
Investigating the Evolution of the

COVID-19 Pandemic in Germany

Using Physics-Informed Neural

Networks

Bachelor Thesis in Computer Science

submitted by

Phillip Rothenbeck

born February 22, 2002 in Eckernförde

written at

Computer Vision Group

Department of Mathematics and Computer Science

Friedrich-Schiller-Universität Jena

Supervisor: Prof. Dr.-Ing. Joachim Denzler

Advisor: Niklas Penzel, Sai Karthikeya Vemuri

Started: May 1, 2024

Finished: September 14, 2024





Eigenständigkeitserklärung

1. Hiermit versichere ich, dass ich die vorliegende Arbeit - bei einer Gruppenarbeit
die von mir zu verantwortenden und entsprechend gekennzeichneten Teile - selb-
stständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe. Ich trage die Verantwortung für die Qualität des Textes sowie die
Auswahl aller Inhalte und habe sichergestellt, dass Informationen und Argumente
mit geeigneten wissenschaftlichen Quellen belegt bzw. gestützt werden. Die aus
fremden oder auch eigenen, älteren Quellen wörtlich oder sinngemäÿ übernomme-
nen Textstellen, Gedankengänge, Konzepte, Gra�ken etc. in meinen Ausführungen
habe ich als solche eindeutig gekennzeichnet und mit vollständigen Verweisen auf die
jeweilige Quelle versehen. Alle weiteren Inhalte dieser Arbeit ohne entsprechende
Verweise stammen im urheberrechtlichen Sinn von mir.

2. Ich weiÿ, dass meine Eigenständigkeitserklärung sich auch auf nicht zitierfähige, gener-
ierende KI-Anwendungen (nachfolgend �generierende KI�) bezieht. Mir ist bewusst,
dass die Verwendung von generierender KI unzulässig ist, sofern nicht deren Nutzung
von der prüfenden Person ausdrücklich freigegeben wurde (Freigabeerklärung). Sofern
eine Zulassung als Hilfsmittel erfolgt ist, versichere ich, dass ich mich generierender
KI lediglich als Hilfsmittel bedient habe und in der vorliegenden Arbeit mein gestal-
terischer Ein�uss deutlich überwiegt. Ich verantworte die Übernahme der von mir
verwendeten maschinell generierten Passagen in meiner Arbeit vollumfänglich selbst.
Für den Fall der Freigabe der Verwendung von generierender KI für die Erstellung
der vorliegenden Arbeit wird eine Verwendung in einem gesonderten Anhang meiner
Arbeit kenntlich gemacht. Dieser Anhang enthält eine Angabe oder eine detaillierte
Dokumentation über die Verwendung generierender KI gemäÿ den Vorgaben in der
Freigabeerklärung der prüfenden Person. Die Details zum Gebrauch generierender
KI bei der Erstellung der vorliegenden Arbeit inklusive Art, Ziel und Umfang der
Verwendung sowie die Art der Nachweisp�icht habe ich der Freigabeerklärung der
prüfenden Person entnommen.

3. Ich versichere des Weiteren, dass die vorliegende Arbeit bisher weder im In- noch
im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt
wurde oder in deutscher oder einer anderen Sprache als Verö�entlichung erschienen
ist.

4. Mir ist bekannt, dass ein Verstoÿ gegen die vorbenannten Punkte prüfungsrechtliche
Konsequenzen haben und insbesondere dazu führen kann, dass meine Prüfungsleis-
tung als Täuschung und damit als mit �nicht bestanden� bewertet werden kann. Bei
mehrfachem oder schwerwiegendem Täuschungsversuch kann ich befristet oder sogar
dauerhaft von der Erbringung weiterer Prüfungsleistungen in meinem Studiengang
ausgeschlossen werden.

5. Die Richtlinien des Lehrstuhls für Examensarbeiten habe ich gelesen und anerkannt.
Seitens des Verfassers/der Verfasserin bestehen keine Einwände, die vorliegende Exa-
mensarbeit für die ö�entliche Benutzung zur Verfügung zu stellen.

Jena, den 14. September 2024 Phillip Rothenbeck

I





Überblick

German version of the abstract.

Hello, here is some text without a meaning. This text should show what a printed

text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a di�erence between this text and some

nonsense like �Huardest gefburn�? Kjift � not at all! A blind text like this gives you

information about the selected font, how the letters are written and an impression of

the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of

words should match the language.

Abstract

English version of the abstract.

Hello, here is some text without a meaning. This text should show what a printed

text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a di�erence between this text and some

nonsense like �Huardest gefburn�? Kjift � not at all! A blind text like this gives you

information about the selected font, how the letters are written and an impression of

the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of

words should match the language.

III





Contents

1 Introduction 1

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 5

2.1 Mathematical Modelling using Functions . . . . . . . . . . . . . . . . 5

2.2 Mathematical Modelling using Di�erential Equations . . . . . . . . . 6

2.3 Epidemiological Models . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Reduced SIR Model and the Reproduction Number . . . . . . 12

2.4 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Physics Informed Neural Networks . . . . . . . . . . . . . . . . . . . 16

2.5.1 Disease Informed Neural Networks . . . . . . . . . . . . . . . 19

3 Methods 21

3.1 Epidemiological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 RKI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Estimating Epidemiological Parameters using PINNs . . . . . . . . . 24

3.3 Estimating the Reproduction Number using PINNs . . . . . . . . . . 27

4 Experiments 29

4.1 Identifying the Transition Rates . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Identifying the Reproduction Number . . . . . . . . . . . . . . . . . 34

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

V



Contents

5 Conclusions 41

5.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Further Compartmental Models . . . . . . . . . . . . . . . . . 43

5.1.2 Agent based models . . . . . . . . . . . . . . . . . . . . . . . 43

6 Appendix 45

Bibliography 51

List of Figures 55

List of Tables 57

VI



Chapter 1

Introduction

In the early months of 2020, Germany, like many other countries, was struck by

the novel Coronavirus Disease (COVID-19) [36]. The pandemic, which originates

in Wuhan, China, had a profound impact on the global community, paralyzing it

for over two years. In response to the pandemic, the German government employed

a multifaceted approach [24], encompassing the introduction of vaccines and non-

pharmaceutical mitigation policies such as lockdowns. Between mitigation policies

and varying strains of COVID-19, which have exhibited varying degrees of infectious-

ness and lethality [27], Germany had recorded over 38,400,000 infection cases and

174,000 deaths, as of the end of June in 2023 [34]. In light of these �gures the need

for an analysis arises.

The dynamics of the spread of disease transmission in the real-world are complex.

A multitude of factors in�uence the course of a disease, and it is challenging to gain

a comprehensive understanding of these factors and develop tools that allows for the

comparison of disease courses across di�erent diseases and time points. The com-

mon approach in epidemiology to address this is the utilization of epidemiological

models that approximate the dynamics by focusing on speci�c factors and modeling

these using mathematical tools. These models provide transition rates and param-

eters that determine the behavior of a disease within the boundaries of the model.

A fundamental epidemiological model, is the SIR model, which was �rst proposed

by Kermack and McKendrick [12] in 1927. The SIR model is a compartmentalized

model that divides the entire population into three distinct groups: the susceptible

compartment, S; the infectious compartment, I; and the removed compartment, R.

In the context of the SIR model, the constant parameters of the transmission rate β

and the recovery rate α serve to quantify and determine the course of a pandemic.

However, pandemic is not a static entity, therefor, Liu and Stechlinski [16], and Se-

tianto and Hidayat [31], propose an SIR model with time-dependent transition rates
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Chapter 1 Introduction

and reproduction number Rt. The SIR model is de�ned by a system of di�erential

equations, that incorporate the transition rates, thereby depicting the �uctuation

between the three compartments. For a given set of data, the transition rate can

be identi�ed by solving the set of di�erential systems. Recently, the data-driven

approach of physics-informed neural networks (PINN) has gained attention due to

its capability of �nding solutions to di�erential equations by �tting its predictions

to both given data and the governing system of di�erential equations. By employing

this methodology, Shaier et al. [32] were able to �nd the transition rate on data for

di�erent diseases. Additionally, Millevoi et al. [18] were able to identify the repro-

duction number Rt for both synthetic and Italian COVID-19 data using an approach

based on a reduced version of the SIR model.

The objective of this thesis is to identify the transition rates β and alpha, as well

as the reproduction number Rt of COVID-19 over the �rst 1200 days of recorded

data in Germany and its federal states. The Robert Koch Institute (RKI) has com-

piled data on both reported cases and associated moralities from the beginning of

the outbreak in Germany to the present. We utilize and preprocess this data ac-

cording to the required format of our approaches. As the raw data lacks information

on recovery incidence, we introduce the recovery queue that simulates a recovery

period. To estimate the transition rates we adopt the approach of Shaier et al. [32],

which utilizes a physics-informed neural network learning the data, which consists of

time point with their respective sizes of the S, I and R compartments, to predict the

transition rates based on the data and the governing system of di�erential equations.

