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Uberblick

German version of the abstract.
Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

words should match the language.

Abstract

English version of the abstract.
Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

words should match the language.
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Chapter 1

Introduction 5

In the early months of 2020, Germany, like many other countries, was struck by the
novel Coronavirus Disease (COVID-19). The pandemic, which originates in Wuhan,
China, had a profound impact on the global community, paralyzing it for over two
years. In response to the pandemic, the German government employed a multifaceted
approach, encompassing the introduction of vaccines and non-pharmaceutical miti-
gation policies such as lockdowns. Between mitigation policies and varying strains
of COVID-19, which have exhibited varying degrees of infectiousness and lethality,
Germany had recorded over 38,400,000 infection cases and 174,000 deaths, as of the

end of June in 2023. In light of these figures the need for an analysis arises.

The dynamics of the spread of disease transmission in the real-world are complex.
A multitude of factors influence the course of a disease, and it is challenging to gain a
comprehensive understanding of these factors and develop a tool that allows for the
comparison of disease courses across different diseases and time points. The common
approach in epidemiology to address this is the utilization of epidemiological models
that approximate the dynamics by focusing on specific factors and modeling these
using differential equations and other mathematical tools for modeling. These mod-
els provide transition rates and parameters that determine the behavior of a disease
within the boundaries of the model. A fundamental epidemiological model, is the
SIR model; which was first proposed by Kermack and McKendrick [KM27] in 1927.
The SIR model is a compartmentalized model that divides the entire population into
three distinct compartments. The first compartment is the susceptible compartment,
S, which contains all individuals of the population who are susceptible to infection.
The second group, is the infectious compartment, I, which comprises all individuals
currently infected and capable of infecting susceptible individuals. Lastly, the re-
moved compartment, R, contains all individuals, who have succumbed to the disease

or recovered from it and are therefore no longer susceptible to infection. The model
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is characterized by two transition rates: the transmission rate 8, which controls the
rate of individuals becoming infected and consequently transitioning from S to I;
and the recovery rate «, which determines the rate at which individuals either re-
cover or succumb to the disease, thereby transitioning from I to R. In the context
of the SIR model, the values of 5 and « serve to quantify and determine the course

of a pandemic.

The transition rates of 8 and « serve to quantify a pandemic across its entire du-
ration. However, it is important to recognize that a pandemic is not a static entity;
rather, it evolves, and the infectiousness, deadliness and time to recovery associated
with it change with each of its numerous variants. To address this issue, Liu and
Stechlinski, and Setianto and Hidayat [LS12, SH23|, propose an SIR model with
time-dependent transition rates B(t) and a(t). From these rates, they derive the
time-dependent reproductive number R;, which represents the average number of
individuals, that are infected by one infectious person. A high value for R; indicates
a rapid spread of the disease, while a low value either suggests either an outbreak or
the disease is declining. This qualifies the time-dependent reproduction number R;

as an indicator of the pandemic’s progression.

The SIR model is defined by a system of differential equations, that incorporate
the transition rates, thereby depicting the fluctuation between the three compart-
ments. For a given set of data, the transition rate can be identified by solving the
set of differential systems. Recently, the data-driven approach of physics-informed
neural networks (PINN) has gained attention due to its capability of finding solu-
tions to differential equations by fitting its predictions to both given data and the
governing system of differential equations. By employing this methodology, Shaier
et al. [SRS21] were able to find the transition rate on synthetic data. Additionally,
Millevoi et al. [MPF23| were able to identify the reproduction number R; for both
synthetic and Italian COVID-19 data using an approach based on a reduced version
of the SIR model.

The Robert Koch Institute has collected incident and death case data from the be-
ginning of the outbreak in Germany to the present. This data will be utilitzed in this
bachelor thesis to investigate the transition rates and reproduction number for each
German state and the country as a whole, employing the methodologies proposed

by Shaier et al. and Millevoi et al.. Additionally, the findings will be contextualized



1.1 Related work 2

and correlated with the events of the real world.

1.1 Related work 2

In Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent
Transmission Rates Using the SEIR Model [SAC17], Smirnova et al. endeavor to
identify a stochastic methodology for estimating the time-dependent transmission
rate (t). This is in response to the limitations of earlier parametric estimation
methods, which are prone instability due to the difficulty in identifying parameter
finding and a low amount of available data. They achieve this by projecting the
time-dependent transmission rate onto a finite subspace, that is defined by Legen-
dre polynomials. Subsequently, they compare the three regularization techniques
of variational (Tikhonov’s) regularization, truncated singular value decomposition
(TSVD), and modified TSVD to ascertain the most reliable method for forecast-
ing with limited data. Their findings indicate that modified TSVD provides the
most stable forecasts on limited data, as demonstrated on both simulated data and
real-world data from the 1918 influenza pandemic and the 2014-2015 Ebola epidemic.

In their publication, entitled Data-driven approaches for predicting spread of infec-
tious diseases through DINNs: Disease Informed Neural Networks, Shaier et al. [SRS21]
put forth a data-driven approach for identifying the parameters of epidemiological
models. The authors apply physics-informed neural networks to the compartmental
SIR models, and refer to their method as disease informed neural networks (DINN).
In their work, they demonstrate the capacity of DINNs to forecast the trajectory of
epidemics and pandemics. They underpin the efficacy of their approach by apply-
ing it to 11 diseases, that have previously been modeled, including examples such
as COVID, HIV, Tuberculosis and Ebola. In their experiments they employ the
SIDR. (susceptible, infectious, dead, recovered) model. Finally, they present that
this method is a robust and effective means of identifying the parameters of a SIR

model.

In their article A physics-informed neural network to model COVID-19 infection
and hospitalization scenarios, Berkhahn and Ehrhard [BE22] employ the suscepti-
ble, vaccinated, infectious, hospitalized and removed (SVIHR) model. They solve
the system of differential equations inherent to the SVIHR model by the means of
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PINNs. The authors utilize a dataset of German COVID-19 data, covering the time
span from the inceptions of the outbreak to the end of 2021. The proposed PINN
methodology initially estimates the SVIHR model parameters and subsequently fore-
casts the data. For comparative purposes, Berkhahn and Ehrhard employ the method
of non-standard finite differences (NSFD) as well. In the validation process, the two
forecasting methods project the trajectory of COVID-19 from mid-April onwards.
Berkhahn and Ehrhard find that the PINN is able to adapt to varying vaccination

rates and emerging variants.

In their work, Data-Driven Deep-Learning Algorithm for Asymptomatic COVID-
19 Model with Varying Mitigation Measures and Transmission Rate, Olumoyin et
al. |OKF21] employ an alternative methodology for identifying the time-dependent
transmission rate of an asymptomatic-SIR model. On the premise that not all the
infectious individuals are reported and included in the data available. The algo-
rithm they introduce, utilizes the cumulative and daily reported infection cases and
symptomatic recovered cases, to demonstrate the effect of different mitigation mea-
sures and to ascertain the size of the part of non-symptomatic individuals in the
total number of infective individuals and the proportion of asymptomatic recovered
individuals. With this they can illustrate the influence of vaccination and a set non-
pharmaceutical mitigation methods on the transmission of COVID-19 on data from
Italy, South Korea, the United Kingdom, and the United States.

In A Physics-Informed Neural Network approach for compartmental epidemiolog-
ical models Millevoi et al. [MPF23| address the issue of describing the dynamically
changing transmission rate, which is influenced by the emergence of new variants or
the implementation of non-pharmaceutical measures. They employ a PINN to main-
tain an account of the changes of the transmission rate included in the reproduction
number and to approximate the model state variables. To this end, Millevoi et al.
employ the reproduction number to reduce the system of differential equations to a
single equation and introduce a reduced-split version of the PINN, which initially
trains on the data and then trains to minimize the residual of the ODE. They test
their approach on five synthetic and two real-world scenarios from the early stages of
the COVID-19 pandemic in Italy. This method yields an increase in both accuracy

and training speed.
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1.2 Overview

This thesis is comprised of four chapters. Chapter 2 presents with the theoretical
overview of mathematical modeling in epidemiology, with a particular focus on the
SIR model. Subsequently, it shifts its focus to neural networks, specifically on the
background of physics-informed neural networks (PINN) and their use in solving
ordinary differential equations. In Chapter 3 outlines the methodology employed
in this thesis. First we present the data, that was collected by the Robert Koch
Institute (RKI). Then we present the PINN approaches, which are inspired by the
work of Shaier el al. and Millevoi et al. [SRS21, MPF23|. Chapter 4 presents the
setups and results of the experiments that we conduct. This chapter is divided into
two sections. The first section presents and discusses the results concerning the
transition rates of § and «. The subsequent section presents the results concerning
the reproduction value R;. Finally, in Chapter 5, we connect our results with the

events of the real-world and give an overview of potential further work.






