| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- @inbook{Eichner2003,
- author = {Eichner, Martin and Kretzschmar, Mirjam},
- pages = {81--93},
- publisher = {Springer Berlin Heidelberg},
- title = {Mathematische Modelle in der Infektionsepidemiologie},
- year = {2003},
- isbn = {9783642556128},
- booktitle = {Infektionsepidemiologie},
- doi = {10.1007/978-3-642-55612-8_8}
- }
- @article{1927,
- author = {William Ogilvy Kermack and A. G. McKendrick},
- journal = {Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character},
- title = {A contribution to the mathematical theory of epidemics},
- year = {1927},
- issn = {2053-9150},
- month = aug,
- number = {772},
- pages = {700--721},
- volume = {115},
- doi = {10.1098/rspa.1927.0118},
- publisher = {The Royal Society}
- }
- @article{Foerster2024,
- author = {Foerster, Dietrich and Bhatkar, Sayali and Bhanot, Gyan},
- title = {Parametrization of Worldwide Covid-19 data for multiple variants: How is the SAR-Cov2 virus evolving?},
- year = {2024},
- month = apr,
- doi = {10.1101/2024.04.09.24305557},
- publisher = {Cold Spring Harbor Laboratory}
- }
- @misc{Shaier2021,
- author = {Shaier, Sagi and Raissi, Maziar and Seshaiyer, Padmanabhan},
- title = {Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease Informed Neural Networks},
- year = {2021},
- copyright = {Creative Commons Attribution 4.0 International},
- doi = {10.48550/ARXIV.2110.05445},
- keywords = {Machine Learning (cs.LG), Quantitative Methods (q-bio.QM), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences},
- publisher = {arXiv}
- }
- @article{Jayatilaka2022,
- author = {Jayatilaka, R. and Patel, R. and Brar, M. and Tang, Y. and Jisrawi, N.M. and Chishtie, F. and Drozd, J. and Valluri, S.R.},
- journal = {Materials Today: Proceedings},
- title = {A mathematical model of COVID-19 transmission},
- year = {2022},
- issn = {2214-7853},
- pages = {101--112},
- volume = {54},
- doi = {10.1016/j.matpr.2021.11.480},
- publisher = {Elsevier BV}
- }
- @book{Zill1997,
- author = {Dennis G. Zill},
- editor = {Gary Ostedt},
- publisher = {Brooks/Cole Publishing Company, a division of Internaltional Thomson Publishing Inc.},
- title = {A First Course In Differential Equations With Modelling Applications},
- year = {1997},
- edition = {6}
- }
- @book{Rudin2007,
- author = {Walter Rudin},
- publisher = {Oldenbourg Wissenschaftsverlag GmbH},
- title = {Analysis},
- year = {2007}
- }
- @book{Tenenbaum1985,
- author = {Morris Tenenbaum and Harry Pollard},
- publisher = {Harper and Row, Publishers, Inc.},
- title = {Ordinary Differential Equations},
- year = {1985}
- }
- @Book{EdelsteinKeshet2005,
- author = {Leah Edelstein-Keshet},
- publisher = {Society for Industrial and Applied Mathematics},
- title = {Mathematical Models in Biology},
- year = {2005},
- }
- @Book{Anderson1991,
- author = {Anderson, Roy Malcolm; May, Robert M.},
- publisher = {Oxford University Press},
- title = {Infectious diseases of humans : dynamics and control},
- year = {1991},
- }
- @Article{Millevoi2023,
- author = {Millevoi, Caterina and Pasetto, Damiano and Ferronato, Massimiliano},
- title = {A Physics-Informed Neural Network approach for compartmental epidemiological models},
- year = {2023},
- copyright = {Creative Commons Attribution Non Commercial No Derivatives 4.0 International},
- doi = {10.48550/ARXIV.2311.09944},
- keywords = {Numerical Analysis (math.NA), FOS: Mathematics, FOS: Mathematics},
- }
- @Book{Goodfellow-et-al-2016,
- author = {Ian Goodfellow and Yoshua Bengio and Aaron Courville},
- publisher = {MIT Press},
- title = {Deep Learning},
- year = {2016},
- note = {\url{http://www.deeplearningbook.org}},
- }
- @Article{Lagaris1997,
- author = {Lagaris, I. E. and Likas, A. and Fotiadis, D. I.},
- title = {Artificial Neural Networks for Solving Ordinary and Partial Differential Equations},
- year = {1997},
- copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004},
- doi = {10.48550/ARXIV.PHYSICS/9705023},
- keywords = {Computational Physics (physics.comp-ph), Cellular Automata and Lattice Gases (nlin.CG), Quantum Physics (quant-ph), FOS: Physical sciences, FOS: Physical sciences},
- }
- @Article{Hornik1989,
- author = {Hornik, Kurt and Stinchcombe, Maxwell and White, Halbert},
- journal = {Neural Networks},
- title = {Multilayer feedforward networks are universal approximators},
- year = {1989},
- issn = {0893-6080},
- month = jan,
- number = {5},
- pages = {359--366},
- volume = {2},
- doi = {10.1016/0893-6080(89)90020-8},
- publisher = {Elsevier BV},
- }
- @Comment{jabref-meta: databaseType:bibtex;}
|