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Chapter 1

Introduction 5

In the early months of 2020, Germany, like many other countries, was struck by the

novel Coronavirus Disease (COVID-19). The pandemic, which originates in Wuhan,

China, had a profound impact on the global community, paralyzing it for over two

years. In response to the pandemic, the German government employed a multifaceted

approach, encompassing the introduction of vaccines and non-pharmaceutical miti-

gation policies such as lockdowns. Between mitigation policies and varying strains

of COVID-19, which have exhibited varying degrees of infectiousness and lethality,

Germany had recorded over 38,400,000 infection cases and 174,000 deaths, as of the

end of June in 2023. In light of these �gures the need for an analysis arises.

The dynamics of the spread of disease transmission in the real-world are complex.

A multitude of factors in�uence the course of a disease, and it is challenging to gain a

comprehensive understanding of these factors and develop a tool that allows for the

comparison of disease courses across di�erent diseases and time points. The common

approach in epidemiology to address this is the utilization of epidemiological models

that approximate the dynamics by focusing on speci�c factors and modeling these

using di�erential equations and other mathematical tools for modeling. These mod-

els provide transition rates and parameters that determine the behavior of a disease

within the boundaries of the model. A fundamental epidemiological model, is the

SIR model, which was �rst proposed by Kermack and McKendrick [KM27] in 1927.

The SIR model is a compartmentalized model that divides the entire population into

three distinct compartments. The �rst compartment is the susceptible compartment,

S, which contains all individuals of the population who are susceptible to infection.

The second group, is the infectious compartment, I, which comprises all individuals

currently infected and capable of infecting susceptible individuals. Lastly, the re-

moved compartment, R, contains all individuals, who have succumbed to the disease

or recovered from it and are therefore no longer susceptible to infection. The model

1



Chapter 1 Introduction 5

is characterized by two transition rates: the transmission rate β, which controls the

rate of individuals becoming infected and consequently transitioning from S to I;

and the recovery rate α, which determines the rate at which individuals either re-

cover or succumb to the disease, thereby transitioning from I to R. In the context

of the SIR model, the values of β and α serve to quantify and determine the course

of a pandemic.

The transition rates of β and α serve to quantify a pandemic across its entire du-

ration. However, it is important to recognize that a pandemic is not a static entity;

rather, it evolves, and the infectiousness, deadliness and time to recovery associated

with it change with each of its numerous variants. To address this issue, Liu and

Stechlinski, and Setianto and Hidayat [LS12, SH23], propose an SIR model with

time-dependent transition rates β(t) and α(t). From these rates, they derive the

time-dependent reproductive number Rt, which represents the average number of

individuals, that are infected by one infectious person. A high value for Rt indicates

a rapid spread of the disease, while a low value either suggests either an outbreak or

the disease is declining. This quali�es the time-dependent reproduction number Rt

as an indicator of the pandemic's progression.

The SIR model is de�ned by a system of di�erential equations, that incorporate

the transition rates, thereby depicting the �uctuation between the three compart-

ments. For a given set of data, the transition rate can be identi�ed by solving the

set of di�erential systems. Recently, the data-driven approach of physics-informed

neural networks (PINN) has gained attention due to its capability of �nding solu-

tions to di�erential equations by �tting its predictions to both given data and the

governing system of di�erential equations. By employing this methodology, Shaier

et al. [SRS21] were able to �nd the transition rate on synthetic data. Additionally,

Millevoi et al. [MPF23] were able to identify the reproduction number Rt for both

synthetic and Italian COVID-19 data using an approach based on a reduced version

of the SIR model.

The Robert Koch Institute has collected incident and death case data from the be-

ginning of the outbreak in Germany to the present. This data will be utilitzed in this

bachelor thesis to investigate the transition rates and reproduction number for each

German state and the country as a whole, employing the methodologies proposed

by Shaier et al. and Millevoi et al.. Additionally, the �ndings will be contextualized

2



1.1 Related work 2

and correlated with the events of the real world.

1.1 Related work 2

In Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent

Transmission Rates Using the SEIR Model [SdC17], Smirnova et al. endeavor to

identify a stochastic methodology for estimating the time-dependent transmission

rate β(t). This is in response to the limitations of earlier parametric estimation

methods, which are prone instability due to the di�culty in identifying parameter

�nding and a low amount of available data. They achieve this by projecting the

time-dependent transmission rate onto a �nite subspace, that is de�ned by Legen-

dre polynomials. Subsequently, they compare the three regularization techniques

of variational (Tikhonov's) regularization, truncated singular value decomposition

(TSVD), and modi�ed TSVD to ascertain the most reliable method for forecast-

ing with limited data. Their �ndings indicate that modi�ed TSVD provides the

most stable forecasts on limited data, as demonstrated on both simulated data and

real-world data from the 1918 in�uenza pandemic and the 2014-2015 Ebola epidemic.

In their publication, entitled Data-driven approaches for predicting spread of infec-

tious diseases through DINNs: Disease Informed Neural Networks, Shaier et al. [SRS21]

put forth a data-driven approach for identifying the parameters of epidemiological

models. The authors apply physics-informed neural networks to the compartmental

SIR models, and refer to their method as disease informed neural networks (DINN).

In their work, they demonstrate the capacity of DINNs to forecast the trajectory of

epidemics and pandemics. They underpin the e�cacy of their approach by apply-

ing it to 11 diseases, that have previously been modeled, including examples such

as COVID, HIV, Tuberculosis and Ebola. In their experiments they employ the

SIDR (susceptible, infectious, dead, recovered) model. Finally, they present that

this method is a robust and e�ective means of identifying the parameters of a SIR

model.

In their article A physics-informed neural network to model COVID-19 infection

and hospitalization scenarios, Berkhahn and Ehrhard [BE22] employ the suscepti-

ble, vaccinated, infectious, hospitalized and removed (SVIHR) model. They solve

the system of di�erential equations inherent to the SVIHR model by the means of

3



Chapter 1 Introduction 5

PINNs. The authors utilize a dataset of German COVID-19 data, covering the time

span from the inceptions of the outbreak to the end of 2021. The proposed PINN

methodology initially estimates the SVIHR model parameters and subsequently fore-

casts the data. For comparative purposes, Berkhahn and Ehrhard employ the method

of non-standard �nite di�erences (NSFD) as well. In the validation process, the two

forecasting methods project the trajectory of COVID-19 from mid-April onwards.

Berkhahn and Ehrhard �nd that the PINN is able to adapt to varying vaccination

rates and emerging variants.

In their work, Data-Driven Deep-Learning Algorithm for Asymptomatic COVID-

19 Model with Varying Mitigation Measures and Transmission Rate, Olumoyin et

al. [OKF21] employ an alternative methodology for identifying the time-dependent

transmission rate of an asymptomatic-SIR model. On the premise that not all the

infectious individuals are reported and included in the data available. The algo-

rithm they introduce, utilizes the cumulative and daily reported infection cases and

symptomatic recovered cases, to demonstrate the e�ect of di�erent mitigation mea-

sures and to ascertain the size of the part of non-symptomatic individuals in the

total number of infective individuals and the proportion of asymptomatic recovered

individuals. With this they can illustrate the in�uence of vaccination and a set non-

pharmaceutical mitigation methods on the transmission of COVID-19 on data from

Italy, South Korea, the United Kingdom, and the United States.

In A Physics-Informed Neural Network approach for compartmental epidemiolog-

ical models Millevoi et al. [MPF23] address the issue of describing the dynamically

changing transmission rate, which is in�uenced by the emergence of new variants or

the implementation of non-pharmaceutical measures. They employ a PINN to main-

tain an account of the changes of the transmission rate included in the reproduction

number and to approximate the model state variables. To this end, Millevoi et al.

employ the reproduction number to reduce the system of di�erential equations to a

single equation and introduce a reduced-split version of the PINN, which initially

trains on the data and then trains to minimize the residual of the ODE. They test

their approach on �ve synthetic and two real-world scenarios from the early stages of

the COVID-19 pandemic in Italy. This method yields an increase in both accuracy

and training speed.

4



1.2 Overview

1.2 Overview

This thesis is comprised of four chapters. Chapter 2 presents with the theoretical

overview of mathematical modeling in epidemiology, with a particular focus on the

SIR model. Subsequently, it shifts its focus to neural networks, speci�cally on the

background of physics-informed neural networks (PINN) and their use in solving

ordinary di�erential equations. In Chapter 3 outlines the methodology employed

in this thesis. First we present the data, that was collected by the Robert Koch

Institute (RKI). Then we present the PINN approaches, which are inspired by the

work of Shaier et al. and Millevoi et al. [SRS21, MPF23]. Chapter 4 presents the

setups and results of the experiments that we conduct. This chapter is divided into

two sections. The �rst section presents and discusses the results concerning the

transition rates of β and α. The subsequent section presents the results concerning

the reproduction value Rt. Finally, in Chapter 5, we connect our results with the

events of the real-world and give an overview of potential further work.