Moreover, we utilize the methodology proposed by Millevoi et al. [18] that estimates

the reproduction number for each day across the 1200-day span for each German

state and Germany as a whole, in reduced SIR model. Thus needing only the size of

the I group for each time step. To validate the e�ectiveness of these methods, we �rst

conduct experiments on a small synthetic dataset before applying the techniques to

real-world data. We then analyze the plausibility of our results by comparing them

to real-world events and data such as vaccination ratios of each region or the peaks

of impactful variants to demonstrate the relevance of these numbers. This analysis

demonstrates the relevance of our �ndings and reveals a correlation between our re-

sults and real-world developments, thus supporting the e�ectiveness of our approach.
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1.1 Related work

1.1 Related work

In this section, we categorize our work into the context of existing literature on

the topic of solving the epidemiological models for real-world data. The �rst work,

by Smirnova et al. [33], endeavors to identify a stochastic methodology for estimat-

ing the time-dependent transmission rate β(t). They achieve this by projecting the

time-dependent transmission rate onto a �nite subspace, that is de�ned by Legen-

dre polynomials. Subsequently, they compare the three regularization techniques

of variational (Tikhonov's) regularization, truncated singular value decomposition

(TSVD), and modi�ed TSVD to ascertain the most reliable method for forecasting

with limited data. Their �ndings indicate that modi�ed TSVD provides the most

stable forecasts on limited data, as demonstrated on both simulated data and real-

world data from the 1918 in�uenza pandemic and the Ebola epidemic. In contrast,

we utilize physics-informed neural networks (PINN) to �nd the constant transition

rates and the reproduction number for Germany and its states

Some related works similarly to us apply PINN approaches to COVID-19 and

other real-world disease data such as [32, 2, 21, 18]. Speci�cally in [32], Shaier et

al. put forth a data-driven approach which they refer to as disease informed neural

networks (DINN). In their work, they demonstrate the capacity of DINNs to fore-

cast the trajectory of epidemics and pandemics. They underpin the e�cacy of their

approach by applying it to 11 diseases, that have previously been modeled. In their

experiments they employ the SIDR (susceptible, infectious, dead, recovered) model.

Finally, they present that this method is a robust and e�ective means of identifying

the parameters of a SIR model.

Similarly in [2], Berkhahn and Ehrhard employ the susceptible, vaccinated, infec-

tious, hospitalized and removed (SVIHR) model. The proposed PINN methodology

initially estimates the SVIHR model parameters for German COVID-19 data, cov-

ering the time span from the inceptions of the outbreak to the end of 2021. For

comparative purposes, Berkhahn and Ehrhard employ the method of non-standard

�nite di�erences (NSFD) as well. The authors employ both methods the two fore-

casting methods project the trajectory of COVID-19 from mid-April 2023 onwards.

Berkhahn and Ehrhard �nd that the PINN is able to adapt to varying vaccination

rates and emerging variants.
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Furthermore, Olumoyin et al. [21] employ an alternative methodology for identify-

ing the time-dependent transmission rate of an asymptomatic-SIR model accounting

for unreported infectious cases. The PINN approach they introduce, utilizes the

cumulative and daily reported infection cases and symptomatic recovered cases, to

demonstrate the e�ect of di�erent mitigation measures and to ascertain the propor-

tion of non-symptomatic individuals and asymptomatic recovered individuals. With

this they can illustrate the in�uence of vaccination and a set non-pharmaceutical

mitigation methods on the transmission of COVID-19 on data from Italy, South Ko-

rea, the United Kingdom, and the United States.

Finally, Millevoi et al. [18] address the issue of the changes in the transmission rate

due to the dynamics of a pandemic. The authors employ the reproduction number

to reduce the system of di�erential equations to a single equation and introduce a

reduced-split version of the PINN, which initially trains on the data and then trains

to minimize the residual of the ODE. They test their approach on �ve synthetic and

two real-world scenarios from the early stages of the COVID-19 pandemic in Italy.

This method yields an increase in both accuracy and training speed. In contrast,

to these works, we estimate the rates and the reproduction number for Germany for

the entirety of the span from early March in 2020 to late June in 2023.

1.2 Overview

This thesis is comprised of four chapters. Chapter 2 presents with the theoretical

overview of mathematical modeling in epidemiology, with a particular focus on the

SIR model. Subsequently, it shifts its focus to neural networks, speci�cally on the

background of physics-informed neural networks (PINN) and their use in solving

ordinary di�erential equations. Chapter 3 outlines the methodology employed in this

thesis. First we present the data, that was collected by the Robert Koch Institute

(RKI). Then we present the PINN approaches, which are inspired by the work of

Shaier et al. [32] and Millevoi et al. [18]. Chapter 4 presents the setups and results of

the experiments that we conduct. This chapter is divided into two sections. The �rst

section presents and discusses the results concerning the transition rates of β and α.

The subsequent section presents the results concerning the reproduction value Rt.

Finally, in Chapter 5, we connect our results with the events of the real-world and

give an overview of potential further work.
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Chapter 2

Theoretical Background

This chapter introduces the theoretical foundations for the work presented in this

thesis. In Section 2.1 and Section 2.2, we describe di�erential equations and the

underlying theory. In these Sections both the explanations and the approach are

based on a book on analysis by Rudin [29] and a book about ordinary di�erential

equations by Tenenbaum and Pollard [35]. Subsequently, we employ this knowledge

to examine various pandemic models in Section 2.3. Finally, we address the topic of

neural networks with a focus on the multilayer perceptron in Section 2.4 and physics

informed neural networks in Section 2.5.

2.1 Mathematical Modelling using Functions

To model a physical problem mathematically, it is necessary to de�ne a fundamental

set of numbers or quantities upon which the subsequent calculations will be based.

These sets may represent, for instance, a speci�c time interval or a distance. The

term domain describes these fundamental sets of numbers or quantities [29]. A vari-

able is a changing entity living in a certain domain. In this thesis, we will focus on

domains of real numbers in R.

The mapping between variables enables the modeling of a physical process and may

depict semantics. We use functions in order to facilitate this mapping. Let A,B ⊂ R
be to subsets of the real numbers, then we de�ne a function as the mapping

f : A → B. (2.1)

In other words, the function f maps elements x ∈ A to values f(x) ∈ B. A is the

domain of f , while B is the codomain of f . Functions are capable of representing

the state of a system as a value based on an input value from their domain. One
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Chapter 2 Theoretical Background

illustrative example is a function that maps a time step to the distance covered since

a starting point. In this case, time serves as the domain, while the distance is the

codomain.

2.2 Mathematical Modelling using Di�erential Equations

Often, the behavior of a variable or a quantity across a domain is more interesting

than its current state. Functions are able to give us the latter, but do not contain

information about the change of a system. The objective is to determine an e�ective

method for calculating the change of a function across its domain. Let f be a function

and [a, b] ⊂ R an interval of real numbers. The expression

m =
f(b)− f(a)

a− b
(2.2)

gives the average rate of change. While the average rate of change is useful in many

cases, the momentary rate of change is more accurate. To calculate this, we need tolook up in

Rudin - cite

(wordly)

narrow down, the interval to an in�nitesimal. For each x ∈ [a, b] we calculate

df

dx
= lim

t→x

f(t)− f(x)

t− x
, (2.3)

if it exists. As the Tenenbaum and Pollard [35] de�ne, df/dx is the derivative, which

is �the rate of change of a variable with respect to another�. The relation between

a variable and its derivative is modeled in a di�erential equation. The derivative

of df/dx yields d2f/dx2, which is the function that calculates the rate of change of

the rate of change and is called the second order derivative. Iterating this n times

results in dnf/dxn, the derivative of the n'th order. A method for obtaining a dif-

ferential equation is to derive it from the semantics of a problem. For example, in

physics a di�erential equation can be derived from the law of the conservation of en-

ergy [4]. Di�erential equations �nd application in several areas such as engineering

e.g., the Kirchho�'s circuit laws [14] to describe the relation between the voltage and

current in systems with resistors, inductors, and capacitors; physics with, e.g., the

Schrödinger equation, which predicts the probability of �nding particles like elec-

trons in speci�c places or states in a quantum system; economics, e.g., Black-Scholes

equation [20] predicting the price of �nancial derivatives, such as options, over time;

epidemiology with the SIR Model [12]; and beyond.
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2.2 Mathematical Modelling using Di�erential Equations

In the context of functions, it is possible to have multiple domains, meaning that

function has more than one parameter. To illustrate, consider a function operating

in two-dimensional space, wherein each parameter represents one axis. Another ex-

ample would be a function, that maps its inputs of a location variable and a time

variable on a height. The term partial di�erential equations (PDE 's) describes dif-

ferential equations of such functions, which contain partial derivatives with respect

to each individual domain. In contrast, ordinary di�erential equations (ODE 's) are

the single derivatives for a function having only one domain [35]. In this thesis, we

restrict ourselves to ODE's.

A system of di�erential equations is the name for a set of di�erential equations.

The derivatives in a system of di�erential equations each have their own codomain,

which is part of the problem, while they all share the same domain.

Tenenbaum and Pollard [35] provide many examples for ODE's, including the

Motion of a Particle Along a Straight Line. Further, Newton's second law states

that �the rate of change of the momentum of a body (momentum = mass · velocity)
is proportional to the resultant external force F acted upon it� [35]. Let m be the

mass of the body in kilograms, v its velocity in meters per second and t the time in

seconds. Then, Newton's second law translates mathematically to

F = m
dv

dt
. (2.4)

It is evident that the acceleration, a = dv
dt , as the rate of change of the velocity is part

of the equation. Additionally, the velocity of a body is the derivative of the distance

traveled by that body. Based on these �ndings, we can rewrite the Equation (2.4) to

F = ma = m
d2s

dt2
. (2.5)

To conclude, note that this explanation of di�erential equations focuses on the

aspects deemed crucial for this thesis and is not intended to be a complete explanation

of the subject. To gain a better understanding of it, we recommend the books

mentioned above [29, 35]. In the following section we describe the application of

these principles in epidemiological models.

7



Chapter 2 Theoretical Background

2.3 Epidemiological Models

Pandemics, like COVID-19, which have resulted in a signi�cant number of fatali-

ties. Hence, the question arises: How should we analyze a pandemic e�ectively? It

is essential to study whether the employed countermeasures are e�cacious in com-

bating the pandemic. Given the unfavorable public response to measures such as

lockdowns, it is imperative to investigate that their e�cacy remains commensurate

with the costs incurred to those a�ected. In the event that alternative and novel

technologies were in use, such as the mRNA vaccines in the context of COVID-19,

it is needful to test the e�ect and �nd the optimal variant. In order to shed light on

the aforementioned events, we need a method to quantify the pandemic along with

its course of progression.

