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Überblick

German version of the abstract.

Hello, here is some text without a meaning. This text should show what a printed

text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a difference between this text and some

nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you

information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be

written in of the original language. There is no need for special content, but the

length of words should match the language.

Abstract

English version of the abstract.

Hello, here is some text without a meaning. This text should show what a printed

text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a difference between this text and some

nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you

information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be

written in of the original language. There is no need for special content, but the

length of words should match the language.
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Chapter 1

Introduction 5

1.1 Related work 2

In Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent

Transmission Rates Using the SEIR Model [SdC17], Smirnova et al. endeavor to

identify a stochastic methodology for estimating the time-dependent transmission

rate β(t). This is in response to the limitations of earlier parametric estimation

methods, which are prone instability due to the difficulty in identifying parameter

finding and a low amount of available data. They achieve this by projecting the

time-dependent transmission rate onto a finite subspace, that is defined by Legen-

dre polynomials. Subsequently, they compare the three regularization techniques

of variational (Tikhonov’s) regularization, truncated singular value decomposition

(TSVD), and modified TSVD to ascertain the most reliable method for forecast-

ing with limited data. Their findings indicate that modified TSVD provides the

most stable forecasts on limited data, as demonstrated on both simulated data and

real-world data from the 1918 influenza pandemic and the 2014-2015 Ebola epidemic.

In their publication, entitled Data-driven approaches for predicting spread of in-

fectious diseases through DINNs: Disease Informed Neural Networks, Shaier et

al. [SRS21] put forth a data-driven approach for identifying the parameters of epi-

demiological models. The authors apply physics-informed neural networks to the

compartmental SIR models, and refer to their method as disease informed neural

networks (DINN). In their work, they demonstrate the capacity of DINNs to fore-

cast the trajectory of epidemics and pandemics. They underpin the efficacy of their

approach by applying it to 11 diseases, that have previously been modeled, includ-

ing examples such as COVID, HIV, Tuberculosis and Ebola. In their experiments

they employ the SIDR (susceptible, infectious, dead, recovered) model. Finally, they

present that this method is a robust and effective means of identifying the parame-
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Chapter 1 Introduction 5

ters of a SIR model.

In their article A physics-informed neural network to model COVID-19 infection

and hospitalization scenarios, Berkhahn and Ehrhard [BE22] employ the susceptible,

vaccinated, infectious, hospitalized and removed (SVIHR) model. They solve the

system of differential equations inherent to the SVIHRmodel by the means of PINNs.

The authors utilize a dataset of German COVID-19 data, covering the time span

from the inceptions of the outbreak to the end of 2021. The proposed PINN method-

ology initially estimates the SVIHR model parameters and subsequently forecasts

the data. For comparative purposes, Berkhahn and Ehrhard employ the method of

non-standard finite differences (NSFD) as well. In the validation process, the two

forecasting methods project the trajectory of COVID-19 from mid-April onwards.

Berkhahn and Ehrhard find that the PINN is able to adapt to varying vaccination

rates and emerging variants.

In their work, Data-Driven Deep-Learning Algorithm for Asymptomatic COVID-

19 Model with Varying Mitigation Measures and Transmission Rate, Olumoyin et

al. [OKF21] employ an alternative methodology for identifying the time-dependent

transmission rate of an asymptomatic-SIR model. On the premise that not all the

infectious individuals are reported and included in the data available. The algo-

rithm they introduce, utilizes the cumulative and daily reported infection cases and

symptomatic recovered cases, to demonstrate the effect of different mitigation mea-

sures and to ascertain the size of the part of non-symptomatic individuals in the

total number of infective individuals and the proportion of asymptomatic recovered

individuals. With this they can illustrate the influence of vaccination and a set non-

pharmaceutical mitigation methods on the transmission of COVID-19 on data from

Italy, South Korea, the United Kingdom, and the United States.

In A Physics-Informed Neural Network approach for compartmental epidemiolog-

ical models Millevoi et al. [MPF23] address the issue of describing the dynamically

changing transmission rate, which is influenced by the emergence of new variants or

the implementation of non-pharmaceutical measures. They employ a PINN to main-

tain an account of the changes of the transmission rate included in the reproduction

number and to approximate the model state variables. To this end, Millevoi et al.

employ the reproduction number to reduce the system of differential equations to a

single equation and introduce a reduced-split version of the PINN, which initially

2



1.1 Related work 2

trains on the data and then trains to minimize the residual of the ODE. They test

their approach on five synthetic and two real-world scenarios from the early stages of

the COVID-19 pandemic in Italy. This method yields an increase in both accuracy

and training speed.

3





Chapter 2

Theoretical Background 12

This chapter introduces the theoretical foundations for the work presented in this

thesis. In Section 2.1 and Section 2.2, we describe differential equations and the

underlying theory. In these Sections both the explanations and the approach are

based on a book on analysis by Rudin [Rud07] and a book about ordinary differ-

ential equations by Tenenbaum and Pollard [TP85]. Subsequently, we employ this

knowledge to examine various pandemic models in Section 2.3. Finally, we address

the topic of neural networks with a focus on the multilayer perceptron in Section 2.4

and physics informed neural networks in Section 2.5.

2.1 Mathematical Modelling using Functions 1

To model a physical problem mathematically, it is necessary to define a set of funda-

mental numbers or quantities upon which the subsequent calculations will be based. meeting ques-

tion 1These sets may represent, for instance, a specific time interval or a distance. The

term domain describes these fundamental sets of numbers or quantities [Rud07]. A

variable is a changing entity living in a certain domain. In this thesis, we will focus

on domains of real numbers in R.

The mapping between variables enables the modeling of a physical process and

may depict semantics. We use functions in order to facilitate this mapping. Let

A,B ⊂ R be to subsets of the real numbers, then we define a function as the

mapping

f : A → B. (2.1)

In other words, the function f maps elements x ∈ A to values f(x) ∈ B. A is the

domain of f , while B is the codomain of f . Functions are capable of representing

the state of a system as a value based on an input value from their domain. One

5



Chapter 2 Theoretical Background 12

illustrative example is a function that maps a time step to the distance covered since

a starting point. In this case, time serves as the domain, while the distance is the

codomain.