5





Chapter 2

Theoretical Background 12

This chapter introduces the theoretical foundations for the work presented in this

thesis. In Section 2.1 and Section 2.2, we describe di�erential equations and the

underlying theory. In these Sections both the explanations and the approach are

based on a book on analysis by Rudin [Rud07] and a book about ordinary di�er-

ential equations by Tenenbaum and Pollard [TP85]. Subsequently, we employ this

knowledge to examine various pandemic models in Section 2.3. Finally, we address

the topic of neural networks with a focus on the multilayer perceptron in Section 2.4

and physics informed neural networks in Section 2.5.

2.1 Mathematical Modelling using Functions 1

To model a physical problem mathematically, it is necessary to de�ne a set of funda-

mental numbers or quantities upon which the subsequent calculations will be based. meeting ques-

tion 1These sets may represent, for instance, a speci�c time interval or a distance. The

term domain describes these fundamental sets of numbers or quantities [Rud07]. A

variable is a changing entity living in a certain domain. In this thesis, we will focus

on domains of real numbers in R.

The mapping between variables enables the modeling of a physical process and may

depict semantics. We use functions in order to facilitate this mapping. Let A,B ⊂ R
be to subsets of the real numbers, then we de�ne a function as the mapping

f : A → B. (2.1)

In other words, the function f maps elements x ∈ A to values f(x) ∈ B. A is the

domain of f , while B is the codomain of f . Functions are capable of representing

the state of a system as a value based on an input value from their domain. One

7



Chapter 2 Theoretical Background 12

illustrative example is a function that maps a time step to the distance covered since

a starting point. In this case, time serves as the domain, while the distance is the

codomain.

2.2 Mathematical Modelling using Di�erential Equations

1

Often, the behavior of a variable or a quantity across a domain is more interesting

than its current state. Functions are able to give us the latter, but only passivelymeeting ques-

tion 2 give information about the change of a system. The objective is to determine an

e�ective method for calculating the change of a function across its domain. Let f be

a function and [a, b] ⊂ R an interval of real numbers. The expression

m =
f(b)− f(a)

a− b
(2.2)

gives the average rate of change. While the average rate of change is useful in many

cases, the momentary rate of change is more accurate. To calculate this, we need tolook up in

Rudin - cite

(wordly)

narrow down, the interval to an in�nitesimal. For each x ∈ [a, b] we calculate

df

dx
= lim

t→x

f(t)− f(x)

t− x
, (2.3)

if it exists. As the Tenenbaum and Pollard [TP85] de�ne, df/dx is the derivative,

which is �the rate of change of a variable with respect to another�. The relation

between a variable and its derivative is modeled in a di�erential equation. The

derivative of df/dx yields d2f/dx2, which is the function that calculates the rate of

change of the rate of change and is called the second order derivative. Iterating

this n times results in dnf/dxn, the derivative of the n'th order. A method for ob-

taining a di�erential equation is to derive it from the semantics of a problem. For

example, in physics a di�erential equation can be derived from the law of the conser-

vation of energy [Dem21]. Di�erential equations �nd application in several areas suchis this good?

as engineering e.g., the Chua's circuit [Mat84], physics with, e.g., the Schrödinger

equation [Sch26], economics, e.g., Black-Scholes equation [Oks00], epidemiology, and

beyond.

In the context of functions, it is possible to have multiple domains, meaning that

function has more than one parameter. To illustrate, consider a function operating

8



2.2 Mathematical Modelling using Di�erential Equations 1

in two-dimensional space, wherein each parameter represents one axis. Another ex-

ample would be a function, that maps its inputs of a location variable and a time

variable on a height. The term partial di�erential equations (PDE 's) describes dif-

ferential equations of such functions, which contain partial derivatives with respect

to each individual domain. In contrast, ordinary di�erential equations (ODE 's) are

the single derivatives for a function having only one domain [TP85]. In this thesis,

we restrict ourselves to ODE's.

A system of di�erential equations is the name for a set of di�erential equations.

The derivatives in a system of di�erential equations each have their own codomain,

which is part of the problem, while they all share the same domain.

Tenenbaum and Pollard [TP85] provide many examples for ODE's, including the

Motion of a Particle Along a Straight Line. Further, Newton's second law states that

�the rate of change of the momentum of a body (momentum = mass · velocity) is
proportional to the resultant external force F acted upon it� [TP85]. Let m be the

mass of the body in kilograms, v its velocity in meters per second and t the time in

seconds. Then, Newton's second law translates mathematically to

F = m
dv

dt
. (2.4)

It is evident that the acceleration, a = dv
dt , as the rate of change of the velocity is part

of the equation. Additionally, the velocity of a body is the derivative of the distance

traveled by that body. Based on these �ndings, we can rewrite the Equation (2.4) to

F = ma = m
d2s

dt2
. (2.5)

To conclude, note that this explanation of di�erential equations focuses on the

aspects deemed crucial for this thesis and is not intended to be a complete explanation

of the subject. To gain a better understanding of it, we recommend the books

mentioned above [Rud07, TP85]. In the following section we describe the application

of these principles in epidemiological models.

9



Chapter 2 Theoretical Background 12

2.3 Epidemiological Models 4

Pandemics, like COVID-19, which have resulted in a signi�cant number of fatali-

ties. Hence, the question arises: How should we analyze a pandemic e�ectively? ItBetter?

is essential to study whether the employed countermeasures are e�cacious in com-

bating the pandemic. Given the unfavorable public response to measures such as

lockdowns, it is imperative to investigate that their e�cacy remains commensurate

with the costs incurred to those a�ected. In the event that alternative and novel

technologies were in use, such as the mRNA vaccines in the context of COVID-19,

it is needful to test the e�ect and �nd the optimal variant. In order to shed light on

the aforementioned events, we need a method to quantify the pandemic along with

its course of progression.

The real world is a highly complex system, which presents a signi�cant challenge

attempting to describe it fully in a mathematical model. Therefore, the model must

reduce the complexity while retaining the essential information. Furthermore, it

must address the issue of limited data availability. For instance, during COVID-19

institutions such as the Robert Koch Institute (RKI)1 were only able to collect data

on infections and mortality cases. Consequently, we require a model that employs

an abstraction of the real world to illustrate the events and relations that are pivotal

to understanding the problem.

2.3.1 SIR Model 3

In 1927, Kermack and McKendrick [KM27] introduced the SIR Model, which sub-

sequently became one of the most in�uential epidemiological models. This model

enables the modeling of infections during epidemiological events such as pandemics.

The book Mathematical Models in Biology [EK05] reiterates the model and serves as

the foundation for the following explanation of SIR models.

The SIR model is capable of illustrating diseases, which are transferred through

contact or proximity of an individual carrying the illness and a healthy individual.

This is possible due to the distinction between infected individuals who are carriers

of the disease and the part of the population, which is susceptible to infection. In

the model, the mentioned groups are capable to change, e.g., healthy individuals

becoming infected. The model assumes the sizeN of the population remains constant

1https://www.rki.de/EN/Home/homepage_node.html
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2.3 Epidemiological Models 4

throughout the duration of the pandemic. The population N comprises three distinct

compartments: the susceptible group S, the infectious group I and the removed group

R (hence SIR model). Let T = [t0, tf ] ⊆ R≥0 be the time span of the pandemic,

then,

S : T → N, I : T → N, R : T → N, (2.6)

give the values of S, I and R at a certain point of time t ∈ T . For S, I, R and N

applies:

N = S + I +R. (2.7)

The model makes another assumption by stating that recovered people are immune

to the illness and infectious individuals can not infect them. The individuals in the R

group are either recovered or deceased, and thus unable to transmit or carry the dis-

ease. As visualized in the Figure 2.1 the individuals may transition between groups

Figure 2.1: A visualization of the SIR model, illustrating N being split in the three
groups S, I and R.

based on transition rates. The transmission rate β is responsible for individuals be-

coming infected, while the rate of removal or recovery rate α (also referred to as δ

or ν, e.g., [EK05, MPF23]) moves individuals from I to R.

We can describe this problem mathematically using a system of di�erential equa-

tions (see Section 2.2). Thus, Kermack and McKendrick [KM27] propose the fol-

lowing set of di�erential equations:

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI.

(2.8)

This set of di�erential equations, is based on the following assumption: �The rate

of transmission of a microparasitic disease is proportional to the rate of encounter

11



Chapter 2 Theoretical Background 12

of susceptible and infective individuals modelled by the product (βSI)�, according

to Edelstein-Keshet [EK05]. The system shows the change in size of the groups per

time unit due to infections, recoveries, and deaths.

The term βSI describes the rate of encounters of susceptible and infected individ-

uals. This term is dependent on the size of S and I, thus Anderson and May [And91]

propose a modi�ed model:

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI.

