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Introduction
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Chapter 2
Theoretical Background

This chapter introduces the theoretical knowledge that forms the foundation of the
work presented in this thesis. In Section 2.1 and Section 2.2, we talk about differ-
ential equations and the underlying theory. In these Sections both the explanations
and the approach are strongly based on the book on analysis by Rudin [Rud07] and
the book about ordinary differential equations by Tenenbaum and Pollard [TP85].
Subsequently, we employ this knowledge to examine various pandemic models in Sec-
tion 2.3. Finally, we address the topic of neural networks with a focus on the multi-

layer perceptron in Section 2.4 and physics informed neural networks in Section 2.5.

2.1 Mathematical Modelling using Functions

To model a physical problem using mathematical tools, it is necessary to define a
set of fundamental numbers or quantities upon which the subsequent calculations
will be based. These sets may represent, for instance, a specific time interval or a
distance. The term domain describes these fundamental sets of numbers or quan-
tities [Rud07]. A wariable is a changing entity living in a certain domain. In this

thesis, we will focus on domains of real numbers in R.

The mapping between variables enables the modeling of the process and depicts
the semantics. We use functions in order to facilitate this mapping. Let A, B C R

be to subsets of the real numbers, then we define a function as the mapping
f:A—B. (2.1)

In other words, the function f maps elements x € A to values f(x) € B. A is the
domain of f, while B is the codomain of f. Functions are capable of representing

the state of a system as a value based on an input value from their domain. One



Chapter 2 Theoretical Background

illustrative example is a function that maps a time point to the distance covered
since a starting point. In this case, time serves as the domain, while the distance is

the codomain.

2.2 Basics of Differential Equations

Often, the change of a system is more interesting than its current state. Functions
are able to give us the latter, but only passively give information about the change
of a system. The objective is to determine an effective method for calculating the
change of a function across its domain. Let f be a function and [a,b] C R an interval
of real numbers, the expression
f(b) = f(a)
m=——>= 2.2

p— (2.2)
gives the average rate of change. While the average rate of change is useful in many
cases, the momentary rate of change is more accurate. To calculate this, we need to
narrow down, the interval to an infinitesimal. For each = € [a, b] we calculate

daf . f(t) — f(z)

PR L S — (23)

if it exists. % is the derivative, or differential equation, it returns the momentary

rate of change of f for each value z of f’s domain. Repeating this process on %

yields 3275, which is the function that calculates the rate of change of the rate of

change and is called the second order derivative. Iterating this n times results in
" f
dzn)

equation is to create it from the semantics of a problem. This method is useful if no

the derivative of the n’th order. Another method for obtaining a differential

basic function exists for a system. Differential equations find application in several

areas such as engineering, physics, economics, epidemiology, and beyond.

In the context of functions, it is possible to have multiple domains, meaning that
function has more than one parameter. To illustrate, consider a function operating
in two-dimensional space, wherein each parameter represents one axis or one that,
employs with time and locations as inputs. The term partial differential equations
(PDE’s) describes differential equations of such functions, which require a derivative
for each of their domains. In contrast, ordinary differential equations (ODE’s) are

the single derivatives for a function having only one domain. In this thesis, we only
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need ODE’s.

A system of differential equations is the name for a set of differential equations.
The derivatives in a system of differential equations each have their own codomain,

which is part of the problem, while they all share the same domain.

Tenenbaum and Pollard [TP85] provide many examples for ODE’s, including the
Motion of a Particle Along a Straight Line. Further, Newton’s second law states
that “the rate of change of the momentum of a body (momentum = mass-velocity)
is proportional to the resultant external force F' acted upon it” [TP85]. Let m be
the mass of the body in kilograms, v its velocity in meters per second and ¢ the time

in seconds. Then, Newton’s second law translates mathematically to

dv
F=mo. (2.4)

dv
dt

of the equation. Additionally, the velocity of a body is the derivative of the distance

It is evident that the acceleration, a = as the rate of change of the velocity is part
traveled by that body. Based on these findings, we can rewrite the Equation (2.4)
to

d’s

F =ma= mes- (2.5)

This explanation of differential equations focuses on the aspects deemed crucial for
this thesis and is not intended to be a complete explanation of the subject. To gain
a better understanding of it, we recommend the books mentioned above [Rud07,
TP85]. In the following section we describe the application of these principles in

epidemiological models.