2.2 Mathematical Modelling using Differential Equations 1

Often, the behavior of a variable or a quantity across a domain is more interesting

than its current state. Functions are able to give us the latter, but only passivelymeeting ques-

tion 2 give information about the change of a system. The objective is to determine an

effective method for calculating the change of a function across its domain. Let f

be a function and [a, b] ⊂ R an interval of real numbers. The expression

m =
f(b)− f(a)

a− b
(2.2)

gives the average rate of change. While the average rate of change is useful in many

cases, the momentary rate of change is more accurate. To calculate this, we need tolook up in

Rudin - cite

(wordly)

narrow down, the interval to an infinitesimal. For each x ∈ [a, b] we calculate

df

dx
= lim

t→x

f(t)− f(x)

t− x
, (2.3)

if it exists. As the Tenenbaum and Pollard [TP85] define, df/dx is the derivative,

which is “the rate of change of a variable with respect to another”. The relation

between a variable and its derivative is modeled in a differential equation. The

derivative of df/dx yields d2f/dx2, which is the function that calculates the rate of

change of the rate of change and is called the second order derivative. Iterating this

n times results in dnf/dxn, the derivative of the n’th order. A method for obtaining

a differential equation is to derive it from the semantics of a problem. For example,

in physics a differential equation can be derived from the law of the conservation

of energy [Dem21]. Differential equations find application in several areas suchis this good?

as engineering e.g., the Chua’s circuit [Mat84], physics with, e.g., the Schrödinger

equation [Sch26], economics, e.g., Black-Scholes equation [Oks00], epidemiology, and

beyond.

In the context of functions, it is possible to have multiple domains, meaning that

function has more than one parameter. To illustrate, consider a function operating

in two-dimensional space, wherein each parameter represents one axis. Another ex-

6



2.2 Mathematical Modelling using Differential Equations 1

ample would be a function, that maps its inputs of a location variable and a time

variable on a height. The term partial differential equations (PDE ’s) describes dif-

ferential equations of such functions, which contain partial derivatives with respect

to each individual domain. In contrast, ordinary differential equations (ODE ’s) are

the single derivatives for a function having only one domain [TP85]. In this thesis,

we restrict ourselves to ODE’s.

A system of differential equations is the name for a set of differential equations.

The derivatives in a system of differential equations each have their own codomain,

which is part of the problem, while they all share the same domain.

Tenenbaum and Pollard [TP85] provide many examples for ODE’s, including the

Motion of a Particle Along a Straight Line. Further, Newton’s second law states

that “the rate of change of the momentum of a body (momentum = mass ·velocity)
is proportional to the resultant external force F acted upon it” [TP85]. Let m be

the mass of the body in kilograms, v its velocity in meters per second and t the time

in seconds. Then, Newton’s second law translates mathematically to

F = m
dv

dt
. (2.4)

It is evident that the acceleration, a = dv
dt , as the rate of change of the velocity is part

of the equation. Additionally, the velocity of a body is the derivative of the distance

traveled by that body. Based on these findings, we can rewrite the Equation (2.4)

to

F = ma = m
d2s

dt2
. (2.5)

To conclude, note that this explanation of differential equations focuses on the as-

pects deemed crucial for this thesis and is not intended to be a complete explanation

of the subject. To gain a better understanding of it, we recommend the books men-

tioned above [Rud07, TP85]. In the following section we describe the application of

these principles in epidemiological models.

7



Chapter 2 Theoretical Background 12

2.3 Epidemiological Models 4

Pandemics, like COVID-19, which have resulted in a significant number of fatali-

ties. Hence, the question arises: How should we analyze a pandemic effectively? ItBetter?

is essential to study whether the employed countermeasures are efficacious in com-

bating the pandemic. Given the unfavorable public response to measures such as

lockdowns, it is imperative to investigate that their efficacy remains commensurate

with the costs incurred to those affected. In the event that alternative and novel

technologies were in use, such as the mRNA vaccines in the context of COVID-19,

it is needful to test the effect and find the optimal variant. In order to shed light on

the aforementioned events, we need a method to quantify the pandemic along with

its course of progression.

The real world is a highly complex system, which presents a significant challenge

attempting to describe it fully in a mathematical model. Therefore, the model must

reduce the complexity while retaining the essential information. Furthermore, it

must address the issue of limited data availability. For instance, during COVID-19

institutions such as the Robert Koch Institute (RKI)1 were only able to collect data

on infections and mortality cases. Consequently, we require a model that employs

an abstraction of the real world to illustrate the events and relations that are pivotal

to understanding the problem.

2.3.1 SIR Model 3

In 1927, Kermack and McKendrick [KM27] introduced the SIR Model, which sub-

sequently became one of the most influential epidemiological models. This model

enables the modeling of infections during epidemiological events such as pandemics.

The book Mathematical Models in Biology [EK05] reiterates the model and serves

as the foundation for the following explanation of SIR models.

The SIR model is capable of illustrating diseases, which are transferred through

contact or proximity of an individual carrying the illness and a healthy individual.

This is possible due to the distinction between infected individuals who are carriers

of the disease and the part of the population, which is susceptible to infection. In

the model, the mentioned groups are capable to change, e.g., healthy individuals

becoming infected. The model assumes the size N of the population remains con-

1https://www.rki.de/EN/Home/homepage_node.html
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2.3 Epidemiological Models 4

stant throughout the duration of the pandemic. The population N comprises three

distinct compartments: the susceptible group S, the infectious group I and the re-

moved group R (hence SIR model). Let T = [t0, tf ] ⊆ R≥0 be the time span of the

pandemic, then,

S : T → N, I : T → N, R : T → N, (2.6)

give the values of S, I and R at a certain point of time t ∈ T . For S, I, R and N

applies:

N = S + I +R. (2.7)

The model makes another assumption by stating that recovered people are immune

to the illness and infectious individuals can not infect them. The individuals in

the R group are either recovered or deceased, and thus unable to transmit or carry

the disease. As visualized in the Figure 2.1 the individuals may transition between

Figure 2.1: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

groups based on transition rates. The transmission rate β is responsible for individ-

uals becoming infected, while the rate of removal or recovery rate α (also referred

to as δ or ν, e.g., [EK05, MPF23]) moves individuals from I to R.