(2.9)

In Equation (2.9) βSI gets normalized by N , which is more correct in a real world

aspect [And91].

The initial phase of a pandemic is characterized by the infection of a small number

of individuals, while the majority of the population remains susceptible. The infec-

tious group has not yet infected any individuals thus neither recovery nor mortality

is possible. Let I0 ∈ N be the number of infected individuals at the beginning of the

disease. Then,

S(0) = N − I0,

I(0) = I0,

R(0) = 0,

(2.10)

describes the initial con�guration of a system in which a disease has just emerged.

In the SIR model the temporal occurrence and the height of the peak (or peaks) of

the infectious group are of paramount importance for understanding the dynamics of

a pandemic. A low peak occurring at a late point in time indicates that the disease

is unable to keep pace with the rate of recovery, resulting in its demise before it

can exert a signi�cant in�uence on the population. In contrast, an early and high

peak means that the disease is rapidly transmitted through the population, with a

signi�cant proportion of individuals having been infected. Figure 2.1 illustrates this

e�ect by varying the values of β or α while simulating a pandemic using a model such

12
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(c) α = 0.45, β = 0.5
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(d) α = 0.35, β = 0.4
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(e) α = 0.35, β = 0.6

Figure 2.2: Synthetic data, using Equation (2.9) and N = 7.9 · 106, I0 = 10 with
di�erent sets of parameters. We visualize the case with the reference
parameters in (a). In (b) and (c) we keep α constant, while varying the
value of β. In contrast, (d) and (e) have varying values of α.

as Equation (2.9). It is evident that both the transmission rate β and the recovery

rate α in�uence the height and time of the peak of I. When the number of infections

exceeds the number of recoveries, the peak of I will occur early and will be high.

On the other hand, if recoveries occur at a faster rate than new infections the peak

will occur later and will be low. Thus, it is crucial to know both β and α, as these

parameters characterize how the pandemic evolves.

The SIR model makes a number of assumptions that are intended to reduce the

model's overall complexity while simultaneously increasing its divergence from actual

reality. One such assumption is that the size of the population, N , remains constant,

as the daily change is negligible to the total population. This depiction is not an

accurate representation of the actual relations observed in the real world, as the size other assump-

tions in a bad

light?

of a population is subject to a number of factors that can contribute to change. The

population is increased by the occurrence of births and decreased by the occurrence

13



Chapter 2 Theoretical Background 12

of deaths. Other examples are the impossibility for individuals to be susceptible

again, after having recovered, or the possibility for the transition rates to change

due to new variants or the implementation of new countermeasures. We address this

latter option in the next Section 2.3.2.

2.3.2 Reduced SIR Model and the Reproduction Number 1

The Section 2.3.1 presents the classical SIR model. This model contains two scalar

parameters β and α, which describe the course of a pandemic over its duration. This

is bene�cial when examining the overall pandemic; however, in the real world, disease

behavior is dynamic, and the values of the parameters β and α change throughout the

course of the disease. The reason for this is due to events such as the implementation

of countermeasures that reduce the contact between the infectious and susceptible

individuals, the emergence of a new variant of the disease that increases its infec-

tivity or deadliness, or the administration of a vaccination that provides previously

susceptible individuals with immunity without ever being infected. To address thissai correction

-> is this point

not already in-

cluded?

Millevoi et al. [MPF23] introduce a model that simultaneously reduces the size of

are there older

sources

the system of di�erential equations and solves the problem of time scaling at hand.

First, they alter the de�nition of β and α to be dependent on the time interval

T = [t0, tf ] ⊆ R≥0,

β : T → R≥0, α : T → R≥0. (2.11)

Another crucial element is D(t) = 1
α(t) , which represents the initial time span an

infected individual requires to recuperate. Subsequently, at the initial time point t0,

the reproduction number,

R0 = β(t0)D(t0) =
β(t0)

α(t0)
, (2.12)

represents the number of susceptible individuals, that one infectious individual infects

at the onset of the pandemic. In light of the e�ects of β and α (see Section 2.3.1),

R0 < 1 indicates that the pandemic is emerging. In this scenario α is relatively low

due to the limited number of infections resulting from I(t0) << S(t0).

Further, R0 > 1 leads to the disease spreading rapidly across the population, with

an increase in I occurring at a high rate. Nevertheless, R0 does not cover the entire

time span. For this reason, Millevoi et al. [MPF23] introduce Rt which has the
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2.3 Epidemiological Models 4

same interpretation as R0, with the exception that Rt is dependent on time. The

time-dependent reproduction number is de�ned as,

Rt =
β(t)

α(t)
· S(t)

N
, (2.13)

on the time interval T . This de�nition includes the transition rates for information

about the spread of the disease and information of the decrease of the ratio of sus-

ceptible individuals in the population. In contrast to β and α, Rt is not a parameter

but a state variable in the model and enabling the following reduction of the SIR Sai comment -

earlier?model.

Equation (2.7) allows for the calculation of the value of the group R using S and

I, with the term R(t) = N − S(t)− I(t). Thus,

dS

dt
= α(Rt − 1)I(t),

dI

dt
= −αRtI(t),

(2.14)

is the reduction of Equation (2.8) on the time interval T using this characteristic

and the reproduction number Rt (see Equation (2.13)). Another issue that Millevoi

et al. [MPF23] seek to address is the extensive range of values that the SIR groups

can assume. Accordingly, they initially scale the time interval T using its borders to

calculate the scaled time ts =
t−t0
tf−t0

∈ [0, 1]. Subsequently, they calculate the scaled

groups,

Ss(ts) =
S(t)

C
, Is(ts) =

I(t)

C
, Rs(ts) =

R(t)

C
, (2.15)

using a large constant scaling factor C ∈ N. Applying this to the variable I, results

in,
dIs
dts

= α(tf − t0)(Rt − 1)Is(ts), (2.16)

which is a further reduced version of Equation (2.8). This less complex di�erential

equation results in a less complex solution, as it entails the elimination of a parameter

(β) and the two state variables (S and R). The reduced SIR model, is more precise

in applications with a worse data situation, due to its fewer input variables.
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2.4 Multilayer Perceptron 2

In Section 2.2, we demonstrate the signi�cance of di�erential equations in systems,

illustrating how they can be utilized to elucidate the impact of a speci�c parameter

on the system's behavior. In Section 2.3, we show speci�c applications of di�erential

equations in an epidemiological context. The �nal objective is to solve these equa-

tions by �nding a function that �ts. Fitting measured data points to approximate

such a function, is one of the multiple methods to achieve this goal. The Multi-

layer Perceptron (MLP) [RHW86] is a data-driven function approximator. In the

following section, we provide a brief overview of the structure and training of these

neural networks. For reference, we use the book Deep Learning by Goodfellow et

al. [GBC16] as a foundation for our explanations.

The objective is to develop an approximation method for any function f∗, which

could be a mathematical function or a mapping of an input vector to the desired

output. Let x be the input vector and y the label, class, or result. Then, y = f∗(x),

is the function to approximate. In the year 1958, Rosenblatt [Ros58] proposed the

perceptron modeling the concept of a neuron in a neuroscienti�c sense. The per-

ceptron takes in the input vector x performs an operation and produces a scalar

result. This model optimizes its parameters θ to be able to calculate y = f(x; θ) as

accurately as possible. As Minsky and Papert [MP72] demonstrate, the perceptron

is only capable of approximating a speci�c class of functions. Consequently, there is

a necessity for an expansion of the perceptron.

As Goodfellow et al. [GBC16] proceed, the solution to this issue is to decompose

f into a chain structure of the form,

f(x) = f (3)(f (2)(f (1)(x))). (2.17)

This nested version of a perceptron is a multilayer perceptron. Each sub-function,

designated as f (i), is represented in the structure of an MLP as a layer, which con-

tains a linear mapping and a nonlinear mapping in form of an activation function.

A multitude of Units (also neurons) compose each layer. A neuron performs the

same vector-to-scalar calculation as the perceptron does. Subsequently, a nonlinear

activation function transforms the scalar output into the activation of the unit. The

layers are staggered in the neural network, with each layer being connected to its

neighbors, as illustrated in Figure 2.3. The input vector x is provided to each unit of
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2.4 Multilayer Perceptron 2

the �rst layer f (1), which then gives the results to the units of the second layer f (2),

and so forth. The �nal layer is the output layer. The intervening layers, situated

between the �rst and the output layers are the hidden layers. The term forward

propagation describes the process of information �owing through the network from

the input layer to the output layer, resulting in a scalar loss. The alternating struc-

ture of linear and nonlinear calculation enables MLP's to approximate any function.

As Hornik et al. [HSW89] proves, MLP's are universal approximators.

Figure 2.3: A illustration of an MLP with two hidden layers. Each neuron of a layer is
connected to every neuron of the neighboring layers. The arrow indicates
the direction of the forward propagation.