Chapter 2

Theoretical Background 12

This chapter introduces the theoretical foundations for the work presented in this
thesis. In Section 2.1 and Section 2.2, we describe differential equations and the
underlying theory. In these Sections both the explanations and the approach are
based on a book on analysis by Rudin [Rud07] and a book about ordinary differ-
ential equations by Tenenbaum and Pollard [TP85]. Subsequently, we employ this
knowledge to examine various pandemic models in Section 2.3. Finally, we address
the topic of neural networks with a focus on the multilayer perceptron in Section 2.4

and physics informed neural networks in Section 2.5.

2.1 Mathematical Modelling using Functions 1

To model a physical problem mathematically, it is necessary to define a set of funda-
mental numbers or quantities upon which the subsequent calculations will be based.
These sets may represent, for instance, a specific time interval or a distance. The
term domain describes these fundamental sets of numbers or quantities [Rud07]. A
variable is a changing entity living in a certain domain. In this thesis, we will focus

on domains of real numbers in R.

The mapping between variables enables the modeling of a physical process and may
depict semantics. We use functions in order to facilitate this mapping. Let A, B C R

be to subsets of the real numbers, then we define a function as the mapping
f:A—B. (2.1)

In other words, the function f maps elements x € A to values f(z) € B. A is the
domain of f, while B is the codomain of f. Functions are capable of representing

the state of a system as a value based on an input value from their domain. One
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illustrative example is a function that maps a time step to the distance covered since
a starting point. In this case, time serves as the domain, while the distance is the

codomain.

2.2 Mathematical Modelling using Differential Equations
1

Often, the behavior of a variable or a quantity across a domain is more interesting
than its current state. Functions are able to give us the latter, but only passively
give information about the change of a system. The objective is to determine an
effective method for calculating the change of a function across its domain. Let f be
a function and [a,b] C R an interval of real numbers. The expression
f(b) — f(a)

p— (2.2)
gives the average rate of change. While the average rate of change is useful in many
cases, the momentary rate of change is more accurate. To calculate this, we need to

narrow down, the interval to an infinitesimal. For each x € [a, b] we calculate
daf

&I - @)

dr t—z t—x

, (2.3)

if it exists. As the Tenenbaum and Pollard [TP85| define, d/dz is the derivative,
which is “the rate of change of a variable with respect to another”. The relation
between a variable and its derivative is modeled in a differential equation. The
derivative of df/dx yields d°f/dz?, which is the function that calculates the rate of
change of the rate of change and is called the second order derivative. Iterating
this n times results in @"f/dz", the derivative of the n’th order. A method for ob-
taining a differential equation is to derive it from the semantics of a problem. For
example, in physics a differential equation can be derived from the law of the conser-
vation of energy [Dem21]. Differential equations find application in several areas such
as engineering e.g., the Chua’s circuit [Mat84], physics with, e.g., the Schrédinger
equation [Sch26], economics, e.g., Black-Scholes equation [Oks00], epidemiology, and
beyond.

In the context of functions, it is possible to have multiple domains, meaning that

function has more than one parameter. To illustrate, consider a function operating
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in two-dimensional space, wherein each parameter represents one axis. Another ex-
ample would be a function, that maps its inputs of a location variable and a time
variable on a height. The term partial differential equations (PDE’s) describes dif-
ferential equations of such functions, which contain partial derivatives with respect
to each individual domain. In contrast, ordinary differential equations (ODE’s) are
the single derivatives for a function having only one domain [TP85]|. In this thesis,

we restrict ourselves to ODE’s.

A system of differential equations is the name for a set of differential equations.
The derivatives in a system of differential equations each have their own codomain,

which is part of the problem, while they all share the same domain.

Tenenbaum and Pollard [TP85] provide many examples for ODE’s; including the
Motion of a Particle Along a Straight Line. Further, Newton’s second law states that
“the rate of change of the momentum of a body (momentum = mass - velocity) is
proportional to the resultant external force F' acted upon it” [TP85]. Let m be the
mass of the body in kilograms, v its velocity in meters per second and ¢ the time in

seconds. Then, Newton’s second law translates mathematically to

dv
F = ma. (2.4)

It is evident that the acceleration, a = %, as the rate of change of the velocity is part

of the equation. Additionally, the velocity of a body is the derivative of the distance
traveled by that body. Based on these findings, we can rewrite the Equation (2.4) to
d*s

F=ma= mos (2.5)

To conclude, note that this explanation of differential equations focuses on the
aspects deemed crucial for this thesis and is not intended to be a complete explanation
of the subject. To gain a better understanding of it, we recommend the books
mentioned above [Rud07, TP85]. In the following section we describe the application

of these principles in epidemiological models.
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2.3 Epidemiological Models 4

Pandemics, like COVID-19, which have resulted in a significant number of fatali-
ties. Hence, the question arises: How should we analyze a pandemic effectively? It
is essential to study whether the employed countermeasures are efficacious in com-
bating the pandemic. Given the unfavorable public response to measures such as
lockdowns, it is imperative to investigate that their efficacy remains commensurate
with the costs incurred to those affected. In the event that alternative and novel
technologies were in use, such as the mRNA vaccines in the context of COVID-19,
it is needful to test the effect and find the optimal variant. In order to shed light on
the aforementioned events, we need a method to quantify the pandemic along with

its course of progression.

The real world is a highly complex system, which presents a significant challenge
attempting to describe it fully in a mathematical model. Therefore, the model must
reduce the complexity while retaining the essential information. Furthermore, it
must address the issue of limited data availability. For instance, during COVID-19
institutions such as the Robert Koch Institute (RKI)* were only able to collect data
on infections and mortality cases. Consequently, we require a model that employs
an abstraction of the real world to illustrate the events and relations that are pivotal

to understanding the problem.

2.3.1 SIR Model 3

In 1927, Kermack and McKendrick [KM27| introduced the SIR Model, which sub-
sequently became one of the most influential epidemiological models. This model
enables the modeling of infections during epidemiological events such as pandemics.
The book Mathematical Models in Biology [EK05] reiterates the model and serves as

the foundation for the following explanation of SIR models.

The SIR model is capable of illustrating diseases, which are transferred through
contact or proximity of an individual carrying the illness and a healthy individual.
This is possible due to the distinction between infected individuals who are carriers
of the disease and the part of the population, which is susceptible to infection. In
the model, the mentioned groups are capable to change, e.g., healthy individuals

becoming infected. The model assumes the size N of the population remains constant

'https://www.rki.de/EN/Home/homepage_node.html
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throughout the duration of the pandemic. The population N comprises three distinct
compartments: the susceptible group S, the infectious group I and the removed group
R (hence SIR model). Let 7 = [to,tf] € R>o be the time span of the pandemic,
then,

S:T—=N, I:T—=-N, R:T-—=N, (2.6)

give the values of S, I and R at a certain point of time t € 7. For S, I, R and N
applies:
N=S+I1+R (2.7)

The model makes another assumption by stating that recovered people are immune
to the illness and infectious individuals can not infect them. The individuals in the R
group are either recovered or deceased, and thus unable to transmit or carry the dis-

ease. As visualized in the Figure 2.1 the individuals may transition between groups

N

Figure 2.1: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

based on transition rates. The transmission rate § is responsible for individuals be-
coming infected, while the rate of removal or recovery rate a (also referred to as ¢
or v, e.g., [EK05, MPF23|) moves individuals from I to R.

We can describe this problem mathematically using a system of differential equa-
tions (see Section 2.2). Thus, Kermack and McKendrick [KM27] propose the fol-

lowing set of differential equations:

ds

=2 = _BSI

o BSI,

dl

o = BSI —al, (2.8)
dR

This set of differential equations, is based on the following assumption: “The rate

of transmission of a microparasitic disease is proportional to the rate of encounter

11



Chapter 2 Theoretical Background 12

of susceptible and infective individuals modelled by the product (8ST)”, according
to Edelstein-Keshet [EK05]. The system shows the change in size of the groups per

time unit due to infections, recoveries, and deaths.

