thesis.bib 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. @inbook{Eichner2003,
  2. author = {Eichner, Martin and Kretzschmar, Mirjam},
  3. pages = {81--93},
  4. publisher = {Springer Berlin Heidelberg},
  5. title = {Mathematische Modelle in der Infektionsepidemiologie},
  6. year = {2003},
  7. isbn = {9783642556128},
  8. booktitle = {Infektionsepidemiologie},
  9. doi = {10.1007/978-3-642-55612-8_8}
  10. }
  11. @article{1927,
  12. author = {William Ogilvy Kermack and A. G. McKendrick},
  13. journal = {Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character},
  14. title = {A contribution to the mathematical theory of epidemics},
  15. year = {1927},
  16. issn = {2053-9150},
  17. month = aug,
  18. number = {772},
  19. pages = {700--721},
  20. volume = {115},
  21. doi = {10.1098/rspa.1927.0118},
  22. publisher = {The Royal Society}
  23. }
  24. @Article{Shaier2021,
  25. author = {Shaier, Sagi and Raissi, Maziar and Seshaiyer, Padmanabhan},
  26. journal = {Letters in Biomathematics},
  27. title = {Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease Informed Neural Networks},
  28. year = {2023},
  29. number = {1},
  30. pages = {71--105},
  31. volume = {9},
  32. copyright = {Creative Commons Attribution 4.0 International},
  33. doi = {10.30707/lib9.1.1681913305.249476},
  34. keywords = {Machine Learning (cs.LG), Quantitative Methods (q-bio.QM), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences},
  35. publisher = {Illinois State University},
  36. }
  37. @article{Jayatilaka2022,
  38. author = {Jayatilaka, R. and Patel, R. and Brar, M. and Tang, Y. and Jisrawi, N.M. and Chishtie, F. and Drozd, J. and Valluri, S.R.},
  39. journal = {Materials Today: Proceedings},
  40. title = {A mathematical model of COVID-19 transmission},
  41. year = {2022},
  42. issn = {2214-7853},
  43. pages = {101--112},
  44. volume = {54},
  45. doi = {10.1016/j.matpr.2021.11.480},
  46. publisher = {Elsevier BV}
  47. }
  48. @book{Zill1997,
  49. author = {Dennis G. Zill},
  50. editor = {Gary Ostedt},
  51. publisher = {Brooks/Cole Publishing Company, a division of Internaltional Thomson Publishing Inc.},
  52. title = {A First Course In Differential Equations With Modelling Applications},
  53. year = {1997},
  54. edition = {6}
  55. }
  56. @book{Rudin2007,
  57. author = {Walter Rudin},
  58. publisher = {Oldenbourg Wissenschaftsverlag GmbH},
  59. title = {Analysis},
  60. year = {2007}
  61. }
  62. @book{Tenenbaum1985,
  63. author = {Morris Tenenbaum and Harry Pollard},
  64. publisher = {Harper and Row, Publishers, Inc.},
  65. title = {Ordinary Differential Equations},
  66. year = {1985}
  67. }
  68. @Book{EdelsteinKeshet2005,
  69. author = {Leah Edelstein-Keshet},
  70. publisher = {Society for Industrial and Applied Mathematics},
  71. title = {Mathematical Models in Biology},
  72. year = {2005},
  73. }
  74. @Book{Anderson1991,
  75. author = {Anderson, Roy Malcolm; May, Robert M.},
  76. publisher = {Oxford University Press},
  77. title = {Infectious diseases of humans : dynamics and control},
  78. year = {1991},
  79. }
  80. @Article{Millevoi2023,
  81. author = {Millevoi, Caterina and Pasetto, Damiano and Ferronato, Massimiliano},
  82. title = {A Physics-Informed Neural Network approach for compartmental epidemiological models},
  83. year = {2023},
  84. issn = {1553-7358},
  85. month = sep,
  86. number = {9},
  87. pages = {e1012387},
