chap04.tex 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2. % Author: Phillip Rothenbeck
  3. % Title: Investigating the Evolution of the COVID-19 Pandemic in Germany Using Physics-Informed Neural Networks
  4. % File: chap04/chap04.tex
  5. % Part: Experiments
  6. % Description:
  7. % summary of the content in this chapter
  8. % Version: 01.01.2012
  9. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10. \chapter{Experiments 10}
  11. \label{chap:evaluation}
  12. In the previous chapters we explained the methods (see~\Cref{chap:methods})
  13. based the theoretical background, that we established in~\Cref{chap:background}.
  14. In this chapter, we present the setups and results from the experiments and
  15. simulations, we ran. First, we tackle the experiments dedicated to find the
  16. epidemiological parameters of $\beta$ and $\alpha$ in synthetic and real-world
  17. data. Second, we identify the reproduction number in synthetic and real-world
  18. data of Germany. Each section, is divided in the setup and the results of the
  19. experiments.
  20. % -------------------------------------------------------------------
  21. \section{Identifying the Transition Rates on Real-World and Synthetic Data 5}
  22. \label{sec:sir}
  23. In this section we seek to find the transmission rate $\beta$ and the recovery
  24. rate $\alpha$ from either synthetic or preprocessed real-world data. The
  25. methodology that we employ to identify the transition rates is described
  26. in~\Cref{sec:pinn:sir}. Meanwhile, the methods we use to preprocess the
  27. real-world data is to be found in~\Cref{sec:preprocessing:rq}.
  28. % -------------------------------------------------------------------
  29. \subsection{Setup 1}
  30. \label{sec:sir:setup}
  31. In this section we show the setups for the training of our PINNs, that are
  32. supposed to find the transition parameters. This includes the specific
  33. parameters for the preprocessing and the configuration of the PINN their
  34. selves.\\
  35. In order to validate our method we first generate a dataset of synthetic data.
  36. We conduct this by solving~\Cref{eq:modSIR} for a given set of parameters.
  37. The parameters are set to $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2}$.
  38. The size of the population is $N = \expnumber{7.6}{6}$ and the initial amount of
  39. infectious individuals of is $I_0 = 10$. We simulate over 150 days and get a
  40. dataset of the form of~\Cref{fig:synthetic_SIR}.\\For the real-world RKI data we
  41. preprocess the row data data of each state and Germany separately using a
  42. recovery queue with a recovery period of 14 days. As for the population size of
  43. each state we set it to the respective value counted at the end of 2019\footnote{\url{https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/\#overview}}.
  44. The initial number of infectious individuals is set to the number of infected
  45. people on March 09. 2020 from the dataset. The data we extract spans from
  46. March 09. 2020 to June 22. 2023, which is a span of 1200 days and covers the time
  47. in which the COVID-19 disease was the most active and severe.
  48. \begin{figure}[h]
  49. %\centering
  50. \setlength{\unitlength}{1cm} % Set the unit length for coordinates
  51. \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
  52. \put(1.5, 4.5){
  53. \begin{subfigure}{0.3\textwidth}
  54. \centering
  55. \includegraphics[width=\textwidth]{SIR_synth.pdf}
  56. \label{fig:synthetic_SIR}
  57. \end{subfigure}
  58. }
  59. \put(8, 4.5){
  60. \begin{subfigure}{0.3\textwidth}
  61. \centering
  62. \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
  63. \label{fig:germany_sir}
  64. \end{subfigure}
  65. }
  66. \put(0, 0){
  67. \begin{subfigure}{0.3\textwidth}
  68. \centering
  69. \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
  70. \label{fig:schleswig_holstein_sir}
  71. \end{subfigure}
  72. }
  73. \put(4.75, 0){
  74. \begin{subfigure}{0.3\textwidth}
  75. \centering
  76. \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
  77. \label{fig:berlin_sir}
  78. \end{subfigure}
  79. }
  80. \put(9.5, 0){
  81. \begin{subfigure}{0.3\textwidth}
  82. \centering
  83. \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
  84. \label{fig:thüringen_sir}
  85. \end{subfigure}
  86. }
  87. \end{picture}
  88. \caption{Synthetic and real-world training data. The synthetic data is
  89. generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
  90. and~\Cref{eq:modSIR}. The Germany data is taken from the death case
  91. data set. Exemplatory we show illustrations of the datasets of Schleswig
  92. Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
  93. \label{fig:datasets}
  94. \end{figure}
  95. The PINN that we employ consists of seven hidden layers with twenty neurons
  96. each and an activation function of ReLU. For training, we use the Adam optimizer
  97. and the polynomial scheduler of the pytorch library with a base learning rate
  98. of $\expnumber{1}{-3}$. We train the model for 10000 epochs to extract the
  99. parameters. For each set of parameters we do 5 iterations to show stability of
  100. the values. Our configuration is similar to the configuration, that Shaier
  101. \etal.~\cite{Shaier2021} use for their work aside from the learning rate and the
  102. scheduler choice.\\
  103. In the next section we present the results of the simulations conducted with the
  104. setups that we describe in this section.