The term training describes the process of optimizing the parameters θ. In order

to undertake training, it is necessary to have a set of training data, which is a set

of pairs (also called training points) of the input data x and its corresponding true

solution y of the function f∗. For the training process we must de�ne a loss function

L(ŷ,y), using the model prediction ŷ and the true value y, which will act as a metric

for evaluating the extent to which the model deviates from the correct answer. One

common loss function is the mean square error (MSE) loss function. Let N be the

number of points in the set of training data. Then,

LMSE(ŷ,y) =
1

N

N∑
i=1

||ŷ(i) − y(i)||2, (2.18)

calculates the squared di�erence between each model prediction and true value of a

training and takes the mean across the whole training data.
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Ultimately, the objective is to utilize this information to optimize the parameters,

in order to minimize the loss. One of the most fundamental optimization strategy

is gradient descent. In this process, the derivatives are employed to identify the

location of local or global minima within a function, which lie where the gradient is

zero. Given that a positive gradient signi�es ascent and a negative gradient indicates

descent, we must move the variable by a learning rate (step size) in the opposite

direction to that of the gradient. The calculation of the derivatives in respect to the

parameters is a complex task, since our functions is a composition of many functions

(one for each layer). We can address this issue taking advantage of Equation (2.17)

and employing the chain rule of calculus. Let ŷ = f(x; θ) be the model prediction

with the decomposed version f(x; θ) = f (3)(w; θ3) with w = f (2)(z; θ2) and z =

f (1)(x; θ1). x is the input vector and θ3, θ2, θ1 ⊂ θ. Then,

∇θ3L(ŷ,y) =
dL
dŷ

dŷ

df (3)
∇θ3f

(3), (2.19)

is the gradient of L(ŷ,y) in respect of the parameters θ3. To obtain ∇θ2L(ŷ,y), we
have to derive ∇θ3L(ŷ,y) in respect to θ2. The name of this method in the context of

neural networks is back propagation [RHW86], as it propagates the error backwards

through the neural network.

In practical applications, an optimizer often accomplishes the optimization task by

executing back propagation in the background. Furthermore, modifying the learning

rate during training can be advantageous. For instance, making larger steps at theleave whole

paragraph out?

- Niklas

beginning and minor adjustments at the end. Therefore, schedulers are implemen-

tations algorithms that employ diverse learning rate alteration strategies.

For a more in-depth discussion of practical considerations and additional details

like regularization, we direct the reader to the book Deep Learning by Goodfellow et

al. [GBC16]. The next section will demonstrate the application of neural networks

in approximating solutions to di�erential systems.

2.5 Physics Informed Neural Networks 4

In Section 2.4, we describe the structure and training of MLP's, which are wildely

recognized tools for approximating any kind of function. In this section, we apply this

capability to create a solver for ODE's and PDE's as Legaris et al. [LLF97] describe
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2.5 Physics Informed Neural Networks 4

in their paper. In this approach, the model learns to approximate a function using

provided data points while leveraging the available knowledge about the problem in

the form of a system of di�erential equations. The physics-informed neural network

(PINN) learns the system of di�erential equations during training, as it optimizes

its output to align with the equations.

In contrast to standard MLP's, PINNs are not only data-driven. The loss term of

a PINN comprises two components. The �rst term incorporates the equations of the

aforementioned prior knowledge to pertinent the problem. As Raissi et al. [RPK17]

propose, the residual of each di�erential equation in the system must be minimized

in order for the model to optimize its output in accordance with the theory. We

obtain the residual ri, with i ∈ {1, ..., Nd}, by rearranging the di�erential equation

and calculating the di�erence between the left-hand side and the right-hand side of

the equation. Nd is the number of di�erential equations in a system. As Raissi et

al. [RPK17] propose the physics loss of a PINN,

Lphysics(x, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2, (2.20)

takes the input data and the model prediction to calculate the mean square error of

the residuals. The second term, the observation loss Lobs(ŷ,y), employs the mean

square error of the distances between the predicted and the true values for each

training point. Additionally, the observation loss may incorporate extra terms of

inital and boundary conditions. Let Nt denote the number of training points. Then,

LPINN (x,y, ŷ) =
1

Nd

Nd∑
i=1

||ri(x, ŷ)||2 +
1

Nt

Nt∑
i=1

||ŷ(i) − y(i)||2, (2.21)

represents the comprehensive loss function of a physics-informed neural network.

Given the nature of residuals, calculating the loss term of Lphysics(x, ŷ) requires

the calculation of the derivative of the output with respect to the input of the neural

network. As we outline in Section 2.4, during the process of back-propagation we

calculate the gradients of the loss term in respect to a layer-speci�c set of parameters

denoted by θl, where l represents the index of the respective layer. By employing the

chain rule of calculus, the algorithm progresses from the output layer through each
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hidden layer, ultimately reaching the �rst layer in order to compute the respective

gradients. The term,

∇xŷ =
dŷ

df (2)

df (2)

df (1)
∇xf

(1), (2.22)

illustrates that, in contrast to the procedure described in eq. (2.19), this procedure

the automatic di�erenciation goes one step further and calculates the gradient of

the output with respect to the input x. In order to calculate the second derivative
dŷ
dx = ∇x(∇xŷ), this procedure must be repeated.

Above we present a method for approximating functions through the use of systems

of di�erential equations. As previously stated, we want to �nd a solver for systems of

di�erential equations. In problems, where we must solve an ODE or PDE, we have

to �nd a set of parameters, that satis�es the system for any input x. In terms of the

context of PINN's this is the inverse problem, where we have a set of training data

from measurements, for example, is available along with the respective di�erential

equations but information about the parameters of the equations is lacking. To ad-

dress this challenge, we set these parameters as distinct learnable parameters within

the neural network. This enables the network to utilize a speci�c value, that actively

in�uences the physics loss Lphysics(x, ŷ). During the training phase the optimizer

aims to minimize the physics loss, which should ultimately yield an approximation

of the true value.

-1

1

Figure 2.4: Illustration of of the movement of an oscillating body in the underdamped
case. With m = 1kg, µ = 4Ns

m and k = 200N
m .

One illustrative example of a potential application for PINN's is the damped har-

monic oscillator [Dem21]. In this problem, we displace a body, which is attached to

a spring, from its resting position. The body is subject to three forces: �rstly, the

20



2.5 Physics Informed Neural Networks 4

inertia exerted by the displacement u, which points in the direction the displacement

u; secondly the restoring force of the spring, which attempts to return the body to

its original position and thirdly, the friction force, which points in the opposite di-

rection of the movement. In accordance with Newton's second law and the combined

in�uence of these forces, the body exhibits oscillatory motion around its position of

rest. The system is in�uenced by m the mass of the body, µ the coe�cient of friction

and k the spring constant, indicating the sti�ness of the spring. The residual of the

di�erential equation,

m
d2u

dx2
+ µ

du

dx
+ ku = 0, (2.23)

shows relation of these parameters in reference to the problem at hand. As Tenen-

baum and Morris provide, there are three potential solutions to this issue. However

only the underdamped case results in an oscillating movement of the body, as illus-

trated in Figure 2.4. In order to apply a PINN to this problem, we require a set of

training data x. This consists of pairs of time points and corresponding displacement

measurements (t(i), u(i)), where i ∈ {1, ..., Nt}. In this hypothetical case, we know

the mass m = 1kg, and the spring constant k = 200N
m and the initial displacement

u(1) = 1 and du(0)
dt = 0. However, we do not know the value of the friction µ. In this

case the loss function,

Losc(x,u, û) = (u(1) − 1) +
du(0)

dt
+ ||md2u

dx2
+ µ

du

dx
+ ku||2 + 1

Nt

Nt∑
i=1

||û(i) − u(i)||2,

(2.24)

includes the border conditions, the residual, in which µ is a learnable parameter and

the observation loss.

2.5.1 Disease Informed Neural Networks 1

In this section, we describe the capability of MLP's to solve systems of di�erential

equations. In Section 2.3.1, we describe the SIR model, which models the relations of

susceptible, infectious and removed individuals and simulates the progress of a dis-

ease in a population with a constant size. A system of di�erential equations models

these relations. Shaier et al. [SRS21] propose a method to solve the equations of the

SIR model using a PINN, which they call a disease-informed neural network (DINN).

