest
+transmission rate $\beta$, namely Bremen. Further visualizations of the results
+can be found in~\Cref{chap:appendix}. In all datasets, the graphs with $\alpha =
+    \nicefrac{1}{5}$ are of a smaller size than those with
+$\alpha = \nicefrac{1}{14}$. This is due to the fact that the individuals are
+being moved to the removed compartment at a faster rate. Resulting, it can be
+observed that the value of $\Rt$ is constantly remaining closer to the threshold
+of $\Rt=1$, while the reproduction number for datasets with $\alpha = \nicefrac{1}{14}$
+reaches values of up to 1.6. In states with higher values of $\beta$, the period
+during which the value of $\Rt$ is above the threshold of one 1 is longer, but
+the peak is lower. In states with a lower transmission rate, the period above 1
+is shorter, but the peak value is higher.\\
+
 \begin{figure}[t]
 \begin{figure}[t]
     \centering
     \centering
     \begin{subfigure}{0.45\textwidth}
     \begin{subfigure}{0.45\textwidth}
-        \includegraphics[width=\textwidth]{Germany_R_t_statistics.pdf}
+        \includegraphics[width=\textwidth]{I_prediction/Thueringen_I_prediction.pdf}
     \end{subfigure}
     \end{subfigure}
     \quad
     \quad
     \begin{subfigure}{0.45\textwidth}
     \begin{subfigure}{0.45\textwidth}
-        \includegraphics[width=\textwidth]{Germany_I_prediction.pdf}
-    \end{subfigure}
-    \vskip\baselineskip
-    \begin{subfigure}{0.45\textwidth}
-        \includegraphics[width=\textwidth]{R_t/Sachsen_Anhalt_R_t_statistics.pdf}
+        \includegraphics[width=\textwidth]{I_prediction/Bremen_I_prediction.pdf}
     \end{subfigure}
     \end{subfigure}
-    \quad
     \begin{subfigure}{0.45\textwidth}
     \begin{subfigure}{0.45\textwidth}
         \includegraphics[width=\textwidth]{R_t/Thueringen_R_t_statistics.pdf}
         \includegraphics[width=\textwidth]{R_t/Thueringen_R_t_statistics.pdf}
     \end{subfigure}
     \end{subfigure}
-    \vskip\baselineskip
-    \begin{subfigure}{0.45\textwidth}
-        \includegraphics[width=\textwidth]{R_t/Bremen_R_t_statistics.pdf}
-    \end{subfigure}
     \quad
     \quad
     \begin{subfigure}{0.45\textwidth}
     \begin{subfigure}{0.45\textwidth}
-        \includegraphics[width=\textwidth]{R_t/Hessen_R_t_statistics.pdf}
+        \includegraphics[width=\textwidth]{R_t/Bremen_R_t_statistics.pdf}
     \end{subfigure}
     \end{subfigure}
     \label{fig:state_results}
     \label{fig:state_results}
-    \caption{text}
+    \caption{Visualization of the prediction of the training and  the graphs of
+        $\Rt$ for Thuringia (left) and Bremen (right) with both
+        $\alpha = \nicefrac{1}{14}$ and $\alpha = \nicefrac{1}{5}$. Events like
+        the peak of an influential variant are marked horizontally.}
 \end{figure}
 \end{figure}
 