2.3 Epidemiological Models

Pandemics, like COVID-19, which has resulted in a significant number of fatalities.
The question arises: How should we fight a pandemic correctly? Also, it is essential
to study whether the employed countermeasures efficacious in combating the pan-
demic. Given the unfavorable public response to measures such as lockdowns, it is
imperative to investigate that their efficacy remains commensurate with the costs
incurred to those affected. In the event that alternative and novel technologies were
in use, such as the mRNA vaccines in the context of COVID-19, it is needful to test
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the effect and find the optimal variant. In order to shed light on the aforementioned
events we need to develop a method to quantize the pandemic along with its course

of progression.

The real world is a highly complex system, which presents a significant challenge
attempting to describe it fully in a model. Therefore, the model must reduce the
complexity while retaining the essential information. Furthermore, it must address
the issue of limited data availability. For instance, during COVID-19 institutions
such as the Robert Koch Institute (RKI)! were only able to collect data on in-
fections and mortality cases. Consequently, we require a model that employs an
abstraction of the real world to illustrate the events and relations that are pivotal

to understanding the problem.

2.3.1 SIR Model

In 1927, Kermack and McKendrick [KM27] introduced the SIR Model, which sub-
sequently became one of the most influential epidemiological models. This model
enables the modeling of infections during epidemiological events such as pandemics.
The book Mathematical Models in Biology [EK05] reiterates the model and serves

as the foundation for the following explanation of SIR models.

The SIR model is capable of illustrating diseases, which are transferred through
contact or proximity of an individual carrying the illness and a healthy individual.
This is possible due to the distinction between infected beings who are carriers of
the disease and the part of the population, which is susceptible to infection. In the
model, the mentioned groups are capable to change, e.g., healthy individuals be-
coming infected. The model assumes the size N of the population remains constant
throughout the duration of the pandemic. The population N comprises three dis-
tinct groups: the susceptible group S, the infectious group I and the removed group
R (hence SIR model). Let T = [to,tf] € R>g be the time span of the pandemic,
then,

S:T—=N, I:T—=-N, R:T—=N, (2.6)

give the values of S, I and R at a certain point of time ¢t € 7. For S, I, R and N
applies:
N=S+1+R. (2.7)

"Mttps://www.rki.de/EN/Home/homepage_node.html
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2.3 Epidemiological Models

The model makes another assumption by stating that recovered people are immune
to the illness and infectious individual can not infect them. The individuals in the R
group are either recovered or deceased, and thus unable to transmit or carry the dis-

ease. As visualized in the Figure 2.1 the individuals may transition between groups

Figure 2.1: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

based on transition rates. The transmission rate (3 is responsible for individuals
becoming infected, while the rate of removal or recovery rate « (also referred to as
0 or v, e.g., [EK05, MPF23]) moves individuals from I to R.

We can describe this problem mathematically using a system of differential equa-
tions (see Section 2.2). Thus, Kermack and McKendrick [KM27] propose the fol-

lowing set of differential equations:

ds

22 — _BST

o BSI,

% = 85I — al, (2.8)
dR

==l

a

This, according to Edelstein-Keshet, is based on the following assumption: “The rate
of transmission of a microparasitic disease is proportional to the rate of encounter of
susceptible and infective individuals modelled by the product (5S1)” [EK05]. The
system shows the change in size of the groups per time unit due to infections, re-

coveries, and deaths.
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The term 5ST describes the rate of encounters of susceptible and infected individ-
uals. This term is dependent on the size of S and I, thus Anderson and May [And91]

propose a modified model:

s . SI
@~ P

dI SI

Y e | 2.9
= p0—al, (29)
dR

— =al.

a

In which ST gets normalized by N, which is more correct in a real world as-
pect [And91].