To solve Equation (2.8) we need to �nd the transmission rate β and the recovery

rate α. As Shaier et al. [SRS21] point out, there are di�erent approaches to solve this
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set of equations. For instance, building on the assumption, that at the beginning

one infected individual infects −n other people, concluding in dS(0)
dt = −n. Then,

β = −
dS
dt

S0I0
(2.25)

would calculate the initial transmission rate using the initial size of the susceptible

group S0 and the infectious group I0. The recovery rate, then could be de�ned using

the amount of days a person between the point of infection and the start of isolation

d, α = 1
d . The analytical solutions to the SIR models often use heuristic methods

and require knowledge like the sizes S0 and I0. A data-driven approach such as the

one that Shaier et al. [SRS21] propose does not have these problems. Since the model

learns the parameters β and α while learning the training data consisting of the time

points t, and the corresponding measured sizes of the groups S, I,R. Let Ŝ, Î, R̂ be

the model predictions of the groups and rS = dŜ
dt + βŜÎ, rI = dÎ

dt − βŜÎ + αÎ and

rR = dR̂
dt −αÎ the residuals of each di�erential equation using the model predictions.

Then,

LSIR() = ||rS ||2 + ||rI ||2 + ||rR||2 +
1

Nt

Nt∑
i=1

||Ŝ(i) − S(i)||2+

||Î(i) − I(i)||2+

||R̂(i) −R(i)||2,

(2.26)

is the loss function of a DINN, with α and beta being learnable parameters.
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Chapter 3

Methods 8

This chapter provides the methods, that we employ to address the problem that we

present in Chapter 1. Section 3.1 outlines our approaches for preprocessing of the

available data and has two sections. The �rst section describes the publicly avail-

able data provided by the Robert Koch Institute (RKI)1. The second section outlines

the techniques we use to process this data to �t our project's requirements. Subse-

quently, we give a theoretical overview of the PINN's that we employ. These latter

sections, establish the foundation for the implementations described in Section 4.1.1

and Section 4.2.1.

3.1 Epidemiological Data 3

In order for the PINNs to be e�ective with the data available to us, it is necessary

for the data to be in the format required by the epidemiological models, which the

PINNs will solve. Let Nt be the number of training points, then let i ∈ {1, ..., Nt} be
the index of the training points. The data required by the PINN for solving the SIR

model (see Section 2.5.1), consists of pairs (t(i), (S(i), I(i),R(i))). Given that the sys-

tem of di�erential equations representing the reduced SIR model (see Section 2.3.2)

consists of a single di�erential equation for I, it is necessary to obtain pairs of the

form (t(i), I(i)). This section, focuses on the structure of the available data and the

methods we employ to transform it into the correct structure.

3.1.1 RKI Data 2

The Robert Koch Institute is responsible for the on monitoring and prevention

of diseases. As the central institution of the German government in the �eld of

biomedicine, one of its tasks during the COVID-19 pandemic was it to track the

1https://www.rki.de/EN/Home/homepage_node.html
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number of infections and death cases in Germany. The data was collected by uni-

versity hospitals, research facilities and laboratories through the conduction of tests.

Each new case must be reported within a period of 24 hours at the latest to the

respective state authority. Each state authority collects the cases for a day and must

report them to the RKI by the following working day. The RKI then re�nes the

data and releases statistics and updates its repositories holding the information for

the public to access. For the purposes of this thesis we concentrate on two of these

repositories.

The �rst repository is called COVID-19-Todesfälle in Deutschland2. The dataset

comprises discrete data points, each with a date indicating the point in time at

which the respective data was collected. The dates span from March 9, 2020, to

the present day. For each date, the dataset provides the total number of infection

and death cases, the number of new deaths, and the case-fatality ratio. The total

number of infection and death cases represents the sum of all cases reported up to

that date, including the newly reported data. The dataset includes two additional

datasets, that contain the death case information organized by age group or by the

individual states within Germany on a weekly basis.

2020-03-09 2021-01-14 2021-11-22 2022-09-29 2023-08-07
Date of reported data

100

101

102

103

104

105

106

107

Death case dataset (RKI)

Total number of death cases

Total number of infection cases

Figure 3.1: A visualization of the total death case and infection case data for each
day from the data set COVID-19-Todesfälle in Deutschland. Status of
the 20'th of August 2024.

2https://github.com/robert-koch-institut/COVID-19-Todesfaelle_in_Deutschland.git
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3.1 Epidemiological Data 3

The second repository is entitled SARS-CoV-2 Infektionen in Deutschland3. This

dataset contains comprehensive data regarding the infections of each county on a

daily basis. The counties are encoded using the Community Identi�cation Number4,

wherein the �rst two digits denote the state, the third digit represents the govern-

ment district, and the last two digits indicate the county. Each data point displays

the gender, the age group, number death, infection and recovery cases and the refer-

ence and report date. The reference date marks the onset of illness in the individual.

In the absence of this information, the reference date is equivalent to the report date.

The RKI assumes that the duration of the illness under normal conditions is 14

days, while the duration of severe cases is assumed to be 28 days. The recovery cases

in the dataset are calculated using these assumptions, by adding the duration on the

reference date if it is given. As stated in the ReadMe, the recovery data should be

used with caution. Since we require the recovery data for further calculations, the

following section presents the solutions we employed to address this issue.

3.1.2 Data Preprocessing 1

At the outset of this section, we establish the format of the data, that is necessary

for training the PINNs. In this subsection, we present the method, that we employ

to preprocess and transform the RKI data (see Section 3.1.1) into the training data.

In order to obtain the SIR data we require the size of each SIR compartment for

each time point. The infection case data for the German states is available on a

daily basis. To obtain the daily cases for the entire country we need to di�erentiate

the total number of cases. The size of the population is de�ned as the respective

size at the beginning of 2020. Using the starting conditions of Equation (2.10), we

iterate through each day, modifying the sizes of the groups in a consecutive manner.

For each iteration we subtract the new infection cases from S(i−1) to obtain S(i), for

I(i), we add the new cases and subtract deaths and recoveries, and the size of R(i)

is obtained by adding the new deaths and recoveries as they occur.

As previously stated in Section 3.1.1 the data on recoveries may either be unre-

liable or is entirely absent. To address this, we propose a method for computing

3https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
4https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/

_inhalt.html
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the number of recovered individuals per day. Under the assumption that recovery

takes D days, we present the recovery queue, a data structure that holds the number

of infections for a given day, retains them for D days, and releases them into the

removed group D days later.

Figure 3.2: The recovery queue takes in the infected individuals for the k'th day and
releases them D days later into the removed group.

In order to solve the reduced SIR model, we employ a similar algorithm to that

used for the SIR model. However, in contrast to the recovery queue, we utilize

the set recovery rate α to transfer a portion αI(i) of infections, which have recovered

on the i and put them into theR(i) compartment, which is irrelevant to our purposes.

The transformed data for both the SIR model and the reduced SIR model are then

employed by the PINN models, which we describe in the subsequent section.

3.2 Estimating Epidemiological Parameters using PINNs

3

In the preceding section, we present the methods we employ to preprocess and for-

mat the data from the RKI in accordance with the speci�cations required for the

work of this thesis. In this section, we will present the method we employ to identify

the non-time-dependent SIR parameters β and α for the data. As a foundation for

our work, we draw upon the work of Shaier et al. [SRS21], to solve the SIR system

of ODEs using PINNs.

In order to conduct an analysis of a pandemic, it is necessary to have a quan-

ti�able measure that indicates whether the disease in question has the capacity to

spread rapidly through a population or is it not successful in infecting a signi�cant
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number of individuals. We employ the SIR model to construct an abstraction of

the complex relations inherent to real-world pandemics. The SIR model divides the

population into three compartments. It is accompanied by a with system of ODEs

that encapsulates the �uctuations and relationships between these compartments

(see Equation (2.8)). The transmission rate β and the recovery rate α work as the

aforementioned quanti�ers. We obtain data from the preprocessing stage. It provides

insight into the progression of the COVID-19 pandemic in Germany. The objective

is to identify a function that solves the system of di�erential equations of the SIR

model, by returning the size of each compartment at a speci�c point in time. This

function is supposed to be able to reconstruct the training data and is de�ned by

the values of the transition rates β and α. From a mathematical and semantic per-

spective, it is essential to determine these values of the parameter.

In order to ascertain the transmission rate β and the recovery rate α from the

preprocessed RKI data of (S, I,R) for a given set of time points, it is necessary to

employ a data-driven approach that outputs a model prediction of (Ŝ, Î, R̂) for a

set of time points, with the aim of minimizing the term,∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2, (3.1)

for each data point in the set of training dataset of a cardinality Ntt and with

i ∈ {1, ..., Nt}. Moreover, the aforementioned parameters must satisfy the sys-

tem of di�erential equations that govern the SIR model. For this reason, Shaier et

al. [SRS21] utilize a PINN framework to satisfy both requirements. Their approach,

which they refer to as the disease-informed neural network (see Section 2.5.1), takes

epidemiological data as the input and returns the two transition rates α and β. This

method achieves this by �nding an approximate solution of to the inverse problem

of physics-informed neural networks (see Section 2.5). In terms of the terms of the

SIR model, a PINN addresses the inverse problemin two ways. First, it minimizes

the mean of Equation (3.1) by bringing the model predictions (S, I,R) closer to the

actual values (Ŝ, Î, R̂) for each time point. Second, it reduces the residuals of the

ODEs that constitute the SIR model. While the forward problem concludes at this

point, the inverse problem presets that a parameter is unknown. Thus, we designate

the parameters β and α as free, learnable parameters, β̂ and α̂. These separate

trainable parameters are values that are optimized during the training process and

must �t the equations of the set of ODEs. Furthermore, we know, that the transition
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rates do not surpass the value of 1. Consequently, we force the value of both rates

to be in a range of [−1, 1]. Therefor, we regularize the parameters using the tangens

hyperbolicus. This results in the terms,

β̂ = tanh(β̃), α̂ = tanh(α̃), (3.2)

where β̃ and α̃ are the predicted values of the model and β̂ and α̂ are regularized

model predictions.