The term BSI describes the rate of encounters of susceptible and infected individ-
uals. This term is dependent on the size of S and I, thus Anderson and May [And91|

propose a modified model:

ds SI

- P

dl ST

T plt 2.9
=A% —al, (2.9)
dR

In Equation (2.9) 8SI gets normalized by N, which is more correct in a real world
aspect [And91].

The initial phase of a pandemic is characterized by the infection of a small number
of individuals, while the majority of the population remains susceptible. The infec-
tious group has not yet infected any individuals thus neither recovery nor mortality
is possible. Let Iy € N be the number of infected individuals at the beginning of the

disease. Then,

S(0) =N — Io,
1(0) = Io, (2.10)
R(0) = 0,

describes the initial configuration of a system in which a disease has just emerged.

In the SIR model the temporal occurrence and the height of the peak (or peaks) of
the infectious group are of paramount importance for understanding the dynamics of
a pandemic. A low peak occurring at a late point in time indicates that the disease
is unable to keep pace with the rate of recovery, resulting in its demise before it
can exert a significant influence on the population. In contrast, an early and high
peak means that the disease is rapidly transmitted through the population, with a
significant proportion of individuals having been infected. Figure 2.1 illustrates this

effect by varying the values of 8 or o while simulating a pandemic using a model such

12
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Figure 2.2: Synthetic data, using Equation (2.9) and N = 7.9 - 105, Iy = 10 with
different sets of parameters. We visualize the case with the reference
parameters in (a). In (b) and (c) we keep a constant, while varying the
value of 3. In contrast, (d) and (e) have varying values of a.

as Equation (2.9). It is evident that both the transmission rate 8 and the recovery
rate o influence the height and time of the peak of /. When the number of infections
exceeds the number of recoveries, the peak of I will occur early and will be high.
On the other hand, if recoveries occur at a faster rate than new infections the peak
will occur later and will be low. Thus, it is crucial to know both S and «, as these

parameters characterize how the pandemic evolves.

The SIR model makes a number of assumptions that are intended to reduce the
model’s overall complexity while simultaneously increasing its divergence from actual
reality. One such assumption is that the size of the population, IV, remains constant,
as the daily change is negligible to the total population. This depiction is not an
accurate representation of the actual relations observed in the real world, as the size
of a population is subject to a number of factors that can contribute to change. The

population is increased by the occurrence of births and decreased by the occurrence
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of deaths. Other examples are the impossibility for individuals to be susceptible
again, after having recovered, or the possibility for the transition rates to change
due to new variants or the implementation of new countermeasures. We address this

latter option in the next Section 2.3.2.

2.3.2 Reduced SIR Model and the Reproduction Number 1

The Section 2.3.1 presents the classical SIR model. This model contains two scalar
parameters 8 and «, which describe the course of a pandemic over its duration. This
is beneficial when examining the overall pandemic; however, in the real world, disease
behavior is dynamic, and the values of the parameters 5 and « change throughout the
course of the disease. The reason for this is due to events such as the implementation
of countermeasures that reduce the contact between the infectious and susceptible
individuals, the emergence of a new variant of the disease that increases its infec-
tivity or deadliness, or the administration of a vaccination that provides previously
susceptible individuals with immunity without ever being infected. To address this
Millevoi et al. [MPF23| introduce a model that simultaneously reduces the size of

the system of differential equations and solves the problem of time scaling at hand.

First, they alter the definition of 8 and « to be dependent on the time interval
T = [to, tf] € Rxo,
ﬁ:T—)RZ(), CK:T—>RZ(). (2.11)

Another crucial element is D(t) = which represents the initial time span an

1
a(t)?
infected individual requires to recuperate. Subsequently, at the initial time point %o,

the reproduction number,

Ro = Blto)D(to) = 210, (2.12)

represents the number of susceptible individuals, that one infectious individual infects
at the onset of the pandemic. In light of the effects of 8 and a (see Section 2.3.1),
Ro < 1 indicates that the pandemic is emerging. In this scenario « is relatively low
due to the limited number of infections resulting from I(tp) << S(to)-

Further, Ry > 1 leads to the disease spreading rapidly across the population, with
an increase in I occurring at a high rate. Nevertheless, Rg does not cover the entire
time span. For this reason, Millevoi et al. [MPF23| introduce R; which has the
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2.3 Epidemiological Models 4

same interpretation as R, with the exception that R; is dependent on time. The
time-dependent reproduction number is defined as,
t) St
R, = 2 5®) (2.13)
alt) N
on the time interval 7. This definition includes the transition rates for information
about the spread of the disease and information of the decrease of the ratio of sus-
ceptible individuals in the population. In contrast to 8 and «, R; is not a parameter
but a state variable in the model and enabling the following reduction of the SIR

model.

Equation (2.7) allows for the calculation of the value of the group R using S and
I, with the term R(t) = N — S(t) — I(t). Thus,

d

9 _ o - 1)I(),

gtl (2.14)
E = —OéRtI(t)7

is the reduction of Equation (2.8) on the time interval T using this characteristic
and the reproduction number R; (see Equation (2.13)). Another issue that Millevoi
et al. [MPF23] seek to address is the extensive range of values that the SIR groups

can assume. Accordingly, they initially scale the time interval T using its borders to
¢

calculate the scaled time t; = __tfo € [0,1]. Subsequently, they calculate the scaled

ty
groups,
S() 1(t) R(t)
Ss(ts) = —=, IL(ts) = —~, Rs(ts) = —=, 2.15
(t) = 25 Llt) = "2 Relts) == (215)
using a large constant scaling factor C' € N. Applying this to the variable I, results
in,
dls
= alty —to)(Ry — 1) Is(ts), (2.16)

which is a further reduced version of Equation (2.8). This less complex differential
equation results in a less complex solution, as it entails the elimination of a parameter
(8) and the two state variables (S and R). The reduced SIR model, is more precise

in applications with a worse data situation, due to its fewer input variables.
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Chapter 2 Theoretical Background 12

2.4 Multilayer Perceptron 2

In Section 2.2, we demonstrate the significance of differential equations in systems,
illustrating how they can be utilized to elucidate the impact of a specific parameter
on the system’s behavior. In Section 2.3, we show specific applications of differential
equations in an epidemiological context. The final objective is to solve these equa-
tions by finding a function that fits. Fitting measured data points to approximate
such a function, is one of the multiple methods to achieve this goal. The Multi-
layer Perceptron (MLP) |[RHWS86| is a data-driven function approximator. In the
following section, we provide a brief overview of the structure and training of these
neural networks. For reference, we use the book Deep Learning by Goodfellow et

al. [GBC16] as a foundation for our explanations.

The objective is to develop an approximation method for any function f*, which
could be a mathematical function or a mapping of an input vector to the desired
output. Let & be the input vector and y the label, class, or result. Then, y = f*(x),
is the function to approximate. In the year 1958, Rosenblatt [Ros58] proposed the
perceptron modeling the concept of a neuron in a neuroscientific sense. The per-
ceptron takes in the input vector @ performs an operation and produces a scalar
result. This model optimizes its parameters 6 to be able to calculate y = f(x;0) as
accurately as possible. As Minsky and Papert [MP72] demonstrate, the perceptron
is only capable of approximating a specific class of functions. Consequently, there is

a necessity for an expansion of the perceptron.

As Goodfellow et al. [GBC16] proceed, the solution to this issue is to decompose

f into a chain structure of the form,

f@) = fOUFD V(). (2.17)

This nested version of a perceptron is a multilayer perceptron. Each sub-function,
designated as @ is represented in the structure of an MLP as a layer, which con-
tains a linear mapping and a nonlinear mapping in form of an activation function.
A multitude of Units (also neurons) compose each layer. A neuron performs the
same vector-to-scalar calculation as the perceptron does. Subsequently, a nonlinear
activation function transforms the scalar output into the activation of the unit. The
layers are staggered in the neural network, with each layer being connected to its

neighbors, as illustrated in Figure 2.3. The input vector x is provided to each unit of
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2.4 Multilayer Perceptron 2

the first layer f(1), which then gives the results to the units of the second layer f(2)
and so forth. The final layer is the output layer. The intervening layers, situated

between the first and the output layers are the hidden layers. The term forward

7

propagation describes the process of information flowing through the network from
the input layer to the output layer, resulting in a scalar loss. The alternating struc-
ture of linear and nonlinear calculation enables MLP’s to approximate any function.