 
+\Cref{table:state_error} presents data regarding the discrepancy between the
+predicted and actual values from the dataset for compartment $I$. It is evident,
+that the error for all experiments falls within a range of values that is not
+negligible and will have an influence on the resulting reproduction values that
+are learned while fitting the data. A comparison of the results for the various
+values of $\alpha$ reveals that the errors associated with $\alpha = \nicefrac{1}{14}$
+are consistently smaller, with the exception of Saxony and Germany. This can be
+attributed to the differing sizes of infection counts, particularly in relation
+to the normalization factor $C$. The model is unable to learn effectively if the
+values of the data loss $\mathcal{L}_{\text{data}}$ are too large or too small
+at the beginning.\\
+
+As illustrated in~\Cref{fig:state_results}, the training data is overlaid with the
+corresponding prediction of the model. We can observe that the prediction, though
+an exact reconstruction, accurately captures the general trajectory of the
+pandemic. The model's prediction demonstrates an ability to capture larger
+peaks, exhibiting a tendency to ignore smaller changes. This suggests that the
+prediction of the model is capable show the rough outline of the progression of COVID-19. In the
+beginning, the majority of predictions below $\Rt=1$, indicating an outbreak.
+As we observed in the synthetic data, the model exhibits a higher standard
+deviation at the boundaries. In the graphs, we mark the
+peaks of the most severe COVID-19 variants in Germany. While the peaks of the
+Alpha and Delta variants are clearly visible in the data, the model does not
+learn these, and thus they are not reflected in the results. The peak of the
+Omicron variant  represents the culmination of the COVID-19 pandemic in Germany
+and can be identified as the most prominent peak in the dataset. Immediately preceding this peak, we observe the highest
+value of the reproduction number across all states. This phenomenon can be explained, by
+number  of individuals infected by one infectious person reaching its peak. In
+some states the peaks of other Omicron variants after the maximum peak are visible (see Thuringia).\\
+
+The experiments demonstrate, that our model encounteres difficulties in learning the data for the
+states and Germany and consequently in predicting the reproduction values for each dataset.
+Nonetheless, the predictions illustrate the general trends of the most impactful
+events of the COVID-19 pandemic.\\
+
+\begin{table}[t]
+    \begin{center}
+        \begin{tabular}{lcc}
+            \toprule
+                                   & \multicolumn{2}{c}{$e_I$}                            \\
+            \cmidrule{2-3}
+            state name             & $\alpha=\nicefrac{1}{14}$ & $\alpha=\nicefrac{1}{5}$ \\
+            \midrule
+            Schleswig Holstein     & 0.2005                    & 0.2514                   \\
+            Hamburg                & 0.3045                    & 0.3357                   \\
+            Lower Saxony           & 0.2140                    & 0.3082                   \\
+            Bremen                 & 0.2370                    & 0.3838                   \\
+            North Rhine-Westphalia & 0.1718                    & 0.2460                   \\
+            Hesse                  & 0.2736                    & 0.3172                   \\
+            Rhineland-Palatinate   & 0.2442                    & 0.2674                   \\
+            Baden-Württemberg      & 0.1984                    & 0.2958                   \\\addlinespace
+            Bavaria                & 0.1928                    & 0.2825                   \\
+            Saarland               & 0.2554                    & 0.4676                   \\
+            Berlin                 & 0.1885                    & 0.2948                   \\
+            Brandenburg            & 0.2023                    & 0.2571                   \\
+            Mecklenburg-Vorpommern & 0.1518                    & 0.3272                   \\
+            Saxony                 & 0.3382                    & 0.2807                   \\
+            Saxony-Anhalt          & 0.1959                    & 0.2564                   \\
+            Thuringia              & 0.1401                    & 0.2221                   \\\addlinespace
+            Germany                & 0.3371                    & 0.2533                   \\
+            \bottomrule
+        \end{tabular}
+        \caption{This table displays all average values of the error $e_{\text{synth}}$
+            for all German states and Germany. The average is formed across all
+            10 iteration.}
+        \label{table:state_error}
+    \end{center}
+\end{table}
+
+
+
 
 
 % -------------------------------------------------------------------
 % -------------------------------------------------------------------

二進制
thesis.pdf


+ 2 - 2
thesis.tex

@@ -72,10 +72,10 @@
 %--------------------------------------------------
 %--------------------------------------------------
 %--------------------------------------------------
 %--------------------------------------------------
 
 
-\appendix
+%\appendix
 
 
 % if you do not have appendix sections, comment this include command out
 % if you do not have appendix sections, comment this include command out
-%\include{./chapters/appendix/appendix}
+\include{./chapters/appendix/appendix}
 
 
 \singlespacing
 \singlespacing