The real world is a highly complex system, which presents a signi�cant challenge

attempting to describe it fully in a mathematical model. Therefore, the model must

reduce the complexity while retaining the essential information. Furthermore, it

must address the issue of limited data availability. For instance, during COVID-19

institutions such as the Robert Koch Institute (RKI)1 were only able to collect data

on infections and mortality cases. Consequently, we require a model that employs

an abstraction of the real world to illustrate the events and relations that are pivotal

to understanding the problem.

2.3.1 SIR Model

In 1927, Kermack and McKendrick [12] introduced the SIR Model, which subse-

quently became one of the most in�uential epidemiological models. This model

enables the modeling of infections during epidemiological events such as pandemics.

The book Mathematical Models in Biology [6] reiterates the model and serves as the

foundation for the following explanation of SIR models.

The SIR model is capable of illustrating diseases, which are transferred through

contact or proximity of an individual carrying the illness and a healthy individual.

This is possible due to the distinction between infected individuals who are carriers

of the disease and the part of the population, which is susceptible to infection. In

the model, the mentioned groups are capable to change, e.g., healthy individuals

becoming infected. The model assumes the sizeN of the population remains constant

1https://www.rki.de/EN/Home/homepage_node.html
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2.3 Epidemiological Models

throughout the duration of the pandemic. The population N comprises three distinct

compartments: the susceptible group S, the infectious group I and the removed group

R (hence SIR model). Let T = [t0, tf ] ⊆ R≥0 be the time span of the pandemic,

then,

S : T → N, I : T → N, R : T → N, (2.6)

give the values of S, I and R at a certain point of time t ∈ T . For S, I, R and N

applies:

N = S + I +R. (2.7)

The model makes another assumption by stating that recovered people are immune

to the illness and infectious individuals can not infect them. The individuals in the R

group are either recovered or deceased, and thus unable to transmit or carry the dis-

ease. As visualized in the Figure 2.1 the individuals may transition between groups

Figure 2.1: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

based on transition rates. The transmission rate β is responsible for individuals be-

coming infected, while the rate of removal or recovery rate α (also referred to as δ

or ν, e.g., [6, 18]) moves individuals from I to R.

We can describe this problem mathematically using a system of di�erential equa-

tions (see Section 2.2). Thus, Kermack and McKendrick [12] propose the following

set of di�erential equations:

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI.

(2.8)

This set of di�erential equations, is based on the following assumption: �The rate of

transmission of a microparasitic disease is proportional to the rate of encounter of

9



Chapter 2 Theoretical Background

susceptible and infective individuals modelled by the product (βSI)�, according to

Edelstein-Keshet [6]. The system shows the change in size of the groups per time

unit due to infections, recoveries, and deaths.

The term βSI describes the rate of encounters of susceptible and infected indi-

viduals. This term is dependent on the size of S and I, thus Anderson and May [1]

propose a modi�ed model:

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI.

(2.9)

In Equation (2.9) βSI gets normalized by N , which is more correct in a real world

aspect [1].

The initial phase of a pandemic is characterized by the infection of a small number

of individuals, while the majority of the population remains susceptible. The infec-

tious group has not yet infected any individuals thus neither recovery nor mortality

is possible. Let I0 ∈ N be the number of infected individuals at the beginning of the

disease. Then,

S(0) = N − I0,

I(0) = I0,

R(0) = 0,

(2.10)

describes the initial con�guration of a system in which a disease has just emerged.

In the SIR model the temporal occurrence and the height of the peak (or peaks) of

the infectious group are of paramount importance for understanding the dynamics of

a pandemic. A low peak occurring at a late point in time indicates that the disease

is unable to keep pace with the rate of recovery, resulting in its demise before it

can exert a signi�cant in�uence on the population. In contrast, an early and high

peak means that the disease is rapidly transmitted through the population, with a

signi�cant proportion of individuals having been infected. Figure 2.1 illustrates this

e�ect by varying the values of β or α while simulating a pandemic using a model such

10



2.3 Epidemiological Models

0 100 200 300 400 500
time / days

0

1

2

3

4

5

6

am
ou

nt
of

p
eo

p
le

×107 reference parameters

Susceptible

Infectious

Removed

(a) α = 0.35, β = 0.5

0 100 200 300 400 500
time / days

0

1

2

3

4

5

6

am
ou

nt
of

p
eo

p
le

×107 low β

Susceptible

Infectious

Removed

(b) α = 0.25, β = 0.5
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(c) α = 0.45, β = 0.5
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(d) α = 0.35, β = 0.4
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(e) α = 0.35, β = 0.6

Figure 2.2: Synthetic data, using Equation (2.9) and N = 7.9 · 106, I0 = 10 with
di�erent sets of parameters. We visualize the case with the reference
parameters in (a). In (b) and (c) we keep α constant, while varying the
value of β. In contrast, (d) and (e) have varying values of α.

as Equation (2.9). It is evident that both the transmission rate β and the recovery

rate α in�uence the height and time of the peak of I. When the number of infections

exceeds the number of recoveries, the peak of I will occur early and will be high.

On the other hand, if recoveries occur at a faster rate than new infections the peak

will occur later and will be low. Thus, it is crucial to know both β and α, as these

parameters characterize how the pandemic evolves.

The SIR model makes a number of assumptions that are intended to reduce the

model's overall complexity while simultaneously increasing its divergence from actual

reality. One such assumption is that the size of the population, N , remains constant,

as the daily change is negligible to the total population. This depiction is not an

accurate representation of the actual relations observed in the real world, as the size other assump-

tions in a bad

light?

of a population is subject to a number of factors that can contribute to change. The

population is increased by the occurrence of births and decreased by the occurrence

11
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of deaths. Other examples are the impossibility for individuals to be susceptible

again, after having recovered, or the possibility for the transition rates to change

due to new variants or the implementation of new countermeasures. We address this

latter option in the next Section 2.3.2.

2.3.2 Reduced SIR Model and the Reproduction Number

The Section 2.3.1 presents the classical SIR model. This model contains two scalar

parameters β and α, which describe the course of a pandemic over its duration. This

is bene�cial when examining the overall pandemic; however, in the real world, disease

behavior is dynamic, and the values of the parameters β and α change throughout

the course of the disease. The reason for this is due to events such as the imple-

mentation of countermeasures that reduce the contact between the infectious and

susceptible individuals, the emergence of a new variant of the disease that increases

its infectivity or deadliness, or the administration of a vaccination that provides

previously susceptible individuals with immunity without ever being infected. To

address this, based on the time-dependent transition rates introduced by Liu and

Stechlinski [16], and Setianto and Hidayat [31], Millevoi et al. [18] present a model

that simultaneously reduces the size of the system of di�erential equations and solves

the problem of time scaling at hand.

First, they alter the de�nition of β and α to be dependent on the time interval

T = [t0, tf ] ⊆ R≥0,

β : T → R≥0, α : T → R≥0. (2.11)

Another crucial element is D(t) = 1
α(t) , which represents the initial time span an

infected individual requires to recuperate. Subsequently, at the initial time point t0,

the reproduction number,

R0 = β(t0)D(t0) =
β(t0)

α(t0)
, (2.12)

represents the number of susceptible individuals, that one infectious individual infects

at the onset of the pandemic. In light of the e�ects of β and α (see Section 2.3.1),

R0 < 1 indicates that the pandemic is emerging. In this scenario α is relatively low

due to the limited number of infections resulting from I(t0) << S(t0).

Further, R0 > 1 leads to the disease spreading rapidly across the population, with

an increase in I occurring at a high rate. Nevertheless, R0 does not cover the entire

12



2.3 Epidemiological Models

time span. For this reason, Millevoi et al. [18] introduce Rt which has the same

interpretation as R0, with the exception that Rt is dependent on time. The time-

dependent reproduction number is de�ned as,

Rt =
β(t)

α(t)
· S(t)

N
, (2.13)

on the time interval T . This de�nition includes the transition rates for information

about the spread of the disease and information of the decrease of the ratio of sus-

ceptible individuals in the population. In contrast to β and α, Rt is not a parameter

but a state variable in the model and enabling the following reduction of the SIR Sai comment -

earlier?model.

Equation (2.7) allows for the calculation of the value of the group R using S and

I, with the term R(t) = N − S(t)− I(t). Thus,

dS

dt
= α(Rt − 1)I(t),

dI

dt
= −αRtI(t),

(2.14)

is the reduction of Equation (2.8) on the time interval T using this characteristic

and the reproduction number Rt (see Equation (2.13)). Another issue that Millevoi

et al. [18] seek to address is the extensive range of values that the SIR groups can

assume. Accordingly, they initially scale the time interval T using its borders to

calculate the scaled time ts =
t−t0
tf−t0

∈ [0, 1]. Subsequently, they calculate the scaled

groups,

Ss(ts) =
S(t)

C
, Is(ts) =

I(t)

C
, Rs(ts) =

R(t)

C
, (2.15)

using a large constant scaling factor C ∈ N. Applying this to the variable I, results

in,
dIs
dts

= α(tf − t0)(Rt − 1)Is(ts), (2.16)

which is a further reduced version of Equation (2.8). This less complex di�erential

equation results in a less complex solution, as it entails the elimination of a parameter

(β) and the two state variables (S and R). The reduced SIR model, is more precise

in applications with a worse data situation, due to its fewer input variables.