As Hornik et al. [HSW89| proves, MLP’s are universal approximators.

v
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Figure 2.3: A illustration of an MLP with two hidden layers. Each neuron of a layer is
connected to every neuron of the neighboring layers. The arrow indicates
the direction of the forward propagation.

The term training describes the process of optimizing the parameters 6. In order
to undertake training, it is necessary to have a set of training data, which is a set
of pairs (also called training points) of the input data @ and its corresponding true
solution y of the function f*. For the training process we must define a loss function
L(y,y), using the model prediction ¢ and the true value y, which will act as a metric
for evaluating the extent to which the model deviates from the correct answer. One
common loss function is the mean square error (MSE) loss function. Let N be the

number of points in the set of training data. Then,

N
. 1 NG i
Cuse@.y) =+ N8 -y, (2.18)
=1

calculates the squared difference between each model prediction and true value of a

training and takes the mean across the whole training data.
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Chapter 2 Theoretical Background 12

Ultimately, the objective is to utilize this information to optimize the parameters,
in order to minimize the loss. One of the most fundamental optimization strategy
is gradient descent. In this process, the derivatives are employed to identify the
location of local or global minima within a function, which lie where the gradient is
zero. Given that a positive gradient signifies ascent and a negative gradient indicates
descent, we must move the variable by a learning rate (step size) in the opposite
direction to that of the gradient. The calculation of the derivatives in respect to the
parameters is a complex task, since our functions is a composition of many functions
(one for each layer). We can address this issue taking advantage of Equation (2.17)
and employing the chain rule of calculus. Let y = f(x;60) be the model prediction
with the decomposed version f(z;60) = f©®)(w;63) with w = f®(2;6,) and z =
f(l)(ar:; 01). x is the input vector and 03, 6,6, C 6. Then,

ac di

_ 3
T Vo, f®), (2.19)

VOSE (@7 y)
is the gradient of £(y,y) in respect of the parameters 03. To obtain Vg, L(y,y), we
have to derive Vg, L£(y, y) in respect to 2. The name of this method in the context of
neural networks is back propagation [RHW86], as it propagates the error backwards

through the neural network.

In practical applications, an optimizer often accomplishes the optimization task by
executing back propagation in the background. Furthermore, modifying the learning
rate during training can be advantageous. For instance, making larger steps at the
beginning and minor adjustments at the end. Therefore, schedulers are implemen-

tations algorithms that employ diverse learning rate alteration strategies.

For a more in-depth discussion of practical considerations and additional details
like regularization, we direct the reader to the book Deep Learning by Goodfellow et
al. [GBC16]. The next section will demonstrate the application of neural networks

in approximating solutions to differential systems.

2.5 Physics Informed Neural Networks 4

In Section 2.4, we describe the structure and training of MLP’s, which are wildely
recognized tools for approximating any kind of function. In this section, we apply this
capability to create a solver for ODE’s and PDE’s as Legaris et al. [LLF97] describe
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2.5 Physics Informed Neural Networks 4

in their paper. In this approach, the model learns to approximate a function using
provided data points while leveraging the available knowledge about the problem in
the form of a system of differential equations. The physics-informed neural network
(PINN) learns the system of differential equations during training, as it optimizes

its output to align with the equations.

In contrast to standard MLP’s; PINNs are not only data-driven. The loss term of
a PINN comprises two components. The first term incorporates the equations of the
aforementioned prior knowledge to pertinent the problem. As Raissi et al. [RPK17]
propose, the residual of each differential equation in the system must be minimized
in order for the model to optimize its output in accordance with the theory. We
obtain the residual r;, with i € {1, ..., Ny}, by rearranging the differential equation
and calculating the difference between the left-hand side and the right-hand side of
the equation. Ny is the number of differential equations in a system. As Raissi et
al. [RPK17| propose the physics loss of a PINN,

Ny
. 1 .
Lyphysics(T, Y) = N > lri(e, )17, (2.20)
=1

takes the input data and the model prediction to calculate the mean square error of
the residuals. The second term, the observation loss Lops(Y,y), employs the mean
square error of the distances between the predicted and the true values for each
training point. Additionally, the observation loss may incorporate extra terms of

inital and boundary conditions. Let N; denote the number of training points. Then,
1 Ng 1 Ny
Lomvn(@.y.9) = 5 ; rs(, )2 + oA z_; 19D — y@ |2, (2.21)
represents the comprehensive loss function of a physics-informed neural network.

Given the nature of residuals, calculating the loss term of Lpnysics(x,¥) requires
the calculation of the derivative of the output with respect to the input of the neural
network. As we outline in Section 2.4, during the process of back-propagation we
calculate the gradients of the loss term in respect to a layer-specific set of parameters
denoted by 6;, where [ represents the index of the respective layer. By employing the

chain rule of calculus, the algorithm progresses from the output layer through each
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hidden layer, ultimately reaching the first layer in order to compute the respective

gradients. The term,

- dy df®
Y= 0@ g

illustrates that, in contrast to the procedure described in eq. (2.19), this procedure

VafW, (2.22)

the automatic differenciation goes one step further and calculates the gradient of
the output with respect to the input @. In order to calculate the second derivative
% = V2 (Vz1y), this procedure must be repeated.

Above we present a method for approximating functions through the use of systems
of differential equations. As previously stated, we want to find a solver for systems of
differential equations. In problems, where we must solve an ODE or PDE, we have
to find a set of parameters, that satisfies the system for any input . In terms of the
context of PINN’s this is the inverse problem, where we have a set of training data
from measurements, for example, is available along with the respective differential
equations but information about the parameters of the equations is lacking. To ad-
dress this challenge, we set these parameters as distinct learnable parameters within
the neural network. This enables the network to utilize a specific value, that actively
influences the physics loss Lpnysics(x,¥). During the training phase the optimizer
aims to minimize the physics loss, which should ultimately yield an approximation

of the true value.

u(t) A

Y

resting position \/ VA ~— —

Figure 2.4: Hlustration of of the movement of an oscillating body in the underdamped
case. With m = 1kg, p = 425 and k = 2002

One illustrative example of a potential application for PINN’s is the damped har-

monic oscillator |[Dem21|. In this problem, we displace a body, which is attached to

a spring, from its resting position. The body is subject to three forces: firstly, the
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2.5 Physics Informed Neural Networks 4

inertia exerted by the displacement u, which points in the direction the displacement
u; secondly the restoring force of the spring, which attempts to return the body to
its original position and thirdly, the friction force, which points in the opposite di-
rection of the movement. In accordance with Newton’s second law and the combined
influence of these forces, the body exhibits oscillatory motion around its position of
rest. The system is influenced by m the mass of the body, u the coefficient of friction
and k the spring constant, indicating the stiffness of the spring. The residual of the
differential equation, ,

m% + ,u% + ku =0, (2.23)
shows relation of these parameters in reference to the problem at hand. As Tenen-
baum and Morris provide, there are three potential solutions to this issue. However
only the underdamped case results in an oscillating movement of the body, as illus-
trated in Figure 2.4. In order to apply a PINN to this problem, we require a set of
training data x. This consists of pairs of time points and corresponding displacement
measurements (t), u®), where i € {1,..., N;}. In this hypothetical case, we know
the mass m = 1kg, and the spring constant k = 200% and the initial displacement
u) =1 and d%(to) = 0. However, we do not know the value of the friction p. In this

case the loss function,

d7u
dx

du(0)
dt

d2 1 N . .
Losel@,u, @) = () = 1) 4 T g + g+l + 5 D~y

(2.24)

includes the border conditions, the residual, in which p is a learnable parameter and

the observation loss.

2.5.1 Disease Informed Neural Networks 1

In this section, we describe the capability of MLP’s to solve systems of differential
equations. In Section 2.3.1, we describe the SIR model, which models the relations of
susceptible, infectious and removed individuals and simulates the progress of a dis-
ease in a population with a constant size. A system of differential equations models
these relations. Shaier et al. [SRS21| propose a method to solve the equations of the
SIR model using a PINN, which they call a disease-informed neural network (DINN).