We can describe this problem mathematically using a system of differential equa-

tions (see Section 2.2). Thus, Kermack and McKendrick [KM27] propose the fol-

lowing set of differential equations:

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI.

(2.8)

This set of differential equations, is based on the following assumption: “The rate

of transmission of a microparasitic disease is proportional to the rate of encounter

9



Chapter 2 Theoretical Background 12

of susceptible and infective individuals modelled by the product (βSI)”, according

to Edelstein-Keshet [EK05]. The system shows the change in size of the groups per

time unit due to infections, recoveries, and deaths.

The term βSI describes the rate of encounters of susceptible and infected individ-

uals. This term is dependent on the size of S and I, thus Anderson and May [And91]

propose a modified model:

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI.

(2.9)

In Equation (2.9) βSI gets normalized by N , which is more correct in a real world

aspect [And91].

The initial phase of a pandemic is characterized by the infection of a small number

of individuals, while the majority of the population remains susceptible. The infec-

tious group has not yet infected any individuals thus neither recovery nor mortality

is possible. Let I0 ∈ N be the number of infected individuals at the beginning of the

disease. Then,

S(0) = N − I0,

I(0) = I0,

R(0) = 0,

(2.10)

describes the initial configuration of a system in which a disease has just emerged.

In the SIR model the temporal occurrence and the height of the peak (or peaks)

of the infectious group are of paramount importance for understanding the dynam-

ics of a pandemic. A low peak occurring at a late point in time indicates that the

disease is unable to keep pace with the rate of recovery, resulting in its demise before

it can exert a significant influence on the population. In contrast, an early and high

peak means that the disease is rapidly transmitted through the population, with a

significant proportion of individuals having been infected. Figure 2.1 illustrates this

effect by varying the values of β or α while simulating a pandemic using a model

10



2.3 Epidemiological Models 4

0 100 200 300 400 500
time / days

0

1

2

3

4

5

6

am
ou

nt
of

p
eo

p
le

×107 reference parameters

Susceptible

Infectious

Removed

(a) α = 0.35, β = 0.5

0 100 200 300 400 500
time / days

0

1

2

3

4

5

6

am
ou

nt
of

p
eo

p
le

×107 low β

Susceptible

Infectious

Removed

(b) α = 0.25, β = 0.5

0 100 200 300 400 500
time / days

0

1

2

3

4

5

6

am
ou

nt
of

p
eo

p
le

×107 high β

Susceptible

Infectious

Removed

(c) α = 0.45, β = 0.5
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(e) α = 0.35, β = 0.6

Figure 2.2: Synthetic data, using Equation (2.9) and N = 7.9 · 106, I0 = 10 with
different sets of parameters. We visualize the case with the reference
parameters in (a). In (b) and (c) we keep α constant, while varying the
value of β. In contrast, (d) and (e) have varying values of α.

such as Equation (2.9). It is evident that both the transmission rate β and the

recovery rate α influence the height and time of the peak of I. When the number of

infections exceeds the number of recoveries, the peak of I will occur early and will

be high. On the other hand, if recoveries occur at a faster rate than new infections

the peak will occur later and will be low. Thus, it is crucial to know both β and α,

as these parameters characterize how the pandemic evolves.

The SIR model makes a number of assumptions that are intended to reduce the

model’s overall complexity while simultaneously increasing its divergence from actual

reality. One such assumption is that the size of the population, N , remains constant,

as the daily change is negligible to the total population. This depiction is not an

accurate representation of the actual relations observed in the real world, as the size other assump-

tions in a bad

light?

of a population is subject to a number of factors that can contribute to change. The

population is increased by the occurrence of births and decreased by the occurrence

11



Chapter 2 Theoretical Background 12

of deaths. Other examples are the impossibility for individuals to be susceptible

again, after having recovered, or the possibility for the transition rates to change

due to new variants or the implementation of new countermeasures. We address this

latter option in the next Section 2.3.2.

2.3.2 Reduced SIR Model and the Reproduction Number 1

The Section 2.3.1 presents the classical SIR model. This model contains two scalar

parameters β and α, which describe the course of a pandemic over its duration. This

is beneficial when examining the overall pandemic; however, in the real world, disease

behavior is dynamic, and the values of the parameters β and α change throughout

the course of the disease. The reason for this is due to events such as the imple-

mentation of countermeasures that reduce the contact between the infectious and

susceptible individuals, the emergence of a new variant of the disease that increases

its infectivity or deadliness, or the administration of a vaccination that provides

previously susceptible individuals with immunity without ever being infected. Tosai correction

-¿ is this point

not already in-

cluded?

address this Millevoi et al. [MPF23] introduce a model that simultaneously reduces

are there older

sources

the size of the system of differential equations and solves the problem of time scaling

at hand.

First, they alter the definition of β and α to be dependent on the time interval

T = [t0, tf ] ⊆ R≥0,

β : T → R≥0, α : T → R≥0. (2.11)

Another crucial element is D(t) = 1
α(t) , which represents the initial time span an

infected individual requires to recuperate. Subsequently, at the initial time point t0,

the reproduction number,

R0 = β(t0)D(t0) =
β(t0)

α(t0)
, (2.12)

represents the number of susceptible individuals, that one infectious individual in-

fects at the onset of the pandemic. In light of the effects of β and α (see Sec-

tion 2.3.1), R0 < 1 indicates that the pandemic is emerging. In this scenario α is

relatively low due to the limited number of infections resulting from I(t0) << S(t0).