13
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2.4 Multilayer Perceptron

In Section 2.2, we demonstrate the signi�cance of di�erential equations in systems,

illustrating how they can be utilized to elucidate the impact of a speci�c parameter

on the system's behavior. In Section 2.3, we show speci�c applications of di�erential

equations in an epidemiological context. The �nal objective is to solve these equa-

tions by �nding a function that �ts. Fitting measured data points to approximate

such a function, is one of the multiple methods to achieve this goal. The Multilayer

Perceptron (MLP) [30] is a data-driven function approximator. In the following

section, we provide a brief overview of the structure and training of these neural

networks. For reference, we use the book Deep Learning by Goodfellow et al. [10] as

a foundation for our explanations.

The objective is to develop an approximation method for any function f∗, which

could be a mathematical function or a mapping of an input vector to the desired

output. Let x be the input vector and y the label, class, or result. Then, y = f∗(x),

is the function to approximate. In the year 1958, Rosenblatt [28] proposed the per-

ceptron modeling the concept of a neuron in a neuroscienti�c sense. The perceptron

takes in the input vector x performs an operation and produces a scalar result. This

model optimizes its parameters θ to be able to calculate y = f(x; θ) as accurately

as possible. As Minsky and Papert [19] demonstrate, the perceptron is only capable

of approximating a speci�c class of functions. Consequently, there is a necessity for

an expansion of the perceptron.

As Goodfellow et al. [10] proceed, the solution to this issue is to decompose f into

a chain structure of the form,

f(x) = f (3)(f (2)(f (1)(x))). (2.17)

This nested version of a perceptron is a multilayer perceptron. Each sub-function,

designated as f (i), is represented in the structure of an MLP as a layer, which con-

tains a linear mapping and a nonlinear mapping in form of an activation function.

A multitude of Units (also neurons) compose each layer. A neuron performs the

same vector-to-scalar calculation as the perceptron does. Subsequently, a nonlin-

ear activation function transforms the scalar output into the activation of the unit.

The layers are staggered in the neural network, with each layer being connected to

its neighbors, as illustrated in Figure 2.3. The input vector x is provided to each

14
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unit of the �rst layer f (1), which then gives the results to the units of the second

layer f (2), and so forth. The �nal layer is the output layer. The intervening lay-

ers, situated between the �rst and the output layers are the hidden layers. The

term forward propagation describes the process of information �owing through the

network from the input layer to the output layer, resulting in a scalar loss. The

alternating structure of linear and nonlinear calculation enables MLP's to approx-

imate any function. As Hornik et al. [11] proves, MLP's are universal approximators.

Figure 2.3: A illustration of an MLP with two hidden layers. Each neuron of a layer is
connected to every neuron of the neighboring layers. The arrow indicates
the direction of the forward propagation.

The term training describes the process of optimizing the parameters θ. In order

to undertake training, it is necessary to have a set of training data, which is a set

of pairs (also called training points) of the input data x and its corresponding true

solution y of the function f∗. For the training process we must de�ne a loss function

L(ŷ,y), using the model prediction ŷ and the true value y, which will act as a metric

for evaluating the extent to which the model deviates from the correct answer. One

common loss function is the mean square error (MSE) loss function. Let N be the

number of points in the set of training data. Then,

LMSE(ŷ,y) =
1

N

N∑
i=1

||ŷ(i) − y(i)||2, (2.18)

calculates the squared di�erence between each model prediction and true value of a

training and takes the mean across the whole training data.
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Ultimately, the objective is to utilize this information to optimize the parameters,

in order to minimize the loss. One of the most fundamental optimization strategy

is gradient descent. In this process, the derivatives are employed to identify the

location of local or global minima within a function, which lie where the gradient is

zero. Given that a positive gradient signi�es ascent and a negative gradient indicates

descent, we must move the variable by a learning rate (step size) in the opposite

direction to that of the gradient. The calculation of the derivatives in respect to the

parameters is a complex task, since our functions is a composition of many functions

(one for each layer). We can address this issue taking advantage of Equation (2.17)

and employing the chain rule of calculus. Let ŷ = f(x; θ) be the model prediction

with the decomposed version f(x; θ) = f (3)(w; θ3) with w = f (2)(z; θ2) and z =

f (1)(x; θ1). x is the input vector and θ3, θ2, θ1 ⊂ θ. Then,

∇θ3L(ŷ,y) =
dL
dŷ

dŷ

df (3)
∇θ3f

(3), (2.19)

is the gradient of L(ŷ,y) in respect of the parameters θ3. To obtain ∇θ2L(ŷ,y), we
have to derive ∇θ3L(ŷ,y) in respect to θ2. The name of this method in the context

of neural networks is back propagation [30], as it propagates the error backwards

through the neural network.

In practical applications, an optimizer often accomplishes the optimization task by

executing back propagation in the background. Furthermore, modifying the learning

rate during training can be advantageous. For instance, making larger steps at theleave whole

paragraph out?

- Niklas

beginning and minor adjustments at the end. Therefore, schedulers are implemen-

tations algorithms that employ diverse learning rate alteration strategies.

For a more in-depth discussion of practical considerations and additional details

like regularization, we direct the reader to the book Deep Learning by Goodfellow

et al. [10]. The next section will demonstrate the application of neural networks in

approximating solutions to di�erential systems.

2.5 Physics Informed Neural Networks

In Section 2.4, we describe the structure and training of MLP's, which are wildely

recognized tools for approximating any kind of function. In this section, we apply

this capability to create a solver for ODE's and PDE's as Legaris et al. [15] describe
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in their paper. In this approach, the model learns to approximate a function using

provided data points while leveraging the available knowledge about the problem in

the form of a system of di�erential equations. The physics-informed neural network

(PINN) learns the system of di�erential equations during training, as it optimizes

its output to align with the equations.

In contrast to standard MLP's, PINNs are not only data-driven. The loss term

of a PINN comprises two components. The �rst term incorporates the equations of

the aforementioned prior knowledge to pertinent the problem. As Raissi et al. [23]

propose, the residual of each di�erential equation in the system must be minimized

in order for the model to optimize its output in accordance with the theory. We

obtain the residual ri, with i ∈ {1, ..., Nd}, by rearranging the di�erential equation

and calculating the di�erence between the left-hand side and the right-hand side of

the equation. Nd is the number of di�erential equations in a system. As Raissi et

al. [23] propose the physics loss of a PINN,

Lphysics(x, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2, (2.20)

takes the input data and the model prediction to calculate the mean square error of

the residuals. The second term, the observation loss Lobs(ŷ,y), employs the mean

square error of the distances between the predicted and the true values for each

training point. Additionally, the observation loss may incorporate extra terms of

inital and boundary conditions. Let Nt denote the number of training points. Then,

LPINN (x,y, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2 +
1

Nt

Nt∑
i=1

||ŷ(i) − y(i)||2, (2.21)

represents the comprehensive loss function of a physics-informed neural network.

Given the nature of residuals, calculating the loss term of Lphysics(x, ŷ) requires

the calculation of the derivative of the output with respect to the input of the neural

network. As we outline in Section 2.4, during the process of back-propagation we

calculate the gradients of the loss term in respect to a layer-speci�c set of parameters

denoted by θl, where l represents the index of the respective layer. By employing the

chain rule of calculus, the algorithm progresses from the output layer through each
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hidden layer, ultimately reaching the �rst layer in order to compute the respective

gradients. The term,

∇xŷ =
dŷ

df (2)

df (2)

df (1)
∇xf

(1), (2.22)

illustrates that, in contrast to the procedure described in eq. (2.19), this procedure

the automatic di�erenciation goes one step further and calculates the gradient of

the output with respect to the input x. In order to calculate the second derivative
dŷ
dx = ∇x(∇xŷ), this procedure must be repeated.

Above we present a method for approximating functions through the use of systems

of di�erential equations. As previously stated, we want to �nd a solver for systems of

di�erential equations. In problems, where we must solve an ODE or PDE, we have

to �nd a set of parameters, that satis�es the system for any input x. In terms of the

context of PINN's this is the inverse problem, where we have a set of training data

from measurements, for example, is available along with the respective di�erential

equations but information about the parameters of the equations is lacking. To ad-

dress this challenge, we set these parameters as distinct learnable parameters within

the neural network. This enables the network to utilize a speci�c value, that actively

in�uences the physics loss Lphysics(x, ŷ). During the training phase the optimizer

aims to minimize the physics loss, which should ultimately yield an approximation

of the true value.

-1

1

Figure 2.4: Illustration of of the movement of an oscillating body in the underdamped
case. With m = 1kg, µ = 4Ns

m and k = 200N
m .

One illustrative example of a potential application for PINN's is the damped har-

monic oscillator [4]. In this problem, we displace a body, which is attached to a

spring, from its resting position. The body is subject to three forces: �rstly, the in-
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ertia exerted by the displacement u, which points in the direction the displacement

u; secondly the restoring force of the spring, which attempts to return the body to

its original position and thirdly, the friction force, which points in the opposite di-

rection of the movement. In accordance with Newton's second law and the combined

in�uence of these forces, the body exhibits oscillatory motion around its position of

rest. The system is in�uenced by m the mass of the body, µ the coe�cient of friction

and k the spring constant, indicating the sti�ness of the spring. The residual of the

di�erential equation,

m
d2u

dx2
+ µ

du

dx
+ ku = 0, (2.23)

shows relation of these parameters in reference to the problem at hand. As Tenen-

baum and Morris provide, there are three potential solutions to this issue. However

only the underdamped case results in an oscillating movement of the body, as illus-

trated in Figure 2.4. In order to apply a PINN to this problem, we require a set of

training data x. This consists of pairs of time points and corresponding displacement

measurements (t(i), u(i)), where i ∈ {1, ..., Nt}. In this hypothetical case, we know

the mass m = 1kg, and the spring constant k = 200N
m and the initial displacement

u(1) = 1 and du(0)
dt = 0. However, we do not know the value of the friction µ. In this

case the loss function,

Losc(x,u, û) = (u(1) − 1) +
du(0)

dt
+ ||md2u

dx2
+ µ

du

dx
+ ku||2 + 1

Nt

Nt∑
i=1

||û(i) − u(i)||2,

(2.24)

includes the border conditions, the residual, in which µ is a learnable parameter and

the observation loss.