To solve Equation (2.8) we need to find the transmission rate 5 and the recovery

rate . As Shaier et al. [SRS21] point out, there are different approaches to solve this
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set of equations. For instance, building on the assumption, that at the beginning

one infected individual infects —n other people, concluding in %&0) = —n. Then,
ds
di
= — 2.25
b=-51 (2.25)

would calculate the initial transmission rate using the initial size of the susceptible
group Sp and the infectious group Iy. The recovery rate, then could be defined using
the amount of days a person between the point of infection and the start of isolation
d, a = é. The analytical solutions to the SIR models often use heuristic methods
and require knowledge like the sizes Sy and Iy. A data-driven approach such as the
one that Shaier et al. [SRS21]| propose does not have these problems. Since the model
learns the parameters 8 and « while learning the training data consisting of the time
points £, and the corresponding measured sizes of the groups S, I, R. Let S, I,Rbe
the mogiel predictions of the groups and rg = % + ﬂS’j,m = % — ﬁS’j + oI and
rR = % — o the residuals of each differential equation using the model predictions.
Then,

Ny
1 (1) i
Lsir() = lrs| +1Irill* +1rel + 5 3187 — 5@+
=1

1R - RO,

is the loss function of a DINN, with « and beta being learnable parameters.
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Methods 8

This chapter provides the methods, that we employ to address the problem that we
present in Chapter 1. Section 3.1 outlines our approaches for preprocessing of the
available data and has two sections. The first section describes the publicly avail-
able data provided by the Robert Koch Institute (RKI)'. The second section outlines
the techniques we use to process this data to fit our project’s requirements. Subse-
quently, we give a theoretical overview of the PINN’s that we employ. These latter
sections, establish the foundation for the implementations described in Section 4.1.1
and Section 4.2.1.

3.1 Epidemiological Data 3

In order for the PINNs to be effective with the data available to us, it is necessary
for the data to be in the format required by the epidemiological models, which the
PINNs will solve. Let N; be the number of training points, then let ¢ € {1,..., N;} be
the index of the training points. The data required by the PINN for solving the SIR
model (see Section 2.5.1), consists of pairs (£(*), (8@, 1), R(i))). Given that the sys-
tem of differential equations representing the reduced SIR model (see Section 2.3.2)
consists of a single differential equation for I, it is necessary to obtain pairs of the
form (¢(*), I(i)). This section, focuses on the structure of the available data and the

methods we employ to transform it into the correct structure.

3.1.1 RKI Data 2

The Robert Koch Institute is responsible for the on monitoring and prevention
of diseases. As the central institution of the German government in the field of

biomedicine, one of its tasks during the COVID-19 pandemic was it to track the

"https://www.rki.de/EN/Home/homepage_node.html
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number of infections and death cases in Germany. The data was collected by uni-
versity hospitals, research facilities and laboratories through the conduction of tests.
Each new case must be reported within a period of 24 hours at the latest to the
respective state authority. Each state authority collects the cases for a day and must
report them to the RKI by the following working day. The RKI then refines the
data and releases statistics and updates its repositories holding the information for
the public to access. For the purposes of this thesis we concentrate on two of these

repositories.

The first repository is called COVID-19-Todesfille in Deutschland?. The dataset
comprises discrete data points, each with a date indicating the point in time at
which the respective data was collected. The dates span from March 9, 2020, to
the present day. For each date, the dataset provides the total number of infection
and death cases, the number of new deaths, and the case-fatality ratio. The total
number of infection and death cases represents the sum of all cases reported up to
that date, including the newly reported data. The dataset includes two additional
datasets, that contain the death case information organized by age group or by the

individual states within Germany on a weekly basis.

Death case dataset (RKI)

107

109

10°

10*

10°

102—

Total number of death cases

101 — B
Total number of infection cases

0 | | |
102020—03—09 2021-01-14 2021-11-22 2022-09-29 2023-08-07
Date of reported data

Figure 3.1: A visualization of the total death case and infection case data for each
day from the data set COVID-19-Todesfdlle in Deutschland. Status of
the 20°th of August 2024.

*https://github.com/robert-koch-institut/COVID-19-Todesfaelle_in_Deutschland.git
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3.1 Epidemiological Data 3

The second repository is entitled SARS-Co V-2 Infektionen in Deutschland®. This
dataset contains comprehensive data regarding the infections of each county on a
daily basis. The counties are encoded using the Community Identification Number?,
wherein the first two digits denote the state, the third digit represents the govern-
ment district, and the last two digits indicate the county. Each data point displays
the gender, the age group, number death, infection and recovery cases and the refer-
ence and report date. The reference date marks the onset of illness in the individual.

In the absence of this information, the reference date is equivalent to the report date.

The RKI assumes that the duration of the illness under normal conditions is 14
days, while the duration of severe cases is assumed to be 28 days. The recovery cases
in the dataset are calculated using these assumptions, by adding the duration on the
reference date if it is given. As stated in the ReadMe, the recovery data should be
used with caution. Since we require the recovery data for further calculations, the

following section presents the solutions we employed to address this issue.

3.1.2 Data Preprocessing 1

At the outset of this section, we establish the format of the data, that is necessary
for training the PINNs. In this subsection, we present the method, that we employ

to preprocess and transform the RKI data (see Section 3.1.1) into the training data.

In order to obtain the SIR data we require the size of each SIR compartment for
each time point. The infection case data for the German states is available on a
daily basis. To obtain the daily cases for the entire country we need to differentiate
the total number of cases. The size of the population is defined as the respective
size at the beginning of 2020. Using the starting conditions of Equation (2.10), we
iterate through each day, modifying the sizes of the groups in a consecutive manner.
For each iteration we subtract the new infection cases from S~ to obtain S(i), for
I (i), we add the new cases and subtract deaths and recoveries, and the size of R®

is obtained by adding the new deaths and recoveries as they occur.

As previously stated in Section 3.1.1 the data on recoveries may either be unre-

liable or is entirely absent. To address this, we propose a method for computing

*https://github.com/robert-koch-institut/SARS-CoV-2- Infektionen_in_Deutschland.git
*https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/
_inhalt.html

25


https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/_inhalt.html
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/_inhalt.html

Chapter 3 Methods 8

the number of recovered individuals per day. Under the assumption that recovery
takes D days, we present the recovery queue, a data structure that holds the number
of infections for a given day, retains them for D days, and releases them into the

removed group D days later.

—
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Figure 3.2: The recovery queue takes in the infected individuals for the k’th day and
releases them D days later into the removed group.

In order to solve the reduced SIR model, we employ a similar algorithm to that
used for the SIR model. However, in contrast to the recovery queue, we utilize
the set recovery rate « to transfer a portion ol (@) of infections, which have recovered

on the ¢ and put them into the RY compartment, which is irrelevant to our purposes.

The transformed data for both the SIR model and the reduced SIR model are then
employed by the PINN models, which we describe in the subsequent section.

3.2 Estimating Epidemiological Parameters using PINNs
3

In the preceding section, we present the methods we employ to preprocess and for-
mat the data from the RKI in accordance with the specifications required for the
work of this thesis. In this section, we will present the method we employ to identify
the non-time-dependent SIR parameters 8 and « for the data. As a foundation for
our work, we draw upon the work of Shaier et al. [SRS21]|, to solve the SIR system
of ODEs using PINNs.

In order to conduct an analysis of a pandemic, it is necessary to have a quan-

tifiable measure that indicates whether the disease in question has the capacity to

spread rapidly through a population or is it not successful in infecting a significant
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3.2 Estimating Epidemiological Parameters using PINNs 3

number of individuals. We employ the SIR model to construct an abstraction of
the complex relations inherent to real-world pandemics. The SIR model divides the
population into three compartments. It is accompanied by a with system of ODEs
that encapsulates the fluctuations and relationships between these compartments
(see Equation (2.8)). The transmission rate 3 and the recovery rate a work as the
aforementioned quantifiers. We obtain data from the preprocessing stage. It provides
insight into the progression of the COVID-19 pandemic in Germany. The objective
is to identify a function that solves the system of differential equations of the SIR
model, by returning the size of each compartment at a specific point in time. This
function is supposed to be able to reconstruct the training data and is defined by
the values of the transition rates S and «. From a mathematical and semantic per-

spective, it is essential to determine these values of the parameter.