Further, R0 > 1 leads to the disease spreading rapidly across the population, with

an increase in I occurring at a high rate. Nevertheless, R0 does not cover the entire

time span. For this reason, Millevoi et al. [MPF23] introduce Rt which has the

12



2.3 Epidemiological Models 4

same interpretation as R0, with the exception that Rt is dependent on time. The

time-dependent reproduction number is defined as,

Rt =
β(t)

α(t)
· S(t)

N
, (2.13)

on the time interval T . This definition includes the transition rates for information

about the spread of the disease and information of the decrease of the ratio of sus-

ceptible individuals in the population. In contrast to β and α, Rt is not a parameter

but a state variable in the model and enabling the following reduction of the SIR Sai comment -

earlier?model.

Equation (2.7) allows for the calculation of the value of the group R using S and

I, with the term R(t) = N − S(t)− I(t). Thus,

dS

dt
= α(Rt − 1)I(t),

dI

dt
= −αRtI(t),

(2.14)

is the reduction of Equation (2.8) on the time interval T using this characteristic

and the reproduction number Rt (see Equation (2.13)). Another issue that Millevoi

et al. [MPF23] seek to address is the extensive range of values that the SIR groups

can assume. Accordingly, they initially scale the time interval T using its borders to

calculate the scaled time ts =
t−t0
tf−t0

∈ [0, 1]. Subsequently, they calculate the scaled

groups,

Ss(ts) =
S(t)

C
, Is(ts) =

I(t)

C
, Rs(ts) =

R(t)

C
, (2.15)

using a large constant scaling factor C ∈ N. Applying this to the variable I, results

in,
dIs
dts

= α(tf − t0)(Rt − 1)Is(ts), (2.16)

which is a further reduced version of Equation (2.8). This less complex differential

equation results in a less complex solution, as it entails the elimination of a parameter

(β) and the two state variables (S and R). The reduced SIR model, is more precise

in applications with a worse data situation, due to its fewer input variables.

13
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2.4 Multilayer Perceptron 2

In Section 2.2, we demonstrate the significance of differential equations in systems,

illustrating how they can be utilized to elucidate the impact of a specific parameter

on the system’s behavior. In Section 2.3, we show specific applications of differential

equations in an epidemiological context. The final objective is to solve these equa-

tions by finding a function that fits. Fitting measured data points to approximate

such a function, is one of the multiple methods to achieve this goal. The Multi-

layer Perceptron (MLP) [RHW86] is a data-driven function approximator. In the

following section, we provide a brief overview of the structure and training of these

neural networks. For reference, we use the book Deep Learning by Goodfellow et

al. [GBC16] as a foundation for our explanations.

The objective is to develop an approximation method for any function f∗, which

could be a mathematical function or a mapping of an input vector to the desired

output. Let x be the input vector and y the label, class, or result. Then, y = f∗(x),

is the function to approximate. In the year 1958, Rosenblatt [Ros58] proposed the

perceptron modeling the concept of a neuron in a neuroscientific sense. The per-

ceptron takes in the input vector x performs an operation and produces a scalar

result. This model optimizes its parameters θ to be able to calculate y = f(x; θ) as

accurately as possible. As Minsky and Papert [MP72] demonstrate, the perceptron

is only capable of approximating a specific class of functions. Consequently, there is

a necessity for an expansion of the perceptron.

As Goodfellow et al. [GBC16] proceed, the solution to this issue is to decompose

f into a chain structure of the form,

f(x) = f (3)(f (2)(f (1)(x))). (2.17)

This nested version of a perceptron is a multilayer perceptron. Each sub-function,

designated as f (i), is represented in the structure of an MLP as a layer, which con-

tains a linear mapping and a nonlinear mapping in form of an activation function.

A multitude of Units (also neurons) compose each layer. A neuron performs the

same vector-to-scalar calculation as the perceptron does. Subsequently, a nonlinear

activation function transforms the scalar output into the activation of the unit. The

layers are staggered in the neural network, with each layer being connected to its

neighbors, as illustrated in Figure 2.3. The input vector x is provided to each unit of

14



2.4 Multilayer Perceptron 2

the first layer f (1), which then gives the results to the units of the second layer f (2),

and so forth. The final layer is the output layer. The intervening layers, situated

between the first and the output layers are the hidden layers. The term forward

propagation describes the process of information flowing through the network from

the input layer to the output layer, resulting in a scalar loss. The alternating struc-

ture of linear and nonlinear calculation enables MLP’s to approximate any function.

As Hornik et al. [HSW89] proves, MLP’s are universal approximators.

Figure 2.3: A illustration of an MLP with two hidden layers. Each neuron of a
layer is connected to every neuron of the neighboring layers. The arrow
indicates the direction of the forward propagation.

The term training describes the process of optimizing the parameters θ. In order

to undertake training, it is necessary to have a set of training data, which is a set

of pairs (also called training points) of the input data x and its corresponding true

solution y of the function f∗. For the training process we must define a loss function

L(ŷ,y), using the model prediction ŷ and the true value y, which will act as a metric

for evaluating the extent to which the model deviates from the correct answer. One

common loss function is the mean square error (MSE) loss function. Let N be the

number of points in the set of training data. Then,

LMSE(ŷ,y) =
1

N

N∑
i=1

||ŷ(i) − y(i)||2, (2.18)

calculates the squared difference between each model prediction and true value of a

training and takes the mean across the whole training data.
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Ultimately, the objective is to utilize this information to optimize the parameters,

in order to minimize the loss. One of the most fundamental optimization strategy

is gradient descent. In this process, the derivatives are employed to identify the

location of local or global minima within a function, which lie where the gradient is

zero. Given that a positive gradient signifies ascent and a negative gradient indicates

descent, we must move the variable by a learning rate (step size) in the opposite

direction to that of the gradient. The calculation of the derivatives in respect to the

parameters is a complex task, since our functions is a composition of many functions

(one for each layer). We can address this issue taking advantage of Equation (2.17)

and employing the chain rule of calculus. Let ŷ = f(x; θ) be the model prediction

with the decomposed version f(x; θ) = f (3)(w; θ3) with w = f (2)(z; θ2) and z =

f (1)(x; θ1). x is the input vector and θ3, θ2, θ1 ⊂ θ. Then,

∇θ3L(ŷ,y) =
dL
dŷ

dŷ

df (3)
∇θ3f

(3), (2.19)

is the gradient of L(ŷ,y) in respect of the parameters θ3. To obtain ∇θ2L(ŷ,y),
we have to derive ∇θ3L(ŷ,y) in respect to θ2. The name of this method in the

context of neural networks is back propagation [RHW86], as it propagates the error

backwards through the neural network.