2.5.1 Disease Informed Neural Networks

In this section, we describe the capability of MLP's to solve systems of di�erential

equations. In Section 2.3.1, we describe the SIR model, which models the relations

of susceptible, infectious and removed individuals and simulates the progress of a

disease in a population with a constant size. A system of di�erential equations mod-

els these relations. Shaier et al. [32] propose a method to solve the equations of the

SIR model using a PINN, which they call a disease-informed neural network (DINN).

To solve Equation (2.8) we need to �nd the transmission rate β and the recovery

rate α. As Shaier et al. [32] point out, there are di�erent approaches to solve this set
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of equations. For instance, building on the assumption, that at the beginning one

infected individual infects −n other people, concluding in dS(0)
dt = −n. Then,

β = −
dS
dt

S0I0
(2.25)

would calculate the initial transmission rate using the initial size of the susceptible

group S0 and the infectious group I0. The recovery rate, then could be de�ned using

the amount of days a person between the point of infection and the start of isolation

d, α = 1
d . The analytical solutions to the SIR models often use heuristic methods

and require knowledge like the sizes S0 and I0. A data-driven approach such as the

one that Shaier et al. [32] propose does not have these problems. Since the model

learns the parameters β and α while learning the training data consisting of the time

points t, and the corresponding measured sizes of the groups S, I,R. Let Ŝ, Î, R̂ be

the model predictions of the groups and rS = dŜ
dt + βŜÎ, rI = dÎ

dt − βŜÎ + αÎ and

rR = dR̂
dt −αÎ the residuals of each di�erential equation using the model predictions.

Then,

LSIR() = ||rS ||2 + ||rI ||2 + ||rR||2 +
1

Nt

Nt∑
i=1

||Ŝ(i) − S(i)||2+

||Î(i) − I(i)||2+

||R̂(i) −R(i)||2,

(2.26)

is the loss function of a DINN, with α and beta being learnable parameters.
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Methods

This chapter provides the methods, that we employ to address the problem that we

present in Chapter 1. Section 3.1 outlines our approaches for preprocessing of the

available data and has two sections. The �rst section describes the publicly avail-

able data provided by the Robert Koch Institute (RKI)1. The second section outlines

the techniques we use to process this data to �t our project's requirements. Subse-

quently, we give a theoretical overview of the PINN's that we employ. These latter

sections, establish the foundation for the implementations described in Section 4.1.1

and Section 4.2.1.

3.1 Epidemiological Data

In order for the PINNs to be e�ective with the data available to us, it is necessary

for the data to be in the format required by the epidemiological models, which the

PINNs will solve. Let Nt be the number of training points, then let i ∈ {1, ..., Nt} be
the index of the training points. The data required by the PINN for solving the SIR

model (see Section 2.5.1), consists of pairs (t(i), (S(i), I(i),R(i))). Given that the sys-

tem of di�erential equations representing the reduced SIR model (see Section 2.3.2)

consists of a single di�erential equation for I, it is necessary to obtain pairs of the

form (t(i), I(i)). This section, focuses on the structure of the available data and the

methods we employ to transform it into the correct structure.

3.1.1 RKI Data

The Robert Koch Institute is responsible for the on monitoring and prevention

of diseases. As the central institution of the German government in the �eld of

biomedicine, one of its tasks during the COVID-19 pandemic was it to track the

1https://www.rki.de/EN/Home/homepage_node.html
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number of infections and death cases in Germany. The data was collected by uni-

versity hospitals, research facilities and laboratories through the conduction of tests.

Each new case must be reported within a period of 24 hours at the latest to the

respective state authority. Each state authority collects the cases for a day and must

report them to the RKI by the following working day. The RKI then re�nes the

data and releases statistics and updates its repositories holding the information for

the public to access. For the purposes of this thesis we concentrate on two of these

repositories.

The �rst repository is called COVID-19-Todesfälle in Deutschland2. The dataset

comprises discrete data points, each with a date indicating the point in time at

which the respective data was collected. The dates span from March 9, 2020, to

the present day. For each date, the dataset provides the total number of infection

and death cases, the number of new deaths, and the case-fatality ratio. The total

number of infection and death cases represents the sum of all cases reported up to

that date, including the newly reported data. The dataset includes two additional

datasets, that contain the death case information organized by age group or by the

individual states within Germany on a weekly basis.

2020-03-09 2021-01-14 2021-11-21 2022-09-28 2023-08-05 2024-06-11
Date of reported data

100

101

102

103

104

105

106

107

Death case dataset (RKI)

Total number of death cases

Total number of infection cases

Figure 3.1: A visualization of the total death case and infection case data for each
day from the data set COVID-19-Todesfälle in Deutschland. Status of
the 20'th of August 2024.

2https://github.com/robert-koch-institut/COVID-19-Todesfaelle_in_Deutschland.git
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The second repository is entitled SARS-CoV-2 Infektionen in Deutschland3. This

dataset contains comprehensive data regarding the infections of each county on a

daily basis. The counties are encoded using the Community Identi�cation Number4,

wherein the �rst two digits denote the state, the third digit represents the govern-

ment district, and the last two digits indicate the county. Each data point displays

the gender, the age group, number death, infection and recovery cases and the refer-

ence and report date. The reference date marks the onset of illness in the individual.

In the absence of this information, the reference date is equivalent to the report date.

The RKI assumes that the duration of the illness under normal conditions is 14

days, while the duration of severe cases is assumed to be 28 days. The recovery cases

in the dataset are calculated using these assumptions, by adding the duration on the

reference date if it is given. As stated in the ReadMe, the recovery data should be

used with caution. Since we require the recovery data for further calculations, the

following section presents the solutions we employed to address this issue.

3.1.2 Data Preprocessing

At the outset of this section, we establish the format of the data, that is necessary

for training the PINNs. In this subsection, we present the method, that we employ

to preprocess and transform the RKI data (see Section 3.1.1) into the training data.

In order to obtain the SIR data we require the size of each SIR compartment for

each time point. The infection case data for the German states is available on a

daily basis. To obtain the daily cases for the entire country we need to di�erentiate

the total number of cases. The size of the population is de�ned as the respective

size at the beginning of 2020. Using the starting conditions of Equation (2.10), we

iterate through each day, modifying the sizes of the groups in a consecutive manner.

For each iteration we subtract the new infection cases from S(i−1) to obtain S(i), for

I(i), we add the new cases and subtract deaths and recoveries, and the size of R(i)

is obtained by adding the new deaths and recoveries as they occur.

As previously stated in Section 3.1.1 the data on recoveries may either be unre-

liable or is entirely absent. To address this, we propose a method for computing

3https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
4https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/

_inhalt.html
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the number of recovered individuals per day. Under the assumption that recovery

takes D days, we present the recovery queue, a data structure that holds the number

of infections for a given day, retains them for D days, and releases them into the

removed group D days later.

Figure 3.2: The recovery queue takes in the infected individuals for the k'th day and
releases them D days later into the removed group.

In order to solve the reduced SIR model, we employ a similar algorithm to that

used for the SIR model. However, in contrast to the recovery queue, we utilize

the set recovery rate α to transfer a portion αI(i) of infections, which have recovered

on the i and put them into theR(i) compartment, which is irrelevant to our purposes.

The transformed data for both the SIR model and the reduced SIR model are then

employed by the PINN models, which we describe in the subsequent section.

3.2 Estimating Epidemiological Parameters using PINNs

In the preceding section, we present the methods we employ to preprocess and format

the data from the RKI in accordance with the speci�cations required for the work

of this thesis. In this section, we will present the method we employ to identify the

non-time-dependent SIR parameters β and α for the data. As a foundation for our

work, we draw upon the work of Shaier et al. [32], to solve the SIR system of ODEs

using PINNs.

In order to conduct an analysis of a pandemic, it is necessary to have a quan-

ti�able measure that indicates whether the disease in question has the capacity to

spread rapidly through a population or is it not successful in infecting a signi�cant

number of individuals. We employ the SIR model to construct an abstraction of
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3.2 Estimating Epidemiological Parameters using PINNs

the complex relations inherent to real-world pandemics. The SIR model divides the

population into three compartments. It is accompanied by a with system of ODEs

that encapsulates the �uctuations and relationships between these compartments

(see Equation (2.8)). The transmission rate β and the recovery rate α work as the

aforementioned quanti�ers. We obtain data from the preprocessing stage. It provides

insight into the progression of the COVID-19 pandemic in Germany. The objective

is to identify a function that solves the system of di�erential equations of the SIR

model, by returning the size of each compartment at a speci�c point in time. This

function is supposed to be able to reconstruct the training data and is de�ned by

the values of the transition rates β and α. From a mathematical and semantic per-

spective, it is essential to determine these values of the parameter.