In order to ascertain the transmission rate § and the recovery rate « from the
preprocessed RKI data of (S, I, R) for a given set of time points, it is necessary to
employ a data-driven approach that outputs a model prediction of (S' I, R) for a

set of time points, with the aim of minimizing the term,

2
+

2

i (1)

~ (7 . ~ (i . NP
§9 _ s Fa (0] BY _ RO, (3.1)

for each data point in the set of training dataset of a cardinality N; and with
i € {1,...,N¢}. Moreover, the aforementioned parameters must satisfy the sys-
tem of differential equations that govern the SIR model. For this reason, Shaier et
al. [SRS21] utilize a PINN framework to satisfy both requirements. Their approach,
which they refer to as the disease-informed neural network (see Section 2.5.1), takes
epidemiological data as the input and returns the two transition rates a and . This
method achieves this by finding an approximate solution of to the inverse problem
of physics-informed neural networks (see Section 2.5). In terms of the terms of the
SIR model, a PINN addresses the inverse problemin two ways. First, it minimizes
the mean of Equation (3.1) by bringing the model predictions (S, I, R) closer to the
actual values (S’ ], R) for each time point. Second, it reduces the residuals of the
ODEs that constitute the SIR model. While the forward problem concludes at this
point, the inverse problem presets that a parameter is unknown. Thus, we designate
the parameters 8 and « as free, learnable parameters, B and @. These separate
trainable parameters are values that are optimized during the training process and

must fit the equations of the set of ODEs. Furthermore, we know, that the transition
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rates do not surpass the value of 1. Consequently, we force the value of both rates
to be in a range of [—1, 1]. Therefor, we regularize the parameters using the tangens

hyperbolicus. This results in the terms,
B =tanh(B), @& = tanh(a), (3.2)

where B and & are the predicted values of the model and B and @ are regularized

model predictions.

The input data must include the time point ¥ and its corresponding measured
true values of (S(i), I(i), R(i)). In its forward path, the PINN receives the time point
t( as its input, from which it calculates its model prediction (S‘(i), j(i), R(i)) based
on its model parameters 6. Subsequently, the model computes the loss function. It
calculates the observation loss by taking the mean squared error of Equation (3.1)

over all Ny training samples. Therefore, the term for the observation loss is,
2
, (3.3)

Lovs(S,I,R, 8,1, R) = Z Hs“ — g 2+HR(“—R<@'>

-

is the term for the observation loss. Given superior performance in practical applica-
tions relative to the ODEs of Equation (2.8), we utilize the ODEs of Equation (2.9)
in our physics loss. In order for the model to learn the system of differential, it is
necessary to obtain the residual of each ODE. The mean square error of the residuals
constitutes the physics loss Lynysis(t, S, I, R, S, 1, R) The residuals are calculated
using the model predictions (S’ I, R) and the regularized model predictions of the

parameters E and a. The residuals are given by,

A

dS 8T dI ASI v ai _dR
Thus,
A12 dI  ~SI . NE
£SIR(t,S,I , S, 1, R H H Bf OtI H—I—O{I
MONS
+
Ne i—1
(3.5)
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3.3 Estimating the Reproduction Number using PINNs 2

is the equation of the total loss for our approach. This loss value is then back-
propagated through our network, while the model predictions of the parameters

and « are optimized using the loss as well.

As this section concentrates on the finding of the time constant parameters § and
«, the next section will show our approach of finding the reproduction number R;
on the German data of the RKI.

3.3 Estimating the Reproduction Number using PINNs 2

The previous section illustrates the methodology we employ to detemine the constant
transmission and recovery rates from a data set obtained from the COVID-19 pan-
demic in Germany. In this section, we utilize PINNs to identify the time-dependent
reproduction number, R;, while reducing the number of state variables and the re-
liance on assumptions, by reducing the system of ODEs comprising the SIR model.
The methodology presented in this section is based on the approach developed by
Millevoi et al. [MPF23|.

In real-world pandemics, the rate of infection is influenced by a multitude of factors.
Events such as the growing awareness for the disease among the general population,
the introduction of non-pharmaceutical mitigations such as social distancing poli-
cies, and the emergence of a new variants have an impact on the transmission rate
B. Accordingly, a transmission rate that is not time-dependent and constant across
the entire duration of the pandemic may not accurately reflect the dynamics of the
spread of a real-world disease correctly. Although we set the transmission rate to be
time-dependent, the recovery time is assumed to be relatively constant over time.
The Robert Koch Institute® posits that the typical recovery period for the illness
under normal conditions is 14 days, while those individuals with severe cases require
approximately 28 days to recover. In the light of the negligible number of severe
cases in comparison to the number of normal cases, we can set the recovery time to
D = 14, which yields o = 1/14. The reproduction number, R; (see Section 2.3.2),
represents the number of new infections that occur as a result of one infectious in-
dividual. It indicates whether a pandemic is emerging or if it is spreading rapidly
through the susceptible population. By inserting the definition of Equation (2.13),
into the system of ODEs of the SIR model, we can derive one Equation (2.16). In

Shttps://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
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Chapter 3 Methods 8

order to solve this, we must identify a function that maps a time point to the size of

the infectious compartment and the specific reproduction number.

As with the constant transition rates, we employ a data-driven approach for iden-
tifying the time-dependent reproduction number R;. The PINN approximates the

size I with its model prediction I by minimizing the term,

, (3.6)

for each i € {1, ..., N¢}. In order to identify the reproduction number, the PINN min-
imizes the residuals of the ODE during the training process. The training process is
analogous to that of the PINN, which identifies 8 and a (see Section 3.2). However,
there are two key differences. Firstly, the absence of trainable parameters. Secondly,
the inclusion of an additional state variable that fluctuates in response to the input.
While the state variable I is approximated using the error between the training data
and the predicted values, the state variable R; is approximated exclusively based on
the residual of the ODE.

The PINN receives the input of t(Y) and generates a prediction of (j(l), ’Rgz)) As
previously stated, the PINN minimizes the distance between the true values of I and
the model predictions I by minimizing the mean squared error. Consequently, the

observation loss function is defined by,

Ny

- 1
Lisir(L, 1) = N, >

~ (i N2
O _ p (3.7)

=1

The physics loss function is defined as the squared error of the residual of the ODE.
The residual of the reduced SIR model is given by,
dl
0= f —a(ty —to)(Re — 1) Is(ts). (3.8)
ls
By combining the observation loss with the physics loss, we arrive at the total loss
for the PINN that solves the reduced SIR model, which is given by,

a dl
Lisr(t, I, 1) = ’ i a(ty —to)(Ry — 1)Is(ts)

S |
+]Vtiz:
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The process of determining the reproduction number, along with the other tech-

niques, that this chapter presents find application in the following chapter.
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Chapter 4
Experiments 10

In the preceding chapters, we explained the methods (see Chapter 3) based the
theoretical background, that we established in Chapter 2. In this chapter present the
setups and results from the experiments and simulations, we ran. First, we discuss
the experiments dedicated to identify the epidemiological parameters of 8 and «
in synthetic and real-world data. Second, we examine the reproduction number in
synthetic and real-world data of Germany. Each section, is divided into a description

of the experimental setup and the results.

4.1 lIdentifying the Transition Rates on Real-World and
Synthetic Data 5

In this section, we aim to identify the transmission rate 8 and the recovery rate «
from either synthetic or preprocessed real-world data. The methodology that we
employ to identify the transition rates is described in Section 3.2. Meanwhile, the

methods we utilize to preprocess the real-world data are detailed in Section 3.1.2.

4.1.1 Setup 1

In this subsection, we present the configurations for the training of our PINNs, which
are designed to identify the transition parameters. This encompasses the specific pa-

rameters for the preprocessing and the configuration of the PINN themselves.

In order to validate our method, we first generate a dataset of synthetic data. We
achieve this by solving Equation (2.9) for a given set of parameters. The parameters
are set to a = 1/3 and 8 = 1/2. The size of the population is N = 7.6e6 and the
initial amount of infectious individuals of is Iy = 10. We conduct the simulation over

150 days, resulting in a dataset of the form of Section 4.1.1.
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Chapter 4 Experiments 10

In order to process the real-world RKI data, it is necessary to preprocess the raw
data for each state and Germany separately. This is achieved by utilizing a recovery
queue with a recovery period of 14 days. With regard to population size of each state,
we set it to the respective value counted at the end of 20195, The initial number
of infectious individuals is set to the number of infected people on March 09. 2020
from the dataset. The data we extract spans from March 09. 2020 to June 22. 2023,
encompassing a period of 1200 days and representing the time span during which
the COVID-19 disease was the most active and severe.