In practical applications, an optimizer often accomplishes the optimization task by

executing back propagation in the background. Furthermore, modifying the learning

rate during training can be advantageous. For instance, making larger steps at theleave whole

paragraph out?

- Niklas

beginning and minor adjustments at the end. Therefore, schedulers are implemen-

tations algorithms that employ diverse learning rate alteration strategies.

For a more in-depth discussion of practical considerations and additional details

like regularization, we direct the reader to the book Deep Learning by Goodfellow et

al. [GBC16]. The next section will demonstrate the application of neural networks

in approximating solutions to differential systems.

2.5 Physics Informed Neural Networks 4

In Section 2.4, we describe the structure and training of MLP’s, which are wildely

recognized tools for approximating any kind of function. In this section, we apply

this capability to create a solver for ODE’s and PDE’s as Legaris et al. [LLF97]
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2.5 Physics Informed Neural Networks 4

describe in their paper. In this approach, the model learns to approximate a func-

tion using provided data points while leveraging the available knowledge about the

problem in the form of a system of differential equations. The physics-informed

neural network (PINN) learns the system of differential equations during training,

as it optimizes its output to align with the equations.

In contrast to standard MLP’s, PINNs are not only data-driven. The loss term of

a PINN comprises two components. The first term incorporates the equations of the

aforementioned prior knowledge to pertinent the problem. As Raissi et al. [RPK17]

propose, the residual of each differential equation in the system must be minimized

in order for the model to optimize its output in accordance with the theory. We

obtain the residual ri, with i ∈ {1, ..., Nd}, by rearranging the differential equation

and calculating the difference between the left-hand side and the right-hand side of

the equation. Nd is the number of differential equations in a system. As Raissi et

al. [RPK17] propose the physics loss of a PINN,

Lphysics(x, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2, (2.20)

takes the input data and the model prediction to calculate the mean square error of

the residuals. The second term, the observation loss Lobs(ŷ,y), employs the mean

square error of the distances between the predicted and the true values for each

training point. Additionally, the observation loss may incorporate extra terms of

inital and boundary conditions. Let Nt denote the number of training points. Then,

LPINN (x,y, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2 +
1

Nt

Nt∑
i=1

||ŷ(i) − y(i)||2, (2.21)

represents the comprehensive loss function of a physics-informed neural network.

Given the nature of residuals, calculating the loss term of Lphysics(x, ŷ) requires

the calculation of the derivative of the output with respect to the input of the neural

network. As we outline in Section 2.4, during the process of back-propagation we

calculate the gradients of the loss term in respect to a layer-specific set of parameters

denoted by θl, where l represents the index of the respective layer. By employing the

chain rule of calculus, the algorithm progresses from the output layer through each
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hidden layer, ultimately reaching the first layer in order to compute the respective

gradients. The term,

∇xŷ =
dŷ

df (2)

df (2)

df (1)
∇xf

(1), (2.22)

illustrates that, in contrast to the procedure described in eq. (2.19), this procedure

the automatic differenciation goes one step further and calculates the gradient of

the output with respect to the input x. In order to calculate the second derivative
dŷ
dx = ∇x(∇xŷ), this procedure must be repeated.

Above we present a method for approximating functions through the use of sys-

tems of differential equations. As previously stated, we want to find a solver for

systems of differential equations. In problems, where we must solve an ODE or

PDE, we have to find a set of parameters, that satisfies the system for any input x.

In terms of the context of PINN’s this is the inverse problem, where we have a set

of training data from measurements, for example, is available along with the respec-

tive differential equations but information about the parameters of the equations

is lacking. To address this challenge, we set these parameters as distinct learnable

parameters within the neural network. This enables the network to utilize a specific

value, that actively influences the physics loss Lphysics(x, ŷ). During the training

phase the optimizer aims to minimize the physics loss, which should ultimately yield

an approximation of the true value.

-1

1

Figure 2.4: Illustration of of the movement of an oscillating body in the under-
damped case. With m = 1kg, µ = 4Ns

m and k = 200N
m .

One illustrative example of a potential application for PINN’s is the damped har-

monic oscillator [Dem21]. In this problem, we displace a body, which is attached to

a spring, from its resting position. The body is subject to three forces: firstly, the
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2.5 Physics Informed Neural Networks 4

inertia exerted by the displacement u, which points in the direction the displacement

u; secondly the restoring force of the spring, which attempts to return the body to

its original position and thirdly, the friction force, which points in the opposite di-

rection of the movement. In accordance with Newton’s second law and the combined

influence of these forces, the body exhibits oscillatory motion around its position of

rest. The system is influenced by m the mass of the body, µ the coefficient of friction

and k the spring constant, indicating the stiffness of the spring. The residual of the

differential equation,

m
d2u

dx2
+ µ

du

dx
+ ku = 0, (2.23)

shows relation of these parameters in reference to the problem at hand. As Tenen-

baum and Morris provide, there are three potential solutions to this issue. However

only the underdamped case results in an oscillating movement of the body, as illus-

trated in Figure 2.4. In order to apply a PINN to this problem, we require a set of

training data x. This consists of pairs of time points and corresponding displacement

measurements (t(i), u(i)), where i ∈ {1, ..., Nt}. In this hypothetical case, we know

the mass m = 1kg, and the spring constant k = 200N
m and the initial displacement

u(1) = 1 and du(0)
dt = 0. However, we do not know the value of the friction µ. In this

case the loss function,

Losc(x,u, û) = (u(1) − 1) +
du(0)

dt
+ ||md2u

dx2
+ µ

du

dx
+ ku||2 + 1

Nt

Nt∑
i=1

||û(i) − u(i)||2,

(2.24)

includes the border conditions, the residual, in which µ is a learnable parameter and

the observation loss.