The input data must include the time point t(i) and its corresponding measured

true values of (S(i), I(i),R(i)). In its forward path, the PINN receives the time point

t(i) as its input, from which it calculates its model prediction (Ŝ
(i)
, Î

(i)
, R̂

(i)
) based

on its model parameters θ. Subsequently, the model computes the loss function. It

calculates the observation loss by taking the mean squared error of Equation (3.1)

over all Nt training samples. Therefore, the term for the observation loss is,

Lobs(S, I,R, Ŝ, Î, R̂) =
1

Nt

Nt∑
i=1

∥∥∥Ŝ(i)−S(i)
∥∥∥2+∥∥∥Î(i)−I(i)

∥∥∥2+∥∥∥R̂(i)−R(i)
∥∥∥2, (3.3)

is the term for the observation loss. Given superior performance in practical applica-

tions relative to the ODEs of Equation (2.8), we utilize the ODEs of Equation (2.9)

in our physics loss. In order for the model to learn the system of di�erential, it is

necessary to obtain the residual of each ODE. The mean square error of the residuals

constitutes the physics loss Lphysiks(t,S, I,R, Ŝ, Î, R̂). The residuals are calculated

using the model predictions (Ŝ, Î, R̂) and the regularized model predictions of the

parameters β̂ and α̂. The residuals are given by,

0 =
dŜ

dt
+ β̂

ŜÎ

N
, 0 =

dÎ

dt
− β̂

ŜÎ

N
+ α̂Î, 0 =

dR̂

dt
+ α̂Î. (3.4)

Thus,

LSIR(t,S, I,R, Ŝ, Î, R̂) =

∥∥∥∥dŜdt + β̂
ŜÎ

N

∥∥∥∥2 + ∥∥∥∥dÎdt − β̂
ŜÎ

N
+ α̂Î

∥∥∥∥2 + ∥∥∥∥dR̂dt + α̂Î

∥∥∥∥2
+

1

Nt

Nt∑
i=1

∥∥∥Ŝ(i) − S(i)
∥∥∥2 + ∥∥∥Î(i) − I(i)

∥∥∥2 + ∥∥∥R̂(i) −R(i)
∥∥∥2,
(3.5)
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is the equation of the total loss for our approach. This loss value is then back-

propagated through our network, while the model predictions of the parameters β

and α are optimized using the loss as well.

As this section concentrates on the �nding of the time constant parameters β and

α, the next section will show our approach of �nding the reproduction number Rt

on the German data of the RKI.

3.3 Estimating the Reproduction Number using PINNs 2

The previous section illustrates the methodology we employ to detemine the constant

transmission and recovery rates from a data set obtained from the COVID-19 pan-

demic in Germany. In this section, we utilize PINNs to identify the time-dependent

reproduction number, Rt, while reducing the number of state variables and the re-

liance on assumptions, by reducing the system of ODEs comprising the SIR model.

The methodology presented in this section is based on the approach developed by

Millevoi et al. [MPF23].

In real-world pandemics, the rate of infection is in�uenced by a multitude of factors.

Events such as the growing awareness for the disease among the general population,

the introduction of non-pharmaceutical mitigations such as social distancing poli-

cies, and the emergence of a new variants have an impact on the transmission rate

β. Accordingly, a transmission rate that is not time-dependent and constant across

the entire duration of the pandemic may not accurately re�ect the dynamics of the

spread of a real-world disease correctly. Although we set the transmission rate to be

time-dependent, the recovery time is assumed to be relatively constant over time.

The Robert Koch Institute5 posits that the typical recovery period for the illness

under normal conditions is 14 days, while those individuals with severe cases require

approximately 28 days to recover. In the light of the negligible number of severe

cases in comparison to the number of normal cases, we can set the recovery time to

D = 14, which yields α = 1/14. The reproduction number, Rt (see Section 2.3.2),

represents the number of new infections that occur as a result of one infectious in-

dividual. It indicates whether a pandemic is emerging or if it is spreading rapidly

through the susceptible population. By inserting the de�nition of Equation (2.13),

into the system of ODEs of the SIR model, we can derive one Equation (2.16). In

5https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git
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order to solve this, we must identify a function that maps a time point to the size of

the infectious compartment and the speci�c reproduction number.

As with the constant transition rates, we employ a data-driven approach for iden-

tifying the time-dependent reproduction number Rt. The PINN approximates the

size I with its model prediction Î by minimizing the term,∥∥∥Î(i) − I(i)
∥∥∥2, (3.6)

for each i ∈ {1, ..., Nt}. In order to identify the reproduction number, the PINN min-

imizes the residuals of the ODE during the training process. The training process is

analogous to that of the PINN, which identi�es β and α (see Section 3.2). However,

there are two key di�erences. Firstly, the absence of trainable parameters. Secondly,

the inclusion of an additional state variable that �uctuates in response to the input.

While the state variable I is approximated using the error between the training data

and the predicted values, the state variable Rt is approximated exclusively based on

the residual of the ODE.

The PINN receives the input of t(i) and generates a prediction of (Î
(i)
, R(i)

t ). As

previously stated, the PINN minimizes the distance between the true values of I and

the model predictions Î by minimizing the mean squared error. Consequently, the

observation loss function is de�ned by,

LrSIR(I, Î) =
1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.7)

The physics loss function is de�ned as the squared error of the residual of the ODE.

The residual of the reduced SIR model is given by,

0 =
dIs
dts

− α(tf − t0)(Rt − 1)Is(ts). (3.8)

By combining the observation loss with the physics loss, we arrive at the total loss

for the PINN that solves the reduced SIR model, which is given by,

LrSIR(t, I, Î) =

∥∥∥∥dIsdts
− α(tf − t0)(Rt − 1)Is(ts)

∥∥∥∥2 + 1

Nt

Nt∑
i=1

∥∥∥Î(i) − I(i)
∥∥∥2. (3.9)
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The process of determining the reproduction number, along with the other tech-

niques, that this chapter presents �nd application in the following chapter.
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Chapter 4

Experiments 10

In the preceding chapters, we explained the methods (see Chapter 3) based the

theoretical background, that we established in Chapter 2. In this chapter present the

setups and results from the experiments and simulations, we ran. First, we discuss

the experiments dedicated to identify the epidemiological parameters of β and α

in synthetic and real-world data. Second, we examine the reproduction number in

synthetic and real-world data of Germany. Each section, is divided into a description

of the experimental setup and the results.

4.1 Identifying the Transition Rates on Real-World and

Synthetic Data 5

In this section, we aim to identify the transmission rate β and the recovery rate α

from either synthetic or preprocessed real-world data. The methodology that we

employ to identify the transition rates is described in Section 3.2. Meanwhile, the

methods we utilize to preprocess the real-world data are detailed in Section 3.1.2.

4.1.1 Setup 1

In this subsection, we present the con�gurations for the training of our PINNs, which

are designed to identify the transition parameters. This encompasses the speci�c pa-

rameters for the preprocessing and the con�guration of the PINN themselves.

In order to validate our method, we �rst generate a dataset of synthetic data. We

achieve this by solving Equation (2.9) for a given set of parameters. The parameters

are set to α = 1/3 and β = 1/2. The size of the population is N = 7.6e6 and the

initial amount of infectious individuals of is I0 = 10. We conduct the simulation over

150 days, resulting in a dataset of the form of Section 4.1.1.
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In order to process the real-world RKI data, it is necessary to preprocess the raw

data for each state and Germany separately. This is achieved by utilizing a recovery

queue with a recovery period of 14 days. With regard to population size of each state,

we set it to the respective value counted at the end of 20196. The initial number

of infectious individuals is set to the number of infected people on March 09. 2020

from the dataset. The data we extract spans from March 09. 2020 to June 22. 2023,

encompassing a period of 1200 days and representing the time span during which

the COVID-19 disease was the most active and severe.
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Figure 4.1: Synthetic and real-world training data. The synthetic data is generated
with α = 1/3 and β = 1/2 and Equation (2.9). The Germany data is
taken from the death case data set. Exemplatory we show illustrations
of the datasets of Schleswig Holstein, Berlin, and Thuringia. For the
other states see Chapter 6

The PINN that we utilize comprises of seven hidden layers with twenty neurons

each, and an activation function of ReLU. We employ the Adam optimizer and the

polynomial scheduler of the PyTorch library, for training, with a base learning rate

of 1e−3. We train the model for 10000 epochs to extract the parameters. For each

6https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/

demographie/#overview
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Figure 4.2: Visualization of all 5 predictions for the synthetic dataset, compared to
the true values of α = 1/3 and β = 1/2

set of parameters, we conduct �ve iterations to demonstrate stability of the values.