In order to ascertain the transmission rate β and the recovery rate α from the

preprocessed RKI data of (S, I,R) for a given set of time points, it is necessary to

employ a data-driven approach that outputs a model prediction of (Ŝ, Î, R̂) for a

set of time points, with the aim of minimizing the term,∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2, (3.1)

for each data point in the set of training dataset of a cardinality Ntt and with

i ∈ {1, ..., Nt}. Moreover, the aforementioned parameters must satisfy the system of

di�erential equations that govern the SIR model. For this reason, Shaier et al. [32]

utilize a PINN framework to satisfy both requirements. Their approach, which they

refer to as the disease-informed neural network (see Section 2.5.1), takes epidemio-

logical data as the input and returns the two transition rates α and β. This method

achieves this by �nding an approximate solution of to the inverse problem of physics-

informed neural networks (see Section 2.5). In terms of the terms of the SIR model,

a PINN addresses the inverse problemin two ways. First, it minimizes the mean

of Equation (3.1) by bringing the model predictions (S, I,R) closer to the actual

values (Ŝ, Î, R̂) for each time point. Second, it reduces the residuals of the ODEs

that constitute the SIR model. While the forward problem concludes at this point,

the inverse problem presets that a parameter is unknown. Thus, we designate the

parameters β and α as free, learnable parameters, β̂ and α̂. These separate trainable

parameters are values that are optimized during the training process and must �t

the equations of the set of ODEs. Furthermore, we know, that the transition rates

do not surpass the value of 1. Consequently, we force the value of both rates to
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be in a range of [−1, 1]. Therefor, we regularize the parameters using the tangens

hyperbolicus. This results in the terms,

β̂ = tanh(β̃), α̂ = tanh(α̃), (3.2)

where β̃ and α̃ are the predicted values of the model and β̂ and α̂ are regularized

model predictions.

The input data must include the time point t(i) and its corresponding measured

true values of (S(i), I(i),R(i)). In its forward path, the PINN receives the time point

t(i) as its input, from which it calculates its model prediction (Ŝ
(i)
, Î

(i)
, R̂

(i)
) based

on its model parameters θ. Subsequently, the model computes the loss function. It

calculates the observation loss by taking the mean squared error of Equation (3.1)

over all Nt training samples. Therefore, the term for the observation loss is,

Lobs(S, I,R, Ŝ, Î, R̂) =
1

Nt

Nt∑
i=1

∥∥∥Ŝ(i)−S(i)
∥∥∥2+∥∥∥Î(i)−I(i)

∥∥∥2+∥∥∥R̂(i)−R(i)
∥∥∥2, (3.3)

is the term for the observation loss. Given superior performance in practical applica-

tions relative to the ODEs of Equation (2.8), we utilize the ODEs of Equation (2.9)

in our physics loss. In order for the model to learn the system of di�erential, it is

necessary to obtain the residual of each ODE. The mean square error of the residuals

constitutes the physics loss Lphysiks(t,S, I,R, Ŝ, Î, R̂). The residuals are calculated

using the model predictions (Ŝ, Î, R̂) and the regularized model predictions of the

parameters β̂ and α̂. The residuals are given by,

0 =
dŜ

dt
+ β̂

ŜÎ

N
, 0 =

dÎ

dt
− β̂

ŜÎ

N
+ α̂Î, 0 =

dR̂

dt
+ α̂Î. (3.4)

Thus,

LSIR(t,S, I,R, Ŝ, Î, R̂) =

∥∥∥∥dŜdt + β̂
ŜÎ

N

∥∥∥∥2 + ∥∥∥∥dÎdt − β̂
ŜÎ

N
+ α̂Î

∥∥∥∥2 + ∥∥∥∥dR̂dt + α̂Î

∥∥∥∥2
+

1

Nt

Nt∑
i=1

∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2,
(3.5)

is the equation of the total loss for our approach. This loss value is then back-

propagated through our network, while the model predictions of the parameters β
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and α are optimized using the loss as well.

As this section concentrates on the �nding of the time constant parameters β and

α, the next section will show our approach of �nding the reproduction number Rt

on the German data of the RKI.

3.3 Estimating the Reproduction Number using PINNs

The previous section illustrates the methodology we employ to detemine the constant

transmission and recovery rates from a data set obtained from the COVID-19 pan-

demic in Germany. In this section, we utilize PINNs to identify the time-dependent

reproduction number, Rt, while reducing the number of state variables and the re-

liance on assumptions, by reducing the system of ODEs comprising the SIR model.

The methodology presented in this section is based on the approach developed by

Millevoi et al. [18].

In real-world pandemics, the rate of infection is in�uenced by a multitude of factors.

Events such as the growing awareness for the disease among the general population,

the introduction of non-pharmaceutical mitigations such as social distancing poli-

cies, and the emergence of a new variants have an impact on the transmission rate

β. Accordingly, a transmission rate that is not time-dependent and constant across

the entire duration of the pandemic may not accurately re�ect the dynamics of the

spread of a real-world disease correctly. Although we set the transmission rate to be

time-dependent, the recovery time is assumed to be relatively constant over time.

The Robert Koch Institute5 posits that the typical recovery period for the illness

under normal conditions is 14 days, while those individuals with severe cases require

approximately 28 days to recover. In the light of the negligible number of severe

cases in comparison to the number of normal cases, we can set the recovery time to

D = 14, which yields α = 1/14. The reproduction number, Rt (see Section 2.3.2),

represents the number of new infections that occur as a result of one infectious in-

dividual. It indicates whether a pandemic is emerging or if it is spreading rapidly

through the susceptible population. By inserting the de�nition of Equation (2.13),

into the system of ODEs of the SIR model, we can derive one Equation (2.16). In

order to solve this, we must identify a function that maps a time point to the size of

5https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
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Chapter 3 Methods

the infectious compartment and the speci�c reproduction number.

As with the constant transition rates, we employ a data-driven approach for iden-

tifying the time-dependent reproduction number Rt. The PINN approximates the

size I with its model prediction Î by minimizing the term,∥∥∥Î(i) − I(i)
∥∥∥2, (3.6)

for each i ∈ {1, ..., Nt}. In order to identify the reproduction number, the PINN min-

imizes the residuals of the ODE during the training process. The training process is

analogous to that of the PINN, which identi�es β and α (see Section 3.2). However,

there are two key di�erences. Firstly, the absence of trainable parameters. Secondly,

the inclusion of an additional state variable that �uctuates in response to the input.

While the state variable I is approximated using the error between the training data

and the predicted values, the state variable Rt is approximated exclusively based on

the residual of the ODE.

The PINN receives the input of t(i) and generates a prediction of (Î
(i)
, R(i)

t ). As

previously stated, the PINN minimizes the distance between the true values of I and

the model predictions Î by minimizing the mean squared error. Consequently, the

observation loss function is de�ned by,

LrSIR(I, Î) =
1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.7)

The physics loss function is de�ned as the squared error of the residual of the ODE.

The residual of the reduced SIR model is given by,

0 =
dIs
dts

− α(tf − t0)(Rt − 1)Is(ts). (3.8)

By combining the observation loss with the physics loss, we arrive at the total loss

for the PINN that solves the reduced SIR model, which is given by,

LrSIR(t, I, Î) =

∥∥∥∥dIsdts
− α(tf − t0)(Rt − 1)Is(ts)

∥∥∥∥2 + 1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.9)

The process of determining the reproduction number, along with the other tech-

niques, that this chapter presents �nd application in the following chapter.
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Chapter 4

Experiments

In Chapter 3, we explain the methods based the theoretical background, that we

established in Chapter 2. In this chapter, we present the setups and results from

the experiments and simulations. First, we discuss the experiments dedicated to

identify the epidemiological transition rates of β and α in synthetic and real-world

data. Second, we examine the reproduction number in synthetic and real-world data

of Germany.

4.1 Identifying the Transition Rates

In this section, we aim to identify the transmission rate β and the recovery rate α

from either synthetic or preprocessed real-world data. The methodology that we

employ to identify the transition rates is described in Section 3.2. Meanwhile, the

methods we utilize to preprocess the real-world data are detailed in Section 3.1.2. In

the �rst part we present the setup of our experiments, then we provide the results

including a discussion.

4.1.1 Setup

Synthetic Data: In order to validate our method, we �rst generate a dataset of

synthetic data. We achieve this by solving Equation (2.9) for a given set of param-

eters. The parameters are set to α = 1/3 and β = 1/2. The size of the population is

N = 7.6e6 and the initial amount of infectious individuals is I0 = 10. We conduct

the simulation over 150 days, resulting in a dataset of the form of Section 4.1.1.
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Real-World Data: In order to process the real-world RKI data, it is necessary to

preprocess the raw data for each state and Germany separately. This is achieved

by utilizing a recovery queue with a recovery period of 14 days. With regard to

population size of each state, we set it to the respective value counted at the end of

20196. The initial number of infectious individuals is set to the number of infected

people on March 09. 2020 from the dataset. The data we extract spans from March

09. 2020 to June 22. 2023, encompassing a period of 1200 days and representing the

time span during which the COVID-19 disease was the most active and severe.
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Figure 4.1: Synthetic and real-world training data. The synthetic data is generated
with α = 1/3 and β = 1/2 and Equation (2.9). The Germany data is
taken from the death case data set. Exemplatory we show illustrations
of the datasets of Schleswig Holstein, Berlin, and Thuringia. For the
other states see Chapter 6

Training Parameters: The PINN that we utilize comprises of seven hidden layers

with twenty neurons each, and an activation function of ReLU. We follow the hy-

perparameter setting in [32] but change the base learning rate to 1e−3. And employ

a polynomial scheduler implementation from the PyTorch library [22] instead. We

6
https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/#overview
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4.1 Identifying the Transition Rates

train the model for 10000 epochs to extract the parameters. For each set of parame-

ters, we conduct �ve iterations to demonstrate stability of the values. For measuring

the accuracy, we calculate the error e, using the 2-Norm. Let G be the set of com-

partment training data the SIR model with g ∈ G and ĝ be the corresponding model

prediction, then,

eG =
1

|G|
∑
g∈G

∥∥∥ĝ − g
∥∥∥
2∥∥∥g∥∥∥

2

, (4.1)

is the average error across all three groups.