2.5.1 Disease Informed Neural Networks 1

In this section, we describe the capability of MLP’s to solve systems of differential

equations. In Section 2.3.1, we describe the SIR model, which models the relations of

susceptible, infectious and removed individuals and simulates the progress of a dis-

ease in a population with a constant size. A system of differential equations models

these relations. Shaier et al. [SRS21] propose a method to solve the equations of the

SIR model using a PINN, which they call a disease-informed neural network (DINN).

To solve Equation (2.8) we need to find the transmission rate β and the recovery

rate α. As Shaier et al. [SRS21] point out, there are different approaches to solve this
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set of equations. For instance, building on the assumption, that at the beginning

one infected individual infects −n other people, concluding in dS(0)
dt = −n. Then,

β = −
dS
dt

S0I0
(2.25)

would calculate the initial transmission rate using the initial size of the susceptible

group S0 and the infectious group I0. The recovery rate, then could be defined using

the amount of days a person between the point of infection and the start of isolation

d, α = 1
d . The analytical solutions to the SIR models often use heuristic methods

and require knowledge like the sizes S0 and I0. A data-driven approach such as the

one that Shaier et al. [SRS21] propose does not have these problems. Since the model

learns the parameters β and α while learning the training data consisting of the time

points t, and the corresponding measured sizes of the groups S, I,R. Let Ŝ, Î, R̂

be the model predictions of the groups and rS = dŜ
dt +βŜÎ, rI = dÎ

dt −βŜÎ+αÎ and

rR = dR̂
dt −αÎ the residuals of each differential equation using the model predictions.

Then,

LSIR() = ||rS ||2 + ||rI ||2 + ||rR||2 +
1

Nt

Nt∑
i=1

||Ŝ(i) − S(i)||2+

||Î(i) − I(i)||2+

||R̂(i) −R(i)||2,

(2.26)

is the loss function of a DINN, with α and beta being learnable parameters.
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Methods 8

This chapter provides the methods, that we employ to address the problem that we

present in Chapter 1. Section 3.1 outlines our approaches for preprocessing of the

available data and has two sections. The first section describes the publicly avail-

able data provided by the Robert Koch Institute (RKI)1. The second section outlines

the techniques we use to process this data to fit our project’s requirements. Subse-

quently, we give a theoretical overview of the PINN’s that we employ. These latter

sections, establish the foundation for the implementations described in Section 4.1.1

and Section 4.2.1.

3.1 Epidemiological Data 3

In order for the PINNs to be effective with the data available to us, it is necessary

for the data to be in the format required by the epidemiological models, which the

PINNs will solve. Let Nt be the number of training points, then let i ∈ {1, ..., Nt}
be the index of the training points. The data required by the PINN for solving the

SIR model (see Section 2.5.1), consists of pairs (t(i), (S(i), I(i),R(i))). Given that

the system of differential equations representing the reduced SIR model (see Sec-

tion 2.3.2) consists of a single differential equation for I, it is necessary to obtain

pairs of the form (t(i), I(i)). This section, focuses on the structure of the available

data and the methods we employ to transform it into the correct structure.

3.1.1 RKI Data 2

The Robert Koch Institute is responsible for the on monitoring and prevention

of diseases. As the central institution of the German government in the field of

biomedicine, one of its tasks during the COVID-19 pandemic was it to track the

1https://www.rki.de/EN/Home/homepage_node.html
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number of infections and death cases in Germany. The data was collected by uni-

versity hospitals, research facilities and laboratories through the conduction of tests.

Each new case must be reported within a period of 24 hours at the latest to the

respective state authority. Each state authority collects the cases for a day and must

report them to the RKI by the following working day. The RKI then refines the

data and releases statistics and updates its repositories holding the information for

the public to access. For the purposes of this thesis we concentrate on two of these

repositories.

The first repository is called COVID-19-Todesfälle in Deutschland2. The dataset

comprises discrete data points, each with a date indicating the point in time at

which the respective data was collected. The dates span from March 9, 2020, to

the present day. For each date, the dataset provides the total number of infection

and death cases, the number of new deaths, and the case-fatality ratio. The total

number of infection and death cases represents the sum of all cases reported up to

that date, including the newly reported data. The dataset includes two additional

datasets, that contain the death case information organized by age group or by the

individual states within Germany on a weekly basis.

2020-03-09 2021-01-14 2021-11-22 2022-09-29 2023-08-07
Date of reported data

100

101

102

103

104

105

106

107

Death case dataset (RKI)

Total number of death cases

Total number of infection cases

Figure 3.1: A visualization of the total death case and infection case data for each
day from the data set COVID-19-Todesfälle in Deutschland. Status of
the 20’th of August 2024.

2https://github.com/robert-koch-institut/COVID-19-Todesfaelle_in_Deutschland.git
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3.1 Epidemiological Data 3

The second repository is entitled SARS-CoV-2 Infektionen in Deutschland3. This

dataset contains comprehensive data regarding the infections of each county on a

daily basis. The counties are encoded using the Community Identification Number4,

wherein the first two digits denote the state, the third digit represents the govern-

ment district, and the last two digits indicate the county. Each data point displays

the gender, the age group, number death, infection and recovery cases and the refer-

ence and report date. The reference date marks the onset of illness in the individual.

In the absence of this information, the reference date is equivalent to the report date.

The RKI assumes that the duration of the illness under normal conditions is 14

days, while the duration of severe cases is assumed to be 28 days. The recovery cases

in the dataset are calculated using these assumptions, by adding the duration on

the reference date if it is given. As stated in the ReadMe, the recovery data should

be used with caution. Since we require the recovery data for further calculations,

the following section presents the solutions we employed to address this issue.

3.1.2 Data Preprocessing 1

At the outset of this section, we establish the format of the data, that is necessary

for training the PINNs. In this subsection, we present the method, that we employ

to preprocess and transform the RKI data (see Section 3.1.1) into the training data.