The initial phase of a pandemic is characterized by the infection of a small number
of individuals, while the majority of the population remains susceptible. The infec-
tious group has not yet infected any individuals thus neither recovery nor mortality
is possible. Let Iy € N be the number of infected individuals at the beginning of the

disease. Then,

S(0) = N — Io,
1(0) = Io, (2.10)
R(0) =0,

describes the initial configuration of a system in which a disease has just emerged.

In the SIR model the temporal occurrence and the height of the peak (or peaks)
of the infectious group are of paramount importance for understanding the dynam-
ics of a pandemic. A low peak occurring at a late point in time indicates that the
disease is unable to keep pace with the rate of recovery, resulting in its demise before
it can exert a significant influence on the population. In contrast, an early and high
peak means that the disease is rapidly transmitted through the population, with a
significant proportion of individuals having been infected. Figure 2.1 illustrates the
impact of modifying either 5 or o while simulating a pandemic using a model such
as Equation (2.9). It is evident that both the transmission rate 8 and the recovery
rate « influence the height and time of the peak of I. When the number of infections
exceeds the number of recoveries, the peak of I will occur early and will be high.

On the other hand, if recoveries occur at a faster rate than new infections the peak
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Figure 2.2: Synthetic data, using Equation (2.9) and N = 7.9 - 10%, Iy = 10 with
different sets of parameters.

will occur later and will be low. This means, that it is crucial to know both g and

« to be able to simulate a pandemic using the SIR model.

The SIR model makes a number of assumptions that are intended to reduce the
model’s overall complexity while simultaneously increasing its divergence from actual
reality. One such assumption is that the size of the population, N, remains constant.
This depiction is not an accurate representation of the actual relations observed in
the real world, as the size of a population is subject to a number of factors that can
contribute to change. The population is increased by the occurrence of births and
decreased by the occurrence of deaths. There are different reasons for mortality,
including the natural aging process or the development of other diseases. Other
examples are the absence of the possibility for individuals to be susceptible again,
after having recovered, or the possibility for the transition rates to change due to
new variants or the implementation of new countermeasures. We address this latter

option in the next Section 2.3.2.
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2.3.2 Reduced SIR Model and the Reproduction Number

The Section 2.3.1 presents the classical SIR model. The model comprises two pa-
rameters § and «, which describe the course of a pandemic over its duration. This
is beneficial when examining the overall pandemic; however, in the real world, dis-
ease behavior is dynamic, and the values of the parameters 8 and « change at
each time point. The reason for this is due to events such as the implementation
of countermeasures that reduce the contact between the infectious and susceptible
individuals, the emergence of a new variant of the disease that increases its infec-
tivity or deadliness, or the administration of a vaccination that provides previously
susceptible individuals with immunity without ever being infectious. To address
this Millevoi et al. [MPF23] introduce a model that simultaneously reduces the size

of the system of differential equations and solves the problem of time scaling at hand.

First, they alter the definition of § and « to be dependent on the time interval
T = [to, ty] € Rxo,
ﬁ:T—)RZ(), « :T%Rzo. (2.11)

Another crucial element is D(t) = ﬁ, which represents the initial time span an

infected individual requires to recuperate. Subsequently, at the initial time point ¢y,

the reproduction number,

Ro = B(to)D(to) = (2.12)
represents the number of susceptible individuals, that one infectious individual in-
fects at the onset of the pandemic.In light of the effects of 5 and « (see Section 2.3.1),
Ro > 1 indicates that the pandemic is emerging. In this scenario « is relatively low
due to the limited number of infections resulting from I (t9) << S(t9p). When Ry < 1,
the disease is spreading rapidly across the population, with an increase in I occurring
at a high rate. Nevertheless, Ry does not cover the entire time span. For this reason,
Millevoi et al. [MPF23] introduce R which has the same interpretation as R, with
the exception that R; is dependent on time. The definition of the time-dependent
reproduction number on the time interval 7 with the population size N,
Bt) S()

Ry = o) N (2.13)

10
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includes the rates of change for information about the spread of the disease and
information of the decrease of the ratio of susceptible individuals in the population.
In contrast to 8 and «, R; is not a parameter but a state variable in the model and

enabling the following reduction of the SIR model.