4.1.2 Results

In this section, we start by examining the results for the synthetic dataset, focusing

the accuracy and reproducibility. We then proceed to present and discuss the results

for the German states and Germany.

The results of the experiment regarding the synthetic data can be seen in Ta-

ble 4.1. The error and the standard variation for both parameters are negligible

small. Taking the mean of the parameters across the �ve iterations yields more ac-

curate results.

The results demonstrate that the model is capable of approximating the correct

Table 4.1: Simulation results for the synthetic data. The true values and the respec-
tive mean parameter is given.

α β

true µ true µ eSIR

0.333 0.333±0.001 0.500 0.500±0.002 0.004

parameters for the small, synthetic dataset in each of the �ve iterations. The mean

of the predicted values results in values with a su�ciently small error. Thus, we

argue that our selected method is well suited to analyze real world pandemic data

collected in Germany.

In Table 4.2 we present the results of the training for the real-world data. The re-

sults are presented from top to bottom, in the order of the community identi�cation

number, with the last entry being Germany. Both the mean µ and the standard de-
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viation σ are calculated across all �ve iterations of our experiment. We can observe

that the error eSIR is the highest for Saxony and the lowest for Lower Saxony. Fur-

thermore, we include the distance ∆βGermany = βstate−βGermany and the percentage

of people that have a basic immunity through vaccination ν for each state provided

by the Robert Koch Institute7.

Table 4.2: Mean and standard deviation, error eSIR and the distance ∆βGermany =
βstate − βGermany across the 5 iterations, that we conducted for each Ger-
man state and Germany as the whole country. Furthermore we include
the vaccination percentage ν provided from the RKI.

state name α β eSIR ∆βGermany ν [%]

Schleswig Holstein 0.076±0.001 0.095±0.001 0.085 -0.013 79.5
Hamburg 0.082±0.001 0.104±0.001 0.095 -0.004 84.5
Lower Saxony 0.075±0.002 0.097±0.002 0.077 -0.011 77.6
Bremen 0.058±0.002 0.078±0.002 0.093 -0.030 88.3
NRW 0.079±0.001 0.101±0.001 0.078 -0.007 79.5
Hesse 0.065±0.001 0.085±0.001 0.102 -0.023 75.8
Rhineland-Palatinate 0.085±0.004 0.108±0.004 0.090 0.001 75.6
Baden-Württemberg 0.091±0.002 0.118±0.003 0.080 0.010 74.5
Bavaria 0.085±0.004 0.116±0.005 0.095 0.008 75.1
Saarland 0.075±0.002 0.099±0.003 0.108 -0.009 82.4
Berlin 0.087±0.001 0.109±0.001 0.067 0.001 78.1
Brandenburg 0.087±0.003 0.110±0.003 0.072 0.002 68.1
MV 0.089±0.002 0.114±0.002 0.054 0.006 74.7
Saxony 0.075±0.002 0.099±0.002 0.111 -0.009 65.1
Saxony-Anhalt 0.092±0.003 0.119±0.005 0.079 0.011 74.1
Thuringia 0.091±0.002 0.119±0.003 0.084 0.011 70.3

Germany 0.083±0.001 0.108±0.002 0.080 0.000 76.4

In Figure 4.2, we present a visual representation of the means and standard de-

viations in comparison to the national values. It is noteworthy that the states of

Saxony-Anhalt and Thuringia have the highest transmission rates of all states, while

Bremen and Hesse have the lowest values for β. The transmission rates of Hamburg,

Baden Württemberg, Bavaria, and all eastern states lay above the national rate of

transmission. Similarly, the recovery rate yields comparable outcomes. For the re-

covery rate, the same states that exhibit a transmission rate exceeding the national

7
https://impfdashboard.de/
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Figure 4.2: Visualization of the mean and standard deviation of the transition rates
α and β for each state compared to the mean values of α and β for
Germany.

value, have a higher recovery rate than the national standard, with the exception

of Saxony. It is noteworthy that the recovery rates of all states exhibit a tendency

to align with the recovery rate of α = 1/14, which is equivalent to a recovery period

of D = 1/α = 14 days. When calculating the correlation coe�cient between the

predicted transmission rate and the vaccination ratio, we get a value of −0.5134.

The strong negative correlation indicates that the transmission rate is high when the

vaccination ratio is low, and vice versa. This shows that the impact of the vaccines

can be witnessed in our results.

It is evident that there is a correlation between the values of α and β for each

state. States with a high transmission rate tend to have a high recovery rate, and

vice versa. The correlation between α and β can be explained by the implicate de�-

nition of α using a recovery queue with a constant recovery period of 14 days. This

might result to the PINN not learning α as a standalone parameter but rather as

a function of the transmission rate β. This phenomenon occurs because the trans-

mission rate determines the number of individuals that get infected per day, and the

recovery queue moves a proportional number of people to the removed compartment.

Consequently, a number of people de�ned by β move to the R compartment 14 days

after they were infected.
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This issue can be addressed by reducing the SIR model, thereby eliminating the

signi�cance of the R compartment size. In the following section, we present our

experiments for the reduced SIR model with time-dependent parameters.

4.2 Identifying the Reproduction Number

In this section we describe the experiments we conduct to identify the time-dependent

reproduction number for both synthetic and real-world data. Similar to the previous

section, we �rst describe the setup of our experiments and afterwards present the

results and a discussion. The methods we employ for the preprocessing are described

in Section 3.1.2 and for the PINN, that we use, are described in Section 3.3.

4.2.1 Setup

Synthetic Data: For the purposes of validation, we create a synthetic dataset, by

setting the parameter of α and the reproduction value each to a speci�c values, and

solving Equation (2.16) for a given time interval. As in the synthetic data for the

aforementioned experiments, we set α = 1/3 and Rt to the values as can be seen

in Figure 4.3 as well as the population size N = 7.6e6 and the initial amount of

infected people to I0 = 10. Furthermore, we set our simulated time span to 150

days. We use this dataset to demonstrate, that our method is working on a simple

and minimal dataset.

Real-World Data: To obtain a dataset of the infectious group, consisting of the real-

world data, we processed the data of the dataset COVID-19-Todesfälle in Deutsch-

land [25] to extract the number of infections in Germany as a whole. For the Ger-

man states, we use the data of SARS-CoV-2 Infektionen in Deutschland [26]. In

the preprocessing stage, we employ a constant rate for α to move individuals into

the removed compartment. For each state we generate two datasets with a di�erent

recovery rate. First, we choose α = 1/14, which aligns with the time of recovery [26].

Second, we use α = 1/5, as 5 days into the infection is the point at which the infec-

tiousness is at its peak [7]. As in Section 4.1, we set the population size N of each

state and Germany to the corresponding size at the end of 2019. Furthermore, for

the same reason we restrict the data points to an interval of 1200 days, beginning on

March 09. 2020.
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Figure 4.3: The upper two graphics show the curve of the size of the infectious group
(left) and the corresponding true reproduction value Rt (right) for the
synthetic data. The lower graphic exemplary illustrates the di�erent
curves for Germany.

Training Parameters: In order to achieve the desired output, the selected neural

network architecture comprises of four hidden layers, each containing 100 neurons.

The activation function is the tangens hyperbolicus function. For both the federal

state and Germany, the physics loss is weighted by a factor of 1e−6, whereas the

data loss belonging to Germany is also weighted with a high factor of 1e4, relative

to the total loss. We found this approach to yield the best results. The model is

trained using a base learning rate of 1e−3, with the same scheduler and optimizer

as we describe in Section 4.1.1. We train the model for the states 20000 epochs and

start the physics training after 10000 epochs, while we train for Germany for 25000

and start the physics training after 15000 epochs. To reduce the standard deviation,

each experiment is conducted 15 times. For evaluation, we use the error eG as we do

in the subsequent section.
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4.2.2 Results

Section 4.2.2 illustrates the results of our experiments conducted on the synthetic

dataset, which can be seen in Figure 4.3. It is evident that the model is capable of

learning the infection data across all data points. The error for this is, eI = 0.0016,

which is of a negligible magnitude.
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Figure 4.4: Results for the reproduction rate Rt on synthetic data. The left graphic
show the prediction of the model regarding the I group. The right graphic
presents the predicted Rt against the true value, with the standard de-
viation.

An examination of the predictions for the representation value Rt reveals that

here as well, the model is capable of accurately delineating the value at each time

point. However, during the �rst 30 days, the standard deviation is exhibits an up-

ward trend, while during the �nal 120 days, the predictions demonstrate remarkable

precision.

In Section 4.2.2, we present the graphs of Rt for the state with the highest value of

β, namely Thuringia, and for the state with the lowest transmission rate β, namely

Bremen. Further visualizations of the results can be found in Chapter 6. In all

datasets, the graphs with α = 1/5 are of a smaller size than those with α = 1/14. This

is due to the fact that the individuals are being moved to the removed compartment

at a faster rate. Resulting, it can be observed that the value of Rt is constantly

remaining closer to the threshold of Rt = 1, while the reproduction number for

datasets with α = 1/14 reaches values of up to 1.6. In states with higher values of

β, the period during which the value of Rt is above the threshold of one 1 is longer,

but the peak is lower. In states with a lower transmission rate, the period above 1
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Figure 4.5: Visualization of the prediction of the training and the graphs of Rt for
Thuringia (left) and Bremen (right) with both α = 1/14 and α = 1/5.
Events [8] like the peak of an in�uential variant or the start of the vacci-
nation of the public are marked horizontally. Further visualizations can
be found in Chapter 6.

is shorter, but the peak value is higher.

Table 4.3 presents data regarding the discrepancy between the predicted and ac-

tual values from the dataset for compartment I. It is evident, that the error for all

experiments falls within a range of values that is not negligible and will have an in�u-

ence on the resulting reproduction values that are learned while �tting the data. A

comparison of the results for the various values of α reveals that the errors associated

with α = 1/14 are consistently smaller, with the exception of Saxony and Germany.