The con�guration is similar to the con�guration, that Shaier et al. [SRS21] use for

their work aside from the learning rate and the scheduler choice.

The following section presents the results of the simulations conducted with the

setups that we describe in this section.

4.1.2 Results 4

In this section, we present the results, that we obtain from the conducted experi-

ments, that we describe in the preceding section. We begin by examining the results

for the synthetic dataset, focusing the accuracy and reproducibility. We then pro-

ceed to present and discuss the results for the German states and Germany.

The results of the experiment regarding the synthetic data can be seen in Table 4.1

and in Figure 4.2. Figure 4.2 depicts the values of β and α for each iteration in com-

parison to the true values of β = 1/2 and α = 1/3. In Table 4.1 we present the mean

µ and standard deviation σ of both values across all �ve iterations.

The results demonstrate that the model is capable of approximating the correct

parameters for the small, synthetic dataset in each of the �ve iterations. While the

predicted value is not precisely accurate, the standard deviation is su�ciently small,

and taking the mean of multiple iterations produces an almost perfect result.
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α β

true µ σ true µ σ

0.3333 0.3334 0.0011 0.5000 0.5000 0.0017

Table 4.1: The mean µ and standard deviation σ across the 5 independent iterations
of training our PINNs with the synthetic dataset.

In Table 4.2 we present the results of the training for the real-world data. The re-

sults are presented from top to bottom, in the order of the community identi�cation

number, with the last entry being Germany. Both the mean µ and the standard de-

viation σ are calculated across all �ve iterations of our experiment. We can observe

that the values of Hamburg have the highest standard deviation, while Mecklenburg

Vorpommern has the lowest σ.

α β

state name µ σ µ σ esynth

Schleswig Holstein 0.0771 0.0010 0.0966 0.0013 0.0849
Hamburg 0.0847 0.0035 0.1077 0.0037 0.0948
Lower Saxony 0.0735 0.0014 0.0962 0.0018 0.0774
Bremen 0.0588 0.0018 0.0795 0.0025 0.0933
North Rhine-Westphalia 0.0780 0.0009 0.1001 0.0011 0.0777
Hesse 0.0653 0.0016 0.0854 0.0020 0.1017
Rhineland-Palatinate 0.0808 0.0016 0.1036 0.0018 0.0895
Baden-Württemberg 0.0862 0.0014 0.1132 0.0016 0.0796

Bavaria 0.0809 0.0021 0.1106 0.0027 0.0952
Saarland 0.0746 0.0021 0.0996 0.0024 0.1080
Berlin 0.0901 0.0008 0.1125 0.0008 0.0667
Brandenburg 0.0861 0.0008 0.1091 0.0010 0.0724
Mecklenburg-Vorpommern 0.0910 0.0007 0.1167 0.0008 0.0540
Saxony 0.0797 0.0017 0.1073 0.0022 0.1109
Saxony-Anhalt 0.0932 0.0019 0.1207 0.0027 0.0785
Thuringia 0.0952 0.0011 0.1248 0.0016 0.0837

Germany 0.0803 0.0012 0.1044 0.0014 0.0804

Table 4.2: Mean and standard deviation across the 5 iterations, that we conducted
for each German state and Germany as the whole country.
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Figure 4.3: Visualization of the mean µ and standard deviation σ of the transition
rates α and β for each state compared to the mean values of α and β for
Germany.

In Figure 4.3, we present a visual representation of the means and standard de-

viations in comparison to the national values. It is noteworthy that the states of

Saxony-Anhalt and Thuringia have the highest transmission rates of all states, while

Bremen and Hessen have the lowest values for β. The transmission rates of Hamburg,

Baden Württemberg, Bavaria, and all eastern states lay above the national rate of

transmission. Similarly, the recovery rate yields comparable outcomes. For the re-

covery rate, the same states that exhibit a transmission rate exceeding the national

value, have a higher recovery rate than the national standard, with the exception of

Saxony.It is noteworthy that the recovery rates of all states exhibit a tendency to

align with the recovery rate of α = 1/14, which is equivalent to a recovery period of

14 days.

It is evident that there is a correlation between the values of α and β for each

state. States with a high transmission rate tend to have a high recovery rate, and

vice versa. The correlation between α and β can be explained by the implicate de�-

nition of α using a recovery queue with a constant recovery period of 14 days. This

might result to the PINN not learning α as a standalone parameter but rather as

a function of the transmission rate β. This phenomenon occurs because the trans-

mission rate determines the number of individuals that get infected per day, and the

recovery queue moves a proportional number of people to the removed compartment.
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Consequently, a number of people de�ned by β move to the R compartment 14 days

after they were infected.

This issue can be addressed by reducing the SIR model, thereby eliminating the

signi�cance of the R compartment size. In the following section, we present our

experiments for the reduced SIR model with time-independent parameters.

4.2 Reduced SIR Model 5

In this section we describe the experiments we conduct to identify the time-dependent

reproduction number for both synthetic and real-world data. Similar to the previous

section, we �rst describe the setup of our experiments and afterwards present the

results. The methods we employ for the preprocessing are described in Section 3.1.2

and for the PINN, that we use, are described in Section 3.3.

4.2.1 Setup 1

This section outlines the selection of parameters and con�guration for data genera-

tion, preprocessing, and the neural networks. We employ these setups to train the

PINNs to identify the reproduction number on both synthetic and real-world data.

For the purposes of validation, we create a synthetic dataset, by setting the pa-

rameter of α and the reproduction value each to a speci�c values, and solving Equa-

tion (2.16) for a given time interval. We set α = 1/3 and Rt to the values as can be

seen in Figure 4.4 as well as the population size N = 7.6e6 and the initial amount

of infected people to I0 = 10. Furthermore, we set our simulated time span to 150

days. We use this dataset to demonstrate, that our method is working on a simple

and minimal dataset.

To obtain a dataset of the infectious group, consisting of the real-world data, we

processed the data of the dataset COVID-19-Todesfälle in Deutschland to extract

the number of infections in Germany as a whole. For the German states, we use

the data of SARS-CoV-2 Infektionen in Deutschland. In the preprocessing stage, we

employ a constant rate for α to move individuals into the removed compartment.

For each state we generate two datasets with a di�erent recovery rate. First, we

choose α = 1/14, which aligns with the time of recovery7. Second, we use α = 1/5,

7https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git

38

https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git


4.2 Reduced SIR Model 5

0 30 60 90 120 150
time / days

0

20000

40000

60000

80000

100000

120000

am
ou

nt
of

p
eo

p
le

synthetic I data

Infectious

0 30 60 90 120 150
time / days

1.0

1.2

1.4

1.6

synthetic I data Rt

Rt

0 240 480 720 960 1200
time / days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

am
ou

nt
of

p
eo

p
le

×106 Gernany

α = 1
14

α = 1
5

Figure 4.4: The upper two graphics show the curve of the size of the infectious group
(left) and the corresponding true reproduction value Rt (right) for the
synthetic data. The lower graphic exemplary illustrates the di�erent
curves for Germany.

as 5 days into the infection is the point at which the infectiousness is at its peak8.

As in Section 4.1, we set the population size N of each state and Germany to the

corresponding size at the end of 2019. Furthermore, for the same reason we restrict

the data points to an interval of 1200 days, beginning on March 09. 2020.

In order to achieve the desired output, the selected neural network architecture

comprises of four hidden layers, each containing 100 neurons. The activation func-

tion is the tangens hyperbolicus function. For the real-world data, we weight the

data loss by a factor of 1e6, to the total loss. The model is trained using a base

learning rate of 1e−3, with the same scheduler and optimizer as we describe in Sec-

tion 4.1.1. We train the model for 20000 epochs. To reduce the standard deviation,

each experiment is conducted 15 times.

8https://www.infektionsschutz.de/coronavirus/fragen-und-antworten/

ansteckung-uebertragung-und-krankheitsverlauf/
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4.2.2 Results 4

In this section we provide the results for our experiments considering the reduced

SIR model and the reproduction number Rt. First, we present our �ndings for the

synthetic dataset. Then, we provide and discuss the results for the real-world data.

Section 4.2.2 illustrates the results of our experiments conducted on the syn-

thetic dataset, which can be seen in Figure 4.4. It is evident that the model is

capable of learning the infection data across all data points. The error for this is,

esynth = 0.0016, which is of a negligible magnitude.