  105. % -------------------------------------------------------------------
  106. \subsection{Results 4}
  107. \label{sec:sir:results}
  108. \begin{center}
  109. \begin{tabular}{c|cc|cc}
  110. & $\alpha$ & $\sigma(\alpha)$ & $\beta$ & $\sigma(\beta)$ \\
  111. \hline
  112. Schleswig Holstein & 0.0771 & 0.0010 & 0.0966 & 0.0013 \\
  113. Hamburg & 0.0847 & 0.0035 & 0.1077 & 0.0037 \\
  114. Niedersachsen & 0.0735 & 0.0014 & 0.0962 & 0.0018 \\
  115. Bremen & 0.0588 & 0.0018 & 0.0795 & 0.0025 \\
  116. Nordrhein-Westfalen & 0.0780 & 0.0009 & 0.1001 & 0.0011 \\
  117. Hessen & 0.0653 & 0.0016 & 0.0854 & 0.0020 \\
  118. Rheinland-Pfalz & 0.0808 & 0.0016 & 0.1036 & 0.0018 \\
  119. Baden-Württemberg & 0.0862 & 0.0014 & 0.1132 & 0.0016 \\
  120. Bayern & 0.0809 & 0.0021 & 0.1106 & 0.0027 \\
  121. Saarland & 0.0746 & 0.0021 & 0.0996 & 0.0024 \\
  122. Berlin & 0.0901 & 0.0008 & 0.1125 & 0.0008 \\
  123. Brandenburg & 0.0861 & 0.0008 & 0.1091 & 0.0010 \\
  124. Mecklenburg Vorpommern & 0.0910 & 0.0007 & 0.1167 & 0.0008 \\
  125. Sachsen & 0.0797 & 0.0017 & 0.1073 & 0.0022 \\
  126. Sachsen-Anhalt & 0.0932 & 0.0019 & 0.1207 & 0.0027 \\
  127. Thüringen & 0.0952 & 0.0011 & 0.1248 & 0.0016 \\
  128. Germany & 0.0803 & 0.0012 & 0.1044 & 0.0014 \\
  129. \end{tabular}
  130. \end{center}
  131. \begin{figure}[h]
  132. \centering
  133. \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
  134. \label{fig:alpha_beta_mean_std}
  135. \end{figure}
  136. % -------------------------------------------------------------------
  137. \section{Reduced SIR Model 5}
  138. \label{sec:rsir}
  139. In this section we describe the experiments we conduct to identify the
  140. time-dependent reproduction number for both synthetic and real-world data.
  141. Similar to the previous section, we first describe the setup of our experiments
  142. and afterwards present the results. The methods we employ for the preprocessing
  143. are described in~\Cref{sec:preprocessing:rq} and for the PINN, that we use,
  144. are described in~\Cref{sec:pinn:rsir}.
  145. % -------------------------------------------------------------------
  146. \subsection{Setup 1}
  147. \label{sec:rsir:setup}
  148. In this section we describe the choice of parameters and configuration for data
  149. generation, preprocessing and the neural networks. We use these setups to train
  150. the PINNs to find the reproduction number on both synthetic and real-world data.
  151. % -------------------------------------------------------------------
  152. \subsection{Results 4}
  153. \label{sec:rsir:results}
  154. % -------------------------------------------------------------------