©10° synthetic SIR data <107 Germany
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Figure 4.1: Synthetic and real-world training data. The synthetic data is generated
with @ = 1/3 and 8 = 1/2 and Equation (2.9). The Germany data is
taken from the death case data set. Exemplatory we show illustrations
of the datasets of Schleswig Holstein, Berlin, and Thuringia. For the
other states see Chapter 6

The PINN that we utilize comprises of seven hidden layers with twenty neurons
each, and an activation function of ReLLU. We employ the Adam optimizer and the
polynomial scheduler of the PyTorch library, for training, with a base learning rate

of le—3. We train the model for 10000 epochs to extract the parameters. For each

®https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/
demographie/#overview

34


https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/#overview
https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/#overview

4.1 Identifying the Transition Rates on Real-World and Synthetic Data 5
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Figure 4.2: Visualization of all 5 predictions for the synthetic dataset, compared to
the true values of a = 1/3 and g = 1/2

set of parameters, we conduct five iterations to demonstrate stability of the values.
The configuration is similar to the configuration, that Shaier et al. [SRS21]| use for

their work aside from the learning rate and the scheduler choice.

The following section presents the results of the simulations conducted with the

setups that we describe in this section.

4.1.2 Results 4

In this section, we present the results, that we obtain from the conducted experi-
ments, that we describe in the preceding section. We begin by examining the results
for the synthetic dataset, focusing the accuracy and reproducibility. We then pro-

ceed to present and discuss the results for the German states and Germany.

The results of the experiment regarding the synthetic data can be seen in Table 4.1
and in Figure 4.2. Figure 4.2 depicts the values of g and « for each iteration in com-
parison to the true values of § = 1/2 and o = 1/3. In Table 4.1 we present the mean

p and standard deviation o of both values across all five iterations.

The results demonstrate that the model is capable of approximating the correct
parameters for the small, synthetic dataset in each of the five iterations. While the
predicted value is not precisely accurate, the standard deviation is sufficiently small,

and taking the mean of multiple iterations produces an almost perfect result.
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«

B

true ) o

true

n

(o}

0.3333 0.3334 0.0011

0.5000 0.5000 0.0017

Table 4.1: The mean p and standard deviation o across the 5 independent iterations
of training our PINNs with the synthetic dataset.

In Table 4.2 we present the results of the training for the real-world data. The re-
sults are presented from top to bottom, in the order of the community identification
number, with the last entry being Germany. Both the mean p and the standard de-
viation o are calculated across all five iterations of our experiment. We can observe

that the values of Hamburg have the highest standard deviation, while Mecklenburg

Vorpommern has the lowest o.

state name 7! o 7! o €synth
Schleswig Holstein 0.0771 0.0010 0.0966 0.0013 0.0849
Hamburg 0.0847 0.0035 0.1077 0.0037 0.0948
Lower Saxony 0.0735 0.0014 0.0962 0.0018 0.0774
Bremen 0.0588 0.0018 0.0795 0.0025 0.0933
North Rhine-Westphalia 0.0780 0.0009 0.1001 0.0011 0.0777
Hesse 0.0653 0.0016 0.0854 0.0020 0.1017
Rhineland-Palatinate 0.0808 0.0016 0.1036 0.0018 0.0895
Baden-Wiirttemberg 0.0862 0.0014 0.1132 0.0016 0.0796
Bavaria 0.0809 0.0021 0.1106 0.0027 0.0952
Saarland 0.0746 0.0021 0.0996 0.0024 0.1080
Berlin 0.0901 0.0008 0.1125 0.0008 0.0667
Brandenburg 0.0861 0.0008 0.1091 0.0010 0.0724
Mecklenburg-Vorpommern 0.0910 0.0007 0.1167 0.0008 0.0540
Saxony 0.0797 0.0017 0.1073 0.0022 0.1109
Saxony-Anhalt 0.0932 0.0019 0.1207 0.0027 0.0785
Thuringia 0.0952 0.0011 0.1248 0.0016 0.0837
Germany 0.0803 0.0012 0.1044 0.0014 0.0804

Table 4.2: Mean and standard deviation across the 5 iterations, that we conducted
for each German state and Germany as the whole country.
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Figure 4.3: Visualization of the mean p and standard deviation o of the transition
rates a and B for each state compared to the mean values of a and 8 for
Germany.

In Figure 4.3, we present a visual representation of the means and standard de-
viations in comparison to the national values. It is noteworthy that the states of
Saxony-Anhalt and Thuringia have the highest transmission rates of all states, while
Bremen and Hessen have the lowest values for 8. The transmission rates of Hamburg,
Baden Wiirttemberg, Bavaria, and all eastern states lay above the national rate of
transmission. Similarly, the recovery rate yields comparable outcomes. For the re-
covery rate, the same states that exhibit a transmission rate exceeding the national
value, have a higher recovery rate than the national standard, with the exception of
Saxony.It is noteworthy that the recovery rates of all states exhibit a tendency to
align with the recovery rate of o = 1/14, which is equivalent to a recovery period of
14 days.

It is evident that there is a correlation between the values of a and S for each
state. States with a high transmission rate tend to have a high recovery rate, and
vice versa. The correlation between « and 8 can be explained by the implicate defi-
nition of o using a recovery queue with a constant recovery period of 14 days. This
might result to the PINN not learning « as a standalone parameter but rather as
a function of the transmission rate 5. This phenomenon occurs because the trans-
mission rate determines the number of individuals that get infected per day, and the

recovery queue moves a proportional number of people to the removed compartment.
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Consequently, a number of people defined by 5 move to the R compartment 14 days

after they were infected.

This issue can be addressed by reducing the SIR model, thereby eliminating the
significance of the R compartment size. In the following section, we present our

experiments for the reduced SIR model with time-independent parameters.

4.2 Reduced SIR Model 5

In this section we describe the experiments we conduct to identify the time-dependent
reproduction number for both synthetic and real-world data. Similar to the previous
section, we first describe the setup of our experiments and afterwards present the
results. The methods we employ for the preprocessing are described in Section 3.1.2
and for the PINN, that we use, are described in Section 3.3.

4.2.1 Setup 1

This section outlines the selection of parameters and configuration for data genera-
tion, preprocessing, and the neural networks. We employ these setups to train the

PINNSs to identify the reproduction number on both synthetic and real-world data.

For the purposes of validation, we create a synthetic dataset, by setting the pa-
rameter of o and the reproduction value each to a specific values, and solving Equa-
tion (2.16) for a given time interval. We set a = 1/3 and R; to the values as can be
seen in Figure 4.4 as well as the population size N = 7.6e6 and the initial amount
of infected people to Iy = 10. Furthermore, we set our simulated time span to 150
days. We use this dataset to demonstrate, that our method is working on a simple
and minimal dataset.

To obtain a dataset of the infectious group, consisting of the real-world data, we
processed the data of the dataset COVID-19-Todesfille in Deutschland to extract
the number of infections in Germany as a whole. For the German states, we use
the data of SARS-CoV-2 Infektionen in Deutschland. In the preprocessing stage, we
employ a constant rate for a to move individuals into the removed compartment.
For each state we generate two datasets with a different recovery rate. First, we

choose o = 1/14, which aligns with the time of recovery”. Second, we use a = 1/5,

"https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
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Figure 4.4: The upper two graphics show the curve of the size of the infectious group
(left) and the corresponding true reproduction value R; (right) for the
synthetic data. The lower graphic exemplary illustrates the different
curves for Germany.

as 5 days into the infection is the point at which the infectiousness is at its peak®.
As in Section 4.1, we set the population size N of each state and Germany to the
corresponding size at the end of 2019. Furthermore, for the same reason we restrict

the data points to an interval of 1200 days, beginning on March 09. 2020.

In order to achieve the desired output, the selected neural network architecture
comprises of four hidden layers, each containing 100 neurons. The activation func-
tion is the tangens hyperbolicus function. For the real-world data, we weight the
data loss by a factor of 1e6, to the total loss. The model is trained using a base
learning rate of le—3, with the same scheduler and optimizer as we describe in Sec-
tion 4.1.1. We train the model for 20000 epochs. To reduce the standard deviation,

each experiment is conducted 15 times.

8https://www.infektionsschutz.de/coronavirus/fragen-und-antworten/
ansteckung-uebertragung-und-krankheitsverlauf/
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4.2.2 Results 4

In this section we provide the results for our experiments considering the reduced
SIR model and the reproduction number R;. First, we present our findings for the

synthetic dataset. Then, we provide and discuss the results for the real-world data.

Section 4.2.2 illustrates the results of our experiments conducted on the syn-
thetic dataset, which can be seen in Figure 4.4. It is evident that the model is
capable of learning the infection data across all data points. The error for this is,

esynth = 0.0016, which is of a negligible magnitude.

