123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Author: Phillip Rothenbeck
- % Title: Investigating the Evolution of the COVID-19 Pandemic in Germany Using Physics-Informed Neural Networks
- % File: chap04/chap04.tex
- % Part: Experiments
- % Description:
- % summary of the content in this chapter
- % Version: 01.01.2012
- % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \chapter{Experiments 10}
- \label{chap:evaluation}
- In the previous chapters we explained the methods (see~\Cref{chap:methods})
- based the theoretical background, that we established in~\Cref{chap:background}.
- In this chapter, we present the setups and results from the experiments and
- simulations, we ran. First, we tackle the experiments dedicated to find the
- epidemiological parameters of $\beta$ and $\alpha$ in synthetic and real-world
- data. Second, we identify the reproduction number in synthetic and real-world
- data of Germany. Each section, is divided in the setup and the results of the
- experiments.
- % -------------------------------------------------------------------
- \section{Identifying the Transition Rates on Real-World and Synthetic Data 5}
- \label{sec:sir}
- In this section we seek to find the transmission rate $\beta$ and the recovery
- rate $\alpha$ from either synthetic or preprocessed real-world data. The
- methodology that we employ to identify the transition rates is described
- in~\Cref{sec:pinn:sir}. Meanwhile, the methods we use to preprocess the
- real-world data is to be found in~\Cref{sec:preprocessing:rq}.
- % -------------------------------------------------------------------
- \subsection{Setup 1}
- \label{sec:sir:setup}
- In this section we show the setups for the training of our PINNs, that are
- supposed to find the transition parameters. This includes the specific
- parameters for the preprocessing and the configuration of the PINN their
- selves.\\
- In order to validate our method we first generate a dataset of synthetic data.
- We conduct this by solving~\Cref{eq:modSIR} for a given set of parameters.
- The parameters are set to $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2}$.
- The size of the population is $N = \expnumber{7.6}{6}$ and the initial amount of
- infectious individuals of is $I_0 = 10$. We simulate over 150 days and get a
- dataset of the form of~\Cref{fig:synthetic_SIR}.\\For the real-world RKI data we
- preprocess the row data data of each state and Germany separately using a
- recovery queue with a recovery period of 14 days. As for the population size of
- each state we set it to the respective value counted at the end of 2019\footnote{\url{https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/\#overview}}.
- The initial number of infectious individuals is set to the number of infected
- people on March 09. 2020 from the dataset. The data we extract spans from
- March 09. 2020 to June 22. 2023, which is a span of 1200 days and covers the time
- in which the COVID-19 disease was the most active and severe.
- \begin{figure}[h]
- %\centering
- \setlength{\unitlength}{1cm} % Set the unit length for coordinates
- \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
- \put(1.5, 4.5){
- \begin{subfigure}{0.3\textwidth}
- \centering
- \includegraphics[width=\textwidth]{SIR_synth.pdf}
- \label{fig:synthetic_SIR}
- \end{subfigure}
- }
- \put(8, 4.5){
- \begin{subfigure}{0.3\textwidth}
- \centering
- \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
- \label{fig:germany_sir}
- \end{subfigure}
- }
- \put(0, 0){
- \begin{subfigure}{0.3\textwidth}
- \centering
- \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
- \label{fig:schleswig_holstein_sir}
- \end{subfigure}
- }
- \put(4.75, 0){
- \begin{subfigure}{0.3\textwidth}
- \centering
- \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
- \label{fig:berlin_sir}
- \end{subfigure}
- }
- \put(9.5, 0){
- \begin{subfigure}{0.3\textwidth}
- \centering
- \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
- \label{fig:thüringen_sir}
- \end{subfigure}
- }
- \end{picture}
- \caption{Synthetic and real-world training data. The synthetic data is
- generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
- and~\Cref{eq:modSIR}. The Germany data is taken from the death case
- data set. Exemplatory we show illustrations of the datasets of Schleswig
- Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
- \label{fig:datasets}
- \end{figure}
- The PINN that we employ consists of seven hidden layers with twenty neurons
- each and an activation function of ReLU. For training, we use the Adam optimizer
- and the polynomial scheduler of the pytorch library with a base learning rate
- of $\expnumber{1}{-3}$. We train the model for 10000 epochs to extract the
- parameters. For each set of parameters we do 5 iterations to show stability of
- the values. Our configuration is similar to the configuration, that Shaier
- \etal.~\cite{Shaier2021} use for their work aside from the learning rate and the
- scheduler choice.\\
- In the next section we present the results of the simulations conducted with the
- setups that we describe in this section.
- % -------------------------------------------------------------------
- \subsection{Results 4}
- \label{sec:sir:results}
- \begin{center}
- \begin{tabular}{c|cc|cc}
- & $\alpha$ & $\sigma(\alpha)$ & $\beta$ & $\sigma(\beta)$ \\
- \hline
- Schleswig Holstein & 0.0771 & 0.0010 & 0.0966 & 0.0013 \\
- Hamburg & 0.0847 & 0.0035 & 0.1077 & 0.0037 \\
- Niedersachsen & 0.0735 & 0.0014 & 0.0962 & 0.0018 \\
- Bremen & 0.0588 & 0.0018 & 0.0795 & 0.0025 \\
- Nordrhein-Westfalen & 0.0780 & 0.0009 & 0.1001 & 0.0011 \\
- Hessen & 0.0653 & 0.0016 & 0.0854 & 0.0020 \\
- Rheinland-Pfalz & 0.0808 & 0.0016 & 0.1036 & 0.0018 \\
- Baden-Württemberg & 0.0862 & 0.0014 & 0.1132 & 0.0016 \\
- Bayern & 0.0809 & 0.0021 & 0.1106 & 0.0027 \\
- Saarland & 0.0746 & 0.0021 & 0.0996 & 0.0024 \\
- Berlin & 0.0901 & 0.0008 & 0.1125 & 0.0008 \\
- Brandenburg & 0.0861 & 0.0008 & 0.1091 & 0.0010 \\
- Mecklenburg Vorpommern & 0.0910 & 0.0007 & 0.1167 & 0.0008 \\
- Sachsen & 0.0797 & 0.0017 & 0.1073 & 0.0022 \\
- Sachsen-Anhalt & 0.0932 & 0.0019 & 0.1207 & 0.0027 \\
- Thüringen & 0.0952 & 0.0011 & 0.1248 & 0.0016 \\
- Germany & 0.0803 & 0.0012 & 0.1044 & 0.0014 \\
- \end{tabular}
- \end{center}
- \begin{figure}[h]
- \centering
- \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
- \label{fig:alpha_beta_mean_std}
- \end{figure}
- % -------------------------------------------------------------------
- \section{Reduced SIR Model 5}
- \label{sec:rsir}
- In this section we describe the experiments we conduct to identify the
- time-dependent reproduction number for both synthetic and real-world data.
- Similar to the previous section, we first describe the setup of our experiments
- and afterwards present the results. The methods we employ for the preprocessing
- are described in~\Cref{sec:preprocessing:rq} and for the PINN, that we use,
- are described in~\Cref{sec:pinn:rsir}.
- % -------------------------------------------------------------------
- \subsection{Setup 1}
- \label{sec:rsir:setup}
- In this section we describe the choice of parameters and configuration for data
- generation, preprocessing and the neural networks. We use these setups to train
- the PINNs to find the reproduction number on both synthetic and real-world data.
- % -------------------------------------------------------------------
- \subsection{Results 4}
- \label{sec:rsir:results}
- % -------------------------------------------------------------------
|