Equation (2.7) allows for the calculation of the value of the group R using S and
I, with the term R(t) = N — S(t) — I(t). Thus,

d

d—s = a(Ry — DI(t),

dtl (2.14)
E == —OéRtI(t)7

is the reduction of Equation (2.8) on the time interval 7 using this characteristic and
the reproduction number Ri(see Equation (2.13)). Another issue that Millevoi et
al. [MPF23] seck to address is the extensive range of values that the SIR groups can
assume, spanning from 0 to 107. Accordingly, they initially scale the time interval

=l € [0,1]. Subsequently,

T using its borders to calculate the scaled time t; = -

they calculate the scaled groups,

S(t I(t R(t
st =20 ey =T Ry = T, (215)
using a large constant scaling factor C € N. Applying this to the variable I, results

in,

d,
dts

a further reduced version of Equation (2.8) results in a more streamlined and efficient

= O‘(tf - tO)(Rt - 1)Is(ts)7 (2'16)

process, as it entails the elimination of a parameter (/) and two state variables (S and
R), while adding the state variable R;. This is a crucial aspect for the automated

resolution of such differential equation systems, as we describe in Section 2.4.

2.4 Multilayer Perceptron

In Section 2.2 we show the importance of differential equations to systems, being
able to show the change of it dependent on a certain parameter of the parameter.
In Section 2.3 we show specific applications for differential equations in an epidemi-
ological context. Now, the last point is to solve these equations. For this problem,

there are multiple methods to reach this goal one of them is the Multilayer Percep-

11
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tron (MLP) [HSW89]. In the following we briefly tackle the structure, training and
usage of these neural networks using, for which we use the book Deep Learning by

Goodfellow et al. [GBC16] as a base for our explanations.

The goal is to be able to approximate any function f* that is for instance math-
ematical function or a mapping of an input vector to a class or category. Let x be

the input vector and y the label, class or result, then,

y = f*(z), (2.17)

is the function to approximate. In the year 1958, Rosenblatt [Ros58] proposed the
perceptron modeling the concept of a neuron in a neuroscientific sense. The percep-
tron takes in the input vector & performs anoperation and produces a scalar result.
This model optimizes its parameters 6 to be able to calculate y = f(x;0) as correct
as possible. As Minsky and Papert [MP72] show, the perceptron on its own is able
to approximate only a class of functions. Thus, the need for an expansion of the

perceptron.

As Goodfellow et al. go on, the solution for this is to split f into a chain structure
of f(z) = fO(f@(fM(x))). This transforms a perceptron, which has an input and
output layer into a multilayer perceptron. Each sub-function f (n) is represented in
the structure of an MLP as a layer, which are each build of a multitude of wunits
(also neurons) each of which are doing the same vector-to-scalar calculation as the
perceptron does. Each scalar, is then given to a nonlinear activation function. The
layers are staggered in the neural network, with each being connected to its neigh-
bor, in the way as illustrated in Figure 2.3. The input vector x is given to each unit
of the first layer f(), which results are then given to the units of the second layer
@ and so on. The last layer is called the output layer. All layers in between the
first and the output layers are called hidden layers. Through the alternating struc-
ture of linear and nonlinear calculation MLP’s are able to approximate any kind of

function. As Hornik et al. [HSW89] shows, MLP’s are universal approximators.

The process of optimizing the parameters 6 is called learning. Here, we define a
metric for the quality of the results, of our neural network. This metric is called a

loss function

12
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Figure 2.3: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

2.5 Physics Informed Neural Networks

2.5.1 Disease Informed Neural Networks

13
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