Synthetic data I prediction Synthetic data Ry

| |
120000 ‘ prediction [ — 18 R
true I true Ry

1.6

amount of peoy

20000

0 30 60 90 120 150 0 30 60 90 120 150
time / days time / days

Figure 4.5: Results for the reproduction rate R; on synthetic data. The left graphic
show the prediction of the model regarding the I group. The right graphic
presents the predicted R; against the true value, with the standard de-
viation.

An examination of the predictions for the representation value R; reveals that
here as well, the model is capable of accurately delineating the value at each time
point. However, during the first 30 days, the standard deviation is exhibits an up-
ward trend, while during the final 120 days, the predictions demonstrate remarkable

precision. The overall prediction of R; has an error of eg, = 0.0521.

In Section 4.2.2, we present the graphs of R, for the state with the highest value of
B, namely Thuringia, and for the state with the lowest transmission rate 3, namely
Bremen. Further visualizations of the results can be found in Chapter 6. In all
datasets, the graphs with a = 1/5 are of a smaller size than those with a = 1/14. This
is due to the fact that the individuals are being moved to the removed compartment
at a faster rate. Resulting, it can be observed that the value of R; is constantly

remaining closer to the threshold of Ry = 1, while the reproduction number for
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Figure 4.6: Visualization of the prediction of the training and the graphs of R; for
Thuringia (left) and Bremen (right) with both o = 1/14 and a = 1/5.
Events like the peak of an influential variant are marked horizontally.

datasets with a = 1/14 reaches values of up to 1.6. In states with higher values of
B, the period during which the value of R, is above the threshold of one 1 is longer,
but the peak is lower. In states with a lower transmission rate, the period above 1

is shorter, but the peak value is higher.

Table 4.3 presents data regarding the discrepancy between the predicted and ac-
tual values from the dataset for compartment I. It is evident, that the error for all
experiments falls within a range of values that is not negligible and will have an influ-
ence on the resulting reproduction values that are learned while fitting the data. A
comparison of the results for the various values of « reveals that the errors associated
with a = 1/14 are consistently smaller, with the exception of Saxony and Germany.
This can be attributed to the differing sizes of infection counts, particularly in rela-
tion to the normalization factor C'. The model is unable to learn effectively if the

values of the data loss Lgata are too large or too small at the beginning.

As illustrated in Section 4.2.2; the training data is overlaid with the corresponding

prediction of the model. We can observe that the prediction, though an exact recon-
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struction, accurately captures the general trajectory of the pandemic. The model’s
prediction demonstrates an ability to capture larger peaks, exhibiting a tendency
to ignore smaller changes. This suggests that the prediction of the model is capa-
ble show the rough outline of the progression of COVID-19. In the beginning, the
majority of predictions below R; = 1, indicating an outbreak. As we observed in
the synthetic data, the model exhibits a higher standard deviation at the bound-
aries. In the graphs, we mark the peaks of the most severe COVID-19 variants in
Germany. While the peaks of the Alpha and Delta variants are clearly visible in
the data, the model does not learn these, and thus they are not reflected in the
results. The peak of the Omicron variant represents the culmination of the COVID-
19 pandemic in Germany and can be identified as the most prominent peak in the
dataset. Immediately preceding this peak, we observe the highest value of the repro-
duction number across all states. This phenomenon can be explained, by number of
individuals infected by one infectious person reaching its peak. In some states the

peaks of other Omicron variants after the maximum peak are visible (see Thuringia).

The experiments demonstrate, that our model encounteres difficulties in learning
the data for the states and Germany and consequently in predicting the reproduction
values for each dataset. Nonetheless, the predictions illustrate the general trends of
the most impactful events of the COVID-19 pandemic.
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€r
state name a=114 a=1/5
Schleswig Holstein 0.2005  0.2514
Hamburg 0.3045  0.3357
Lower Saxony 0.2140  0.3082
Bremen 0.2370  0.3838
North Rhine-Westphalia 0.1718  0.2460
Hesse 0.2736  0.3172
Rhineland-Palatinate 0.2442  0.2674
Baden-Wiirttemberg 0.1984  0.2958
Bavaria 0.1928  0.2825
Saarland 0.2554  0.4676
Berlin 0.1885  0.2948
Brandenburg 0.2023  0.2571
Mecklenburg-Vorpommern  0.1518  0.3272
Saxony 0.3382  0.2807
Saxony-Anhalt 0.1959  0.2564
Thuringia 0.1401  0.2221
Germany 0.3371  0.2533

Table 4.3: This table displays all average values of the error egyngn for all German
states and Germany. The average is formed across all 10 iteration.
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The states with the highest transmission rate values are Thuringia, Saxony Anhalt
and Mecklenburg West-Pomerania. It is also, visible that all six of the eastern states
have a higher transmission rate than Germany. These results may be explainable
with the ratio of vaccinated individuals®. The eastern state have a comparably low
complete vaccination ratio, accept for Berlin. While Berlin has a moderate vaccina-
tion ratio, it is also a hub of mobility, which means that contact between individuals
happens much more often. This is also a reason for Hamburg being a state with an
above national standard rate of transmission. Bremen has the highest ratio of vac-
cinated individuals, this might be a reason for the it having the lowest transmission

of all states.

5.1 Further Work

Our findings demonstrate that with our methods enable the quantification of the
course of the COVID-19 pandemic in Germany using the data provided by the Robert
Koch Institute. Additionally, we present the limitations of our work. The SIR model
is subject to numerous limitations. For instance, it does not account for individuals,
who may be immune due to the vaccination status or those who are not infectious due
to quarantine. In this section, we explore epidemiological models that illustrate these
dynamics observed in real-world pandemics and recommend further investigation for
Germany. First, we examine extensions of the SIR models, then we focus on agent-
based models (ABMs).

“https://impfdashboard.de/
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5.1.1 Further Compartmental Models

As our results demonstrate, the SIR model is capable of approximating the dynamics
of real-world pandemics. However, the model is not without limitations. As previ-
ously stated, the SIR model assumes that recovered individuals remain immune and
does not account for the reduction of exposure of susceptible individuals through
the introduction of non-pharmaceutical mitigation policies, such as social distancing
policies. These shortcomings can be addressed by incorporating additional com-
partments and transmission rates into the model. For example, the SEIRD model
incorporates an Fxposed group and subdivides the Removed group into Dead and
Recovered compartments. Furthermore, this adds four additional rates to the model:
the contact rate, representing the average number of contacts between infectious
and susceptible people with a high probability of infection; the manifestation index,
indicating the proportion of individuals exposed to the disease who will become infec-
tious; the incubation rate, measuring the time required for exposed individuals to be-
come infectious; and the infection fatality rate, quantifying the fraction of individuals
who succumb to the disease. As Doerre and Doblhammer [DD22| show for Germany
using a numerical approximation method, for an STERD model that they special-
ize to be age- and gender-specific, that it shows the impact of non-pharmaceutical
mitigation policies. In their work, Cooke and van den Driessche [CD96]| propose the
SEIRS model with two delays. This is model is capable of approximating diseases,
that have an immune period, after which the recovered individual becomes suscepti-
ble again. These are just a few examples of the numerous modifications of the basic

SIR model that can be used to approximate and consequently quantify an pandemic.

5.1.2 Agent based models

While compartmental models, such as the SIR model, look at the population as
a divided group, with each group representing a specific characterization that all
inhabitants of that group share, an Agent-Based Model (ABM) sets its focus on
the individual. Fach individual, or agent, has specific attributes that determine its
behavior and interactions with other agents during the simulation. As Gilbert |Gil10]
states, ABMs simulate the behavior of large groups, with each individual following
simple rules. Kerr et al. [KSM™21] put forth a simulation tool, Covasim, which
they base on an ABM. The ABM employs local data, including demographic data,
disease incidence data from the region, and contact data for household, schools and

workplaces, to define its simulation for a specific region. In their work, Maziarz and
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Zach [MZ20] address the criticism levied against ABMs for simplifying the dynamics
and lacking the empirical support for the assumptions it they make. The authors
utilize an ABM and the data specific to Australia to demonstrate the efficacy of
ABMs in portraying the dynamics of the COVID-19 pandemic. They further state
that ABMs can serve as serve as a tool for assessing the impact of non-pharmaceutical
mitigation policies. This illustrates that ABMs play a distinct role in analyzing
the COVID-19 pandemic. As the data situation has evolved, it is imperative to

investigate the potential of utilizing ABMs as a tool to assess the pandemic’s course.
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