0 30 60 90 120 150
time / days

0

20000

40000

60000

80000

100000

120000

am
ou

nt
of

p
eo

p
le

Synthetic data I prediction

prediction I

true I

0 30 60 90 120 150
time / days

1.0

1.2

1.4

1.6

1.8

Synthetic data Rt

Rt

true Rt

Figure 4.5: Results for the reproduction rate Rt on synthetic data. The left graphic
show the prediction of the model regarding the I group. The right graphic
presents the predicted Rt against the true value, with the standard de-
viation.

An examination of the predictions for the representation value Rt reveals that

here as well, the model is capable of accurately delineating the value at each time

point. However, during the �rst 30 days, the standard deviation is exhibits an up-

ward trend, while during the �nal 120 days, the predictions demonstrate remarkable

precision. The overall prediction of Rt has an error of eRt = 0.0521.

In Section 4.2.2, we present the graphs of Rt for the state with the highest value of

β, namely Thuringia, and for the state with the lowest transmission rate β, namely

Bremen. Further visualizations of the results can be found in Chapter 6. In all

datasets, the graphs with α = 1/5 are of a smaller size than those with α = 1/14. This

is due to the fact that the individuals are being moved to the removed compartment

at a faster rate. Resulting, it can be observed that the value of Rt is constantly

remaining closer to the threshold of Rt = 1, while the reproduction number for
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Figure 4.6: Visualization of the prediction of the training and the graphs of Rt for
Thuringia (left) and Bremen (right) with both α = 1/14 and α = 1/5.
Events like the peak of an in�uential variant are marked horizontally.

datasets with α = 1/14 reaches values of up to 1.6. In states with higher values of

β, the period during which the value of Rt is above the threshold of one 1 is longer,

but the peak is lower. In states with a lower transmission rate, the period above 1

is shorter, but the peak value is higher.

Table 4.3 presents data regarding the discrepancy between the predicted and ac-

tual values from the dataset for compartment I. It is evident, that the error for all

experiments falls within a range of values that is not negligible and will have an in�u-

ence on the resulting reproduction values that are learned while �tting the data. A

comparison of the results for the various values of α reveals that the errors associated

with α = 1/14 are consistently smaller, with the exception of Saxony and Germany.

This can be attributed to the di�ering sizes of infection counts, particularly in rela-

tion to the normalization factor C. The model is unable to learn e�ectively if the

values of the data loss Ldata are too large or too small at the beginning.

As illustrated in Section 4.2.2, the training data is overlaid with the corresponding

prediction of the model. We can observe that the prediction, though an exact recon-
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struction, accurately captures the general trajectory of the pandemic. The model's

prediction demonstrates an ability to capture larger peaks, exhibiting a tendency

to ignore smaller changes. This suggests that the prediction of the model is capa-

ble show the rough outline of the progression of COVID-19. In the beginning, the

majority of predictions below Rt = 1, indicating an outbreak. As we observed in

the synthetic data, the model exhibits a higher standard deviation at the bound-

aries. In the graphs, we mark the peaks of the most severe COVID-19 variants in

Germany. While the peaks of the Alpha and Delta variants are clearly visible in

the data, the model does not learn these, and thus they are not re�ected in the

results. The peak of the Omicron variant represents the culmination of the COVID-

19 pandemic in Germany and can be identi�ed as the most prominent peak in the

dataset. Immediately preceding this peak, we observe the highest value of the repro-

duction number across all states. This phenomenon can be explained, by number of

individuals infected by one infectious person reaching its peak. In some states the

peaks of other Omicron variants after the maximum peak are visible (see Thuringia).

The experiments demonstrate, that our model encounteres di�culties in learning

the data for the states and Germany and consequently in predicting the reproduction

values for each dataset. Nonetheless, the predictions illustrate the general trends of

the most impactful events of the COVID-19 pandemic.
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eI

state name α = 1/14 α = 1/5

Schleswig Holstein 0.2005 0.2514
Hamburg 0.3045 0.3357
Lower Saxony 0.2140 0.3082
Bremen 0.2370 0.3838
North Rhine-Westphalia 0.1718 0.2460
Hesse 0.2736 0.3172
Rhineland-Palatinate 0.2442 0.2674
Baden-Württemberg 0.1984 0.2958

Bavaria 0.1928 0.2825
Saarland 0.2554 0.4676
Berlin 0.1885 0.2948
Brandenburg 0.2023 0.2571
Mecklenburg-Vorpommern 0.1518 0.3272
Saxony 0.3382 0.2807
Saxony-Anhalt 0.1959 0.2564
Thuringia 0.1401 0.2221

Germany 0.3371 0.2533

Table 4.3: This table displays all average values of the error esynth for all German
states and Germany. The average is formed across all 10 iteration.
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The states with the highest transmission rate values are Thuringia, Saxony Anhalt

and Mecklenburg West-Pomerania. It is also, visible that all six of the eastern states

have a higher transmission rate than Germany. These results may be explainable

with the ratio of vaccinated individuals9. The eastern state have a comparably low

complete vaccination ratio, accept for Berlin. While Berlin has a moderate vaccina-

tion ratio, it is also a hub of mobility, which means that contact between individuals

happens much more often. This is also a reason for Hamburg being a state with an

above national standard rate of transmission. Bremen has the highest ratio of vac-

cinated individuals, this might be a reason for the it having the lowest transmission

of all states.

5.1 Further Work

Our �ndings demonstrate that with our methods enable the quanti�cation of the

course of the COVID-19 pandemic in Germany using the data provided by the Robert

Koch Institute. Additionally, we present the limitations of our work. The SIR model

is subject to numerous limitations. For instance, it does not account for individuals,

who may be immune due to the vaccination status or those who are not infectious due

to quarantine. In this section, we explore epidemiological models that illustrate these

dynamics observed in real-world pandemics and recommend further investigation for

Germany. First, we examine extensions of the SIR models, then we focus on agent-

based models (ABMs).

9https://impfdashboard.de/
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5.1.1 Further Compartmental Models

As our results demonstrate, the SIR model is capable of approximating the dynamics

of real-world pandemics. However, the model is not without limitations. As previ-

ously stated, the SIR model assumes that recovered individuals remain immune and

does not account for the reduction of exposure of susceptible individuals through

the introduction of non-pharmaceutical mitigation policies, such as social distancing

policies. These shortcomings can be addressed by incorporating additional com-

partments and transmission rates into the model. For example, the SEIRD model

incorporates an Exposed group and subdivides the Removed group into Dead and

Recovered compartments. Furthermore, this adds four additional rates to the model:

the contact rate, representing the average number of contacts between infectious

and susceptible people with a high probability of infection; the manifestation index,

indicating the proportion of individuals exposed to the disease who will become infec-

tious; the incubation rate, measuring the time required for exposed individuals to be-

come infectious; and the infection fatality rate, quantifying the fraction of individuals

who succumb to the disease. As Doerre and Doblhammer [DD22] show for Germany

using a numerical approximation method, for an SIERD model that they special-

ize to be age- and gender-speci�c, that it shows the impact of non-pharmaceutical

mitigation policies. In their work, Cooke and van den Driessche [CD96] propose the

SEIRS model with two delays. This is model is capable of approximating diseases,

that have an immune period, after which the recovered individual becomes suscepti-

ble again. These are just a few examples of the numerous modi�cations of the basic

SIR model that can be used to approximate and consequently quantify an pandemic.

5.1.2 Agent based models

While compartmental models, such as the SIR model, look at the population as

a divided group, with each group representing a speci�c characterization that all

inhabitants of that group share, an Agent-Based Model (ABM) sets its focus on

the individual. Each individual, or agent, has speci�c attributes that determine its

behavior and interactions with other agents during the simulation. As Gilbert [Gil10]

states, ABMs simulate the behavior of large groups, with each individual following

simple rules. Kerr et al. [KSM+21] put forth a simulation tool, Covasim, which

they base on an ABM. The ABM employs local data, including demographic data,

disease incidence data from the region, and contact data for household, schools and

workplaces, to de�ne its simulation for a speci�c region. In their work, Maziarz and
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Zach [MZ20] address the criticism levied against ABMs for simplifying the dynamics

and lacking the empirical support for the assumptions it they make. The authors

utilize an ABM and the data speci�c to Australia to demonstrate the e�cacy of

ABMs in portraying the dynamics of the COVID-19 pandemic. They further state

that ABMs can serve as serve as a tool for assessing the impact of non-pharmaceutical

mitigation policies. This illustrates that ABMs play a distinct role in analyzing

the COVID-19 pandemic. As the data situation has evolved, it is imperative to

investigate the potential of utilizing ABMs as a tool to assess the pandemic's course.
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Figure 6.1: Part 1 of the results
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Figure 6.2: Part 2 of the results
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Figure 6.3: Part 3 of the results
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Figure 6.4: Part 4 of the results
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