|
@@ -201,6 +201,9 @@ has the lowest $\sigma$.\\
|
|
|
\begin{figure}[t]
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
|
|
|
+ \caption{Visualization of the mean $\mu$ and standard deviation $\sigma$ of
|
|
|
+ the transition rates $\alpha$ and $\beta$ for each state compared to the
|
|
|
+ mean values of $\alpha$ and $\beta$ for Germany.}
|
|
|
\label{fig:alpha_beta_mean_std}
|
|
|
\end{figure}
|
|
|
|
|
@@ -280,24 +283,21 @@ we restrict the data points to an interval of 1200 days, beginning on March 09.
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{I_synth.pdf}
|
|
|
- \caption{Synthetic data}
|
|
|
- \label{fig:synthetic_I}
|
|
|
\end{subfigure}
|
|
|
\quad
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{I_synth_r_t.pdf}
|
|
|
- \caption{Synthetic data}
|
|
|
- \label{fig:synthetic_I_r_t}
|
|
|
\end{subfigure}
|
|
|
\vskip\baselineskip
|
|
|
\begin{subfigure}{0.67\textwidth}
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{datasets_states/Germany_datasets.pdf}
|
|
|
- \caption{}
|
|
|
- \label{fig:germany_I_14}
|
|
|
\end{subfigure}
|
|
|
-
|
|
|
+ \caption{The upper two graphics show the curve of the size of the
|
|
|
+ infectious group (left) and the corresponding true reproduction value
|
|
|
+ $\Rt$ (right) for the synthetic data. The lower graphic exemplary
|
|
|
+ illustrates the different curves for Germany.}
|
|
|
\end{figure}
|
|
|
|
|
|
In order to achieve the desired output, the selected neural network
|
|
@@ -319,7 +319,11 @@ reduced SIR model and the reproduction number $\Rt$. First, we present
|
|
|
our findings for the synthetic dataset. Then, we provide and discuss the
|
|
|
results for the real-world data.\\
|
|
|
|
|
|
-In~\Cref{fig:synth_results}
|
|
|
+\Cref{fig:synth_results} illustrates that the model successfully learns the
|
|
|
+synthetic training data, with an error of $e_{\text{synth}} = 0.0016$. Meanwhile,
|
|
|
+the prediction for the reproduction number $\Rt$ for the synthetic data, is accuracy,
|
|
|
+while having by far the highest standard deviation in the first 30 days. The
|
|
|
+error concerning the reproduction number is $e_{\Rt} = 0.0521$.
|
|
|
|
|
|
\begin{figure}[t]
|
|
|
\centering
|
|
@@ -331,7 +335,10 @@ In~\Cref{fig:synth_results}
|
|
|
\includegraphics[width=\textwidth]{synthetic_R_t_statistics.pdf}
|
|
|
\end{subfigure}
|
|
|
\label{fig:synth_results}
|
|
|
- \caption{text}
|
|
|
+ \caption{Results for the reproduction rate $\Rt$ on synthetic data. The
|
|
|
+ left graphic show the prediction of the model regarding the $I$ group. The
|
|
|
+ right graphic presents the predicted $\Rt$ against the true value, with the
|
|
|
+ standard deviation.}
|
|
|
\end{figure}
|
|
|
|
|
|
\begin{figure}[t]
|
|
@@ -343,7 +350,6 @@ In~\Cref{fig:synth_results}
|
|
|
\begin{subfigure}{0.45\textwidth}
|
|
|
\includegraphics[width=\textwidth]{Germany_I_prediction.pdf}
|
|
|
\end{subfigure}
|
|
|
-
|
|
|
\vskip\baselineskip
|
|
|
\begin{subfigure}{0.45\textwidth}
|
|
|
\includegraphics[width=\textwidth]{R_t/Sachsen_Anhalt_R_t_statistics.pdf}
|