This can be attributed to the di�ering sizes of infection counts, particularly in rela-

tion to the normalization factor C. The model is unable to learn e�ectively if the

values of the data loss Ldata are too large or too small at the beginning.

As illustrated in Section 4.2.2, the training data is overlaid with the corresponding

prediction of the model. We can observe that the prediction, though an exact recon-

struction, accurately captures the general trajectory of the pandemic. The model's
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Table 4.3: This table displays all average values of the error eI for all German states
and Germany. The average is formed across all 10 iteration.

eI days with Rt > 1 peak Rt

state name α = 1
14 α = 1

5 α = 1
14 α = 1

5 α = 1
14 α = 1

5

Schleswig Holstein 0.228 0.258 467.5 458.5 1.475 1.166
Hamburg 0.265 0.330 424.3 409.8 1.500 1.297
Lower Saxony 0.224 0.340 413.1 430.3 1.662 1.223
Bremen 0.246 0.380 468.6 539.1 1.582 1.179
NRW 0.185 0.252 486.3 602.0 1.573 1.205
Hesse 0.302 0.346 553.0 511.2 1.409 1.157
Rhineland-Palatinate 0.256 0.277 484.7 404.7 1.534 1.175
Baden-Württemberg 0.198 0.284 469.2 590.0 1.457 1.180
Bavaria 0.225 0.318 490.5 486.1 1.428 1.199
Saarland 0.284 0.408 500.2 564.7 1.515 1.180
Berlin 0.201 0.240 591.9 514.4 1.721 1.262
Brandenburg 0.237 0.242 555.9 596.3 1.447 1.159
MV 0.170 0.257 537.5 544.3 1.563 1.135
Saxony 0.292 0.256 722.3 695.4 1.790 1.407
Saxony-Anhalt 0.213 0.268 572.0 631.9 1.387 1.165
Thuringia 0.180 0.222 732.1 730.6 1.586 1.249

Germany 0.284 0.239 587.7 430.7 1.561 1.219

prediction demonstrates an ability to capture larger peaks, exhibiting a tendency

to ignore smaller changes. This suggests that the prediction of the model is capa-

ble show the rough outline of the progression of COVID-19. In the beginning, the

majority of predictions below Rt = 1, indicating an outbreak. As we observed in

the synthetic data, the model exhibits a higher standard deviation at the bound-

aries. In the graphs, we mark the peaks of the most severe COVID-19 variants in

Germany [8]. While the peaks of the Alpha and Delta variants are clearly visible

in the data, the model does not learn these, and thus they are not re�ected in the

results. The peak of the Omicron variant represents the culmination of the COVID-

19 pandemic in Germany and can be identi�ed as the most prominent peak in the

dataset. Immediately preceding this peak, we observe the highest value of the repro-

duction number across all states. This phenomenon can be explained, by number of

individuals infected by one infectious person reaching its peak. In some states the

peaks of other Omicron variants after the maximum peak are visible (see Thuringia).
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The experiments demonstrate, that our model encounters di�culties in learning

the data for the states and Germany and consequently in predicting the reproduction

values for each dataset. Nonetheless, the predictions illustrate the general trends of

the most impactful events of the COVID-19 pandemic.
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Conclusions

The objective of this thesis is to identify quantifying measures for the COVID-19

pandemic in Germany and its 16 federal states. We use the SIR model to describe

the dynamics of the disease over time, o�ering an approximation of the reality. In

this model, the transmission rate β and recovery rate α describe the infectious-

ness and resolution of the disease that the respective population experience. These

rates serve as constant evaluation measures throughout the entire duration of the

pandemic. The time-dependent reproduction number indicates the number of in-

dividuals infected by a single infectious individual. The SIR model is de�ned on

a system of di�erential equations that elucidates the relations between these rates.

In order to obtain these values for Germany, it is necessary to solve the ordinary

di�erential equations (ODEs) for the data pertaining to the pandemic in each state

and in Germany as a whole. We employ a physics-informed neural network in our

approach to solve the ODE's. The data on which we train is collected by the Robert

Koch Institute and made publicly available on GitHub, where they can be accessed

for download. We preprocess the data to �t have the required format for the PINNs

to reconstruct it, and at the same time predicts the transition rates and the repro-

duction number for the given data. Using this we conduct experiments on synthetic

data and on the data for the German states and Germany itself. The results for the

synthetic data demonstrate the e�cacy of our data on small datasets.

The results of our work regarding the real-world data are divided into two groups.

First we have the constant transmission rates, which provide insight into the overall

trajectory of the pandemic in a given region. A high transmission rate indicates that,

on average, the signi�cant number of individuals were infected during the pandemic.

Conversely, a high recovery rate indicates that individuals either recovered or died

from the disease at a faster rate. Due to this contradiction in positive or negative

meaning in α paired with the uncertainty of a possible dependency on β during train-
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ing, we want to shift the focus on our results of β. The states with the highest trans-

mission rate values are Thuringia, Saxony-Anhalt and Mecklenburg-Vorpommern.

Furthermore, it is evident the six eastern states exhibit a higher transmission rate

than the overall German rate (see Figure 4.2). These results align with the ongoing

narrative of the COVID-19 pandemic in Germany, which has highlighted a perceived

discrepancy in vaccination rates between the eastern and western federal states. This

assertion which can be substantiated by a comparison of the vaccination ratios ν of

each state and our �ndings. We �nd a strong negative correlation between ν and

β. The results from our second experiments, underscore these �ndings. Here, we

approximate the reproduction number Rt from the data. When Rt > 1, the disease

spreads rapidly through the population. Our results indicate a tendency for states

with a high β to experience longer periods withRt > 1. Furthermore, we can identify

the time point on which the most impactful events happened during the pandemic

in Germany.

Although larger events are visible, smaller, less impactful events that are still visi-

ble on the raw data, do not appear in our results. This discrepancy can be attributed

to the less precise reconstruction of the input data. The predicted version is smooth

and does not contain any smaller peaks. To address these implementational limi-

tations of our method, we intend to conduct comprehensive hyperparameter search

to �nd the best con�guration of our models to �t the data. Further optimizations

can be applied to the epidemiological model that we employ, for which we present

options in the subsequent section.

5.1 Further Work

Our �ndings demonstrate that with our methods enable the quanti�cation of the

course of the COVID-19 pandemic in Germany using the data provided by the Robert

Koch Institute. Additionally, we present the limitations of our work. The SIR model

is subject to numerous limitations. For instance, it does not account for individuals,

who may be immune due to the vaccination status or those who are not infectious due

to quarantine. In this section, we explore epidemiological models that illustrate these

dynamics observed in real-world pandemics and recommend further investigation for

Germany. First, we examine extensions of the SIR models, then we focus on agent-

based models (ABMs).
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5.1.1 Further Compartmental Models

As our results demonstrate, the SIR model is capable of approximating the dynamics

of real-world pandemics. However, the model is not without limitations. As previ-

ously stated, the SIR model assumes that recovered individuals remain immune and

does not account for the reduction of exposure of susceptible individuals through

the introduction of non-pharmaceutical mitigation policies, such as social distancing

policies. These shortcomings can be addressed by incorporating additional com-

partments and transmission rates into the model. For example, the SEIRD model

incorporates an Exposed group and subdivides the Removed group into Dead and

Recovered compartments. Furthermore, this adds four additional rates to the model:

the contact rate, representing the average number of contacts between infectious

and susceptible people with a high probability of infection; the manifestation index,

indicating the proportion of individuals exposed to the disease who will become in-

fectious; the incubation rate, measuring the time required for exposed individuals to

become infectious; and the infection fatality rate, quantifying the fraction of individ-

uals who succumb to the disease. As Doerre and Doblhammer [5] show for Germany

using a numerical approximation method, for an SIERD model that they specialize

to be age- and gender-speci�c, that it shows the impact of non-pharmaceutical mit-

igation policies. In their work, Cooke and van den Driessche [3] propose the SEIRS

model with two delays. This is model is capable of approximating diseases, that have

an immune period, after which the recovered individual becomes susceptible again.

These are just a few examples of the numerous modi�cations of the basic SIR model

that can be used to approximate and consequently quantify a pandemic.

5.1.2 Agent based models

While compartmental models, such as the SIR model, look at the population as

a divided group, with each group representing a speci�c characterization that all

inhabitants of that group share, an Agent-Based Model (ABM) sets its focus on

the individual. Each individual, or agent, has speci�c attributes that determine its

behavior and interactions with other agents during the simulation. As Gilbert [9]

states, ABMs simulate the behavior of large groups, with each individual following

simple rules. Kerr et al. [13] put forth a simulation tool, Covasim, which they base

on an ABM. The ABM employs local data, including demographic data, disease inci-

dence data from the region, and contact data for household, schools and workplaces,

to de�ne its simulation for a speci�c region. In their work, Maziarz and Zach [17]
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address the criticism levied against ABMs for simplifying the dynamics and lacking

the empirical support for the assumptions it they make. The authors utilize an ABM

and the data speci�c to Australia to demonstrate the e�cacy of ABMs in portray-

ing the dynamics of the COVID-19 pandemic. They further state that ABMs can

serve as serve as a tool for assessing the impact of non-pharmaceutical mitigation

policies. This illustrates that ABMs play a distinct role in analyzing the COVID-

19 pandemic. As the data situation has evolved, it is imperative to investigate the

potential of utilizing ABMs as a tool to assess the pandemic's course.
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Figure 6.1: Part 1 of the results
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Figure 6.2: Part 2 of the results
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Figure 6.3: Part 3 of the results
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Figure 6.4: Part 4 of the results
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