123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- \begin{thebibliography}{HSW89}
- % this bibliography is generated by alphadin.bst [8.2] from 2005-12-21
- \providecommand{\url}[1]{\texttt{#1}}
- \expandafter\ifx\csname urlstyle\endcsname\relax
- \providecommand{\doi}[1]{doi: #1}\else
- \providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
- \bibitem[And91]{Anderson1991}
- \textsc{Anderson}, Robert~M. Roy Malcolm;~May~M. Roy Malcolm;~May:
- \newblock \emph{Infectious diseases of humans : dynamics and control}.
- \newblock Oxford University Press, 1991
- \bibitem[EK05]{EdelsteinKeshet2005}
- \textsc{Edelstein-Keshet}, Leah:
- \newblock \emph{Mathematical Models in Biology}.
- \newblock Society for Industrial and Applied Mathematics, 2005
- \bibitem[GBC16]{Goodfellow-et-al-2016}
- \textsc{Goodfellow}, Ian ; \textsc{Bengio}, Yoshua ; \textsc{Courville},
- Aaron:
- \newblock \emph{Deep Learning}.
- \newblock MIT Press, 2016. --
- \newblock \url{http://www.deeplearningbook.org}
- \bibitem[HSW89]{Hornik1989}
- \textsc{Hornik}, Kurt ; \textsc{Stinchcombe}, Maxwell ; \textsc{White},
- Halbert:
- \newblock Multilayer feedforward networks are universal approximators.
- \newblock {In: }\emph{Neural Networks} 2 (1989), Januar, Nr. 5, S. 359--366.
- \newblock \url{http://dx.doi.org/10.1016/0893-6080(89)90020-8}. --
- \newblock DOI 10.1016/0893--6080(89)90020--8. --
- \newblock ISSN 0893--6080
- \bibitem[KM27]{1927}
- \textsc{Kermack}, William~O. ; \textsc{McKendrick}, A.~G.:
- \newblock A contribution to the mathematical theory of epidemics.
- \newblock {In: }\emph{Proceedings of the Royal Society of London. Series A,
- Containing Papers of a Mathematical and Physical Character} 115 (1927),
- August, Nr. 772, S. 700--721.
- \newblock \url{http://dx.doi.org/10.1098/rspa.1927.0118}. --
- \newblock DOI 10.1098/rspa.1927.0118. --
- \newblock ISSN 2053--9150
- \bibitem[LLF97]{Lagaris1997}
- \textsc{Lagaris}, I.~E. ; \textsc{Likas}, A. ; \textsc{Fotiadis}, D.~I.:
- \newblock Artificial Neural Networks for Solving Ordinary and Partial
- Differential Equations.
- \newblock (1997).
- \newblock \url{http://dx.doi.org/10.48550/ARXIV.PHYSICS/9705023}. --
- \newblock DOI 10.48550/ARXIV.PHYSICS/9705023
- \bibitem[MP72]{Minsky1972}
- \textsc{Minsky}, Marvin ; \textsc{Papert}, Seymour~A.:
- \newblock \emph{Perceptrons}.
- \newblock 2. print. with corr.
- \newblock Cambridge/Mass. [u.a.] : The MIT Press, 1972. --
- \newblock ISBN 9780262630221. --
- \newblock Literaturangaben
- \bibitem[MPF23]{Millevoi2023}
- \textsc{Millevoi}, Caterina ; \textsc{Pasetto}, Damiano ; \textsc{Ferronato},
- Massimiliano:
- \newblock A Physics-Informed Neural Network approach for compartmental
- epidemiological models.
- \newblock (2023).
- \newblock \url{http://dx.doi.org/10.48550/ARXIV.2311.09944}. --
- \newblock DOI 10.48550/ARXIV.2311.09944
- \bibitem[Ros58]{Rosenblatt1958}
- \textsc{Rosenblatt}, F.:
- \newblock The perceptron: A probabilistic model for information storage and
- organization in the brain.
- \newblock {In: }\emph{Psychological Review} 65 (1958), Nr. 6, S. 386--408.
- \newblock \url{http://dx.doi.org/10.1037/h0042519}. --
- \newblock DOI 10.1037/h0042519. --
- \newblock ISSN 0033--295X
- \bibitem[RPK17]{Raissi2017}
- \textsc{Raissi}, Maziar ; \textsc{Perdikaris}, Paris ; \textsc{Karniadakis},
- George~E.:
- \newblock \emph{Physics Informed Deep Learning (Part I): Data-driven Solutions
- of Nonlinear Partial Differential Equations}
- \bibitem[Rud07]{Rudin2007}
- \textsc{Rudin}, Walter:
- \newblock \emph{Analysis}.
- \newblock Oldenbourg Wissenschaftsverlag GmbH, 2007
- \bibitem[TP85]{Tenenbaum1985}
- \textsc{Tenenbaum}, Morris ; \textsc{Pollard}, Harry:
- \newblock \emph{Ordinary Differential Equations}.
- \newblock Harper and Row, Publishers, Inc., 1985
- \end{thebibliography}
|