In order to obtain the SIR data we require the size of each SIR compartment for

each time point. The infection case data for the German states is available on a

daily basis. To obtain the daily cases for the entire country we need to differentiate

the total number of cases. The size of the population is defined as the respective

size at the beginning of 2020. Using the starting conditions of Equation (2.10), we

iterate through each day, modifying the sizes of the groups in a consecutive manner.

For each iteration we subtract the new infection cases from S(i−1) to obtain S(i), for

I(i), we add the new cases and subtract deaths and recoveries, and the size of R(i)

is obtained by adding the new deaths and recoveries as they occur.

As previously stated in Section 3.1.1 the data on recoveries may either be unre-

liable or is entirely absent. To address this, we propose a method for computing

3https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
4https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/

_inhalt.html
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the number of recovered individuals per day. Under the assumption that recovery

takes D days, we present the recovery queue, a data structure that holds the number

of infections for a given day, retains them for D days, and releases them into the

removed group D days later.

Figure 3.2: The recovery queue takes in the infected individuals for the k’th day and
releases them D days later into the removed group.

In order to solve the reduced SIR model, we employ a similar algorithm to that

used for the SIR model. However, in contrast to the recovery queue, we utilize the

set recovery rate α to transfer a portion αI(i) of infections, which have recovered

on the i and put them into theR(i) compartment, which is irrelevant to our purposes.

The transformed data for both the SIR model and the reduced SIR model are

then employed by the PINN models, which we describe in the subsequent section.

3.2 Estimating Epidemiological Parameters using PINNs 3

In the preceding section, we present the methods we employ to preprocess and for-

mat the data from the RKI in accordance with the specifications required for the

work of this thesis. In this section, we will present the method we employ to identify

the non-time-dependent SIR parameters β and α for the data. As a foundation for

our work, we draw upon the work of Shaier et al. [SRS21], to solve the SIR system

of ODEs using PINNs.

In order to conduct an analysis of a pandemic, it is necessary to have a quan-

tifiable measure that indicates whether the disease in question has the capacity to

spread rapidly through a population or is it not successful in infecting a significant

number of individuals. We employ the SIR model to construct an abstraction of
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the complex relations inherent to real-world pandemics. The SIR model divides the

population into three compartments. It is accompanied by a with system of ODEs

that encapsulates the fluctuations and relationships between these compartments

(see Equation (2.8)). The transmission rate β and the recovery rate α work as

the aforementioned quantifiers. We obtain data from the preprocessing stage. It

provides insight into the progression of the COVID-19 pandemic in Germany. The

objective is to identify a function that solves the system of differential equations of

the SIR model, by returning the size of each compartment at a specific point in time.

This function is supposed to be able to reconstruct the training data and is defined

by the values of the transition rates β and α. From a mathematical and semantic

perspective, it is essential to determine these values of the parameter.

In order to ascertain the transmission rate β and the recovery rate α from the

preprocessed RKI data of (S, I,R) for a given set of time points, it is necessary to

employ a data-driven approach that outputs a model prediction of (Ŝ, Î, R̂) for a

set of time points, with the aim of minimizing the term,∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2, (3.1)

for each data point in the set of training dataset of a cardinality Ntt and with

i ∈ {1, ..., Nt}. Moreover, the aforementioned parameters must satisfy the system

of differential equations that govern the SIR model. For this reason, Shaier et

al. [SRS21] utilize a PINN framework to satisfy both requirements. Their approach,

which they refer to as the disease-informed neural network (see Section 2.5.1), takes

epidemiological data as the input and returns the two transition rates α and β. This

method achieves this by finding an approximate solution of to the inverse problem

of physics-informed neural networks (see Section 2.5). In terms of the terms of the

SIR model, a PINN addresses the inverse problemin two ways. First, it minimizes

the mean of Equation (3.1) by bringing the model predictions (S, I,R) closer to the

actual values (Ŝ, Î, R̂) for each time point. Second, it reduces the residuals of the

ODEs that constitute the SIR model. While the forward problem concludes at this

point, the inverse problem presets that a parameter is unknown. Thus, we designate

the parameters β and α as free, learnable parameters, β̂ and α̂. These separate

trainable parameters are values that are optimized during the training process and

must fit the equations of the set of ODEs. Furthermore, we know, that the transition

rates do not surpass the value of 1. Consequently, we force the value of both rates
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to be in a range of [−1, 1]. Therefor, we regularize the parameters using the tangens

hyperbolicus. This results in the terms,

β̂ = tanh(β̃), α̂ = tanh(α̃), (3.2)

where β̃ and α̃ are the predicted values of the model and β̂ and α̂ are regularized

model predictions.

The input data must include the time point t(i) and its corresponding measured

true values of (S(i), I(i),R(i)). In its forward path, the PINN receives the time point

t(i) as its input, from which it calculates its model prediction (Ŝ
(i)
, Î

(i)
, R̂

(i)
) based

on its model parameters θ. Subsequently, the model computes the loss function. It

calculates the observation loss by taking the mean squared error of Equation (3.1)

over all Nt training samples. Therefore, the term for the observation loss is,

Lobs(S, I,R, Ŝ, Î, R̂) =
1

Nt

Nt∑
i=1

∥∥∥Ŝ(i)−S(i)
∥∥∥2+∥∥∥Î(i)−I(i)

∥∥∥2+∥∥∥R̂(i)−R(i)
∥∥∥2, (3.3)

is the term for the observation loss. Given superior performance in practical applica-

tions relative to the ODEs of Equation (2.8), we utilize the ODEs of Equation (2.9)

in our physics loss. In order for the model to learn the system of differential, it is

necessary to obtain the residual of each ODE. The mean square error of the residuals

constitutes the physics loss Lphysiks(t,S, I,R, Ŝ, Î, R̂). The residuals are calculated

using the model predictions (Ŝ, Î, R̂) and the regularized model predictions of the

parameters β̂ and α̂. The residuals are given by,

0 =
dŜ

dt
+ β̂

ŜÎ

N
, 0 =

dÎ

dt
− β̂

ŜÎ

N
+ α̂Î, 0 =

dR̂

dt
+ α̂Î. (3.4)

Thus,

LSIR(t,S, I,R, Ŝ, Î, R̂) =

∥∥∥∥dŜdt + β̂
ŜÎ

N

∥∥∥∥2 + ∥∥∥∥dÎdt − β̂
ŜÎ

N
+ α̂Î

∥∥∥∥2 + ∥∥∥∥dR̂dt + α̂Î

∥∥∥∥2
+

1

Nt

Nt∑
i=1

∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2,
(3.5)

is the equation of the total loss for our approach. This loss value is then back-

propagated through our network, while the model predictions of the parameters β
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and α are optimized using the loss as well.

As this section concentrates on the finding of the time constant parameters β and

α, the next section will show our approach of finding the reproduction number Rt

on the German data of the RKI.

3.3 Estimating the Reproduction Number using PINNs 2

The previous section, shows the methodology we utilize to ascertain the non-time-

dependent transmission and recovery rates from a data set obtained from the COVID-

19 pandemic in Germany. In this section we employ PINNs to identify the time-

dependent reproduction number Rt, while reducing the number of state variables

and the reliance on assumptions, by reducing the system of ODEs comprising the

SIR model. The methodology presented in this section is based on the approach

developed by Millevoi et al. [MPF23].

In real-world pandemics the rate of infection is affected by a multitude of factors.

Events like the rising awareness for the disease in the population, the implementa-

tion of non-pharmaceutical mitigations such as social distancing policies, and the

emergence of a new variants have an impact on the transmission rate β. Accord-

ingly, a transmission rate that is not time-dependent and constant across the whole

duration of the pandemic may not accurately reflect the dynamics of the spread of

a real-world disease correctly. Although we set the transmission rate to be time-

dependent, the recovery time is assumed to be relatively constant in time. The

Robert Koch Institute5 posits that the typical recovery period for the illness under

normal conditions is 14 days, while those individuals with severe cases take about 28

days to recover. Given the negligible number of severe cases compared to the num-

ber of normal cases, we can set the recovery time to D = 14 resulting in α = 1/14.

The reproduction number, Rt (see Section 2.3.2), represents the number of infec-

tions that occur as a result of one infectious individual. It indicates if a pandemic is

emerging or if it is spreading rapidly through the susceptible population. By insert-

ing the definition Equation (2.13), into the system of ODEs of the SIR model, we

can derive one Equation (2.16). In order to solve this, we must identify a function

that maps a time point to the size of the infectious compartment and the specific

5https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
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Chapter 3 Methods 8

reproduction number.

As with the constant transition rates, we employ a data-driven approach for iden-

tifying the time-dependent reproduction number Rt. The PINN approximates the

size ,I, with its model prediction Î by minimizing the term,∥∥∥Î(i) − I(i)
∥∥∥2, (3.6)

for each i ∈ {1, ..., Nt}. In order to identify the reproduction number, the PINN min-

imizes the residuals of the ODE during the training process. The training process

is analogous to the one of the PINN, which identifies β and alpha (see Section 3.2).

The distinction lies in the absence of trainable parameters and the inclusion of an

additional state variable that fluctuates in response to the input. While the state

variable I is approximated using the error between the training data and the pre-

dicted values, the state variable Rt is approximated exclusively based on the residual

of the ODE.

The PINN receives the input of t(i) and generates a prediction of (Î
(i)
, R(i)

t ). As

previously stated, the PINN minimizes the distance between the true values of I

and the model predictions Î by minimizing the mean squared error. Consequently,

the observation loss function is defined by,

LrSIR(I, Î) =
1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.7)

The physics loss function is defined as the squared error of the residual of the ODE.

The residual of the reduced SIR model is given by,

0 =
dIs
dts

− α(tf − t0)(Rt − 1)Is(ts). (3.8)

By combining the observation loss with the physics loss, we arrive at the total loss

for the PINN that solves the reduced SIR model, which is given by,

LrSIR(t, I, Î) =

∥∥∥∥dIsdts
− α(tf − t0)(Rt − 1)Is(ts)

∥∥∥∥2 + 1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.9)

The process of determining the reproduction number, along with the other tech-

niques, that this chapter presents find application in the following chapter.
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Experiments 10

In the previous chapters we explained the methods (see Chapter 3) based the the-

oretical background, that we established in Chapter 2. In this chapter, we present

the setups and results from the experiments and simulations, we ran. First, we

tackle the experiments dedicated to find the epidemiological parameters of β and α

in synthetic and real-world data. Second, we identify the reproduction number in

synthetic and real-world data of Germany. Each section, is divided in the setup and

the results of the experiments.

4.1 Identifying the Transition Rates on Real-World and

Synthetic Data 5

In this section we seek to find the transmission rate β and the recovery rate α from

either synthetic or preprocessed real-world data. The methodology that we employ

to identify the transition rates is described in Section 3.2.

4.1.1 Setup 1

4.1.2 Results 4

Schleswig Holstein Hamburg Niedersachsen Bremen Nordrhein-Westfalen

α 0.0739 0.0774 0.0681 0.0548 0.0725

β 0.0931 0.0995 0.0894 0.0744 0.0939

Hessen Rheinland-Pfalz Baden Württemberg Bayern Saarland Berlin

α 0.0598 0.0754 0.0803 0.0767 0.0655 0.0845

β 0.0787 0.0971 0.1061 0.1045 0.0888 0.1050
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Figure 4.1: Visualization of the synthetic data for the SIR model, parameters for
creation: α = 1/3, β = 1/2

Brandenburg Mecklenburg-Vorpommern Sachsen Sachsen-Anhalt Thüringen Germany

α 0.0796 0.0864 0.0705 0.0843 0.0852 0.0821

β 0.1010 0.1111 0.0951 0.1095 0.1120 0.1066

4.2 Reduced SIR Model 5

4.2.1 Setup 1

4.2.2 Results 4
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Conclusions 5

5.1 Further Work
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