  88. volume = {20},
  89. copyright = {Creative Commons Attribution Non Commercial No Derivatives 4.0 International},
  90. doi = {https://doi.org/10.1371/journal.pcbi.1012387},
  91. editor = {Scarpino, Samuel V.},
  92. keywords = {Numerical Analysis (math.NA), FOS: Mathematics, FOS: Mathematics},
  93. publisher = {Public Library of Science (PLoS)},
  94. }
  95. @Book{Goodfellow-et-al-2016,
  96. author = {Ian Goodfellow and Yoshua Bengio and Aaron Courville},
  97. publisher = {MIT Press},
  98. title = {Deep Learning},
  99. year = {2016},
  100. note = {\url{http://www.deeplearningbook.org}},
  101. }
  102. @Article{Lagaris1998,
  103. author = {Lagaris, Isaac and Likas, Aristidis and Fotiadis, Dimitrios},
  104. journal = {IEEE Transactions on Neural Networks},
  105. title = {Artificial neural networks for solving ordinary and partial differential equations},
  106. year = {1998},
  107. month = {09},
  108. pages = {987-1000},
  109. volume = {9},
  110. doi = {10.1109/72.712178},
  111. }
  112. @Article{Hornik1989,
  113. author = {Hornik, Kurt and Stinchcombe, Maxwell and White, Halbert},
  114. journal = {Neural Networks},
  115. title = {Multilayer feedforward networks are universal approximators},
  116. year = {1989},
  117. issn = {0893-6080},
  118. month = jan,
  119. number = {5},
  120. pages = {359--366},
  121. volume = {2},
  122. doi = {10.1016/0893-6080(89)90020-8},
  123. publisher = {Elsevier BV},
  124. }
  125. @Article{Rosenblatt1958,
  126. author = {Rosenblatt, F.},
  127. journal = {Psychological Review},
  128. title = {The perceptron: A probabilistic model for information storage and organization in the brain.},
  129. year = {1958},
  130. issn = {0033-295X},
  131. number = {6},
  132. pages = {386--408},
  133. volume = {65},
  134. doi = {10.1037/h0042519},
  135. publisher = {American Psychological Association (APA)},
  136. }
  137. @Book{Minsky1972,
  138. author = {Minsky, Marvin and Papert, Seymour A.},
  139. publisher = {The MIT Press},
  140. title = {Perceptrons},
  141. year = {1972},
  142. address = {Cambridge/Mass. [u.a.]},
  143. edition = {2. print. with corr},
  144. isbn = {9780262630221},
  145. note = {Literaturangaben},
  146. pagetotal = {258},
  147. ppn_gvk = {223298433},
  148. subtitle = {An introduction to computational geometry},
  149. }
  150. @Book{Demtroeder2021,
  151. author = {Demtröder, Wolfgang},
  152. publisher = {Springer Spektrum},
  153. title = {Experimentalphysik 1},
  154. year = {2021},
  155. address = {Berlin},
  156. edition = {9. Auflage},
  157. isbn = {978-3-662-62727-3},
  158. note = {Auf dem Umschlag: Mit über 2,5 h Lösungsvideos zu ausgewählten Aufgaben},
  159. series = {Lehrbuch},
  160. volume = {1},
  161. pagetotal = {507},
  162. ppn_gvk = {176791136X},
  163. subtitle = {Wolfgang},
  164. }
  165. @Article{Schroedinger1926,
  166. author = {Schrödinger, E.},
  167. journal = {Physical Review},
  168. title = {An Undulatory Theory of the Mechanics of Atoms and Molecules},
  169. year = {1926},
  170. issn = {0031-899X},
  171. month = dec,
  172. number = {6},
  173. pages = {1049--1070},
  174. volume = {28},
  175. doi = {10.1103/physrev.28.1049},
  176. publisher = {American Physical Society (APS)},
  177. }
  178. @Book{Oksendal2000,
  179. author = {Oksendal, Bernt},
  180. publisher = {Springer Berlin / Heidelberg},
  181. title = {Stochastic Differential Equations},
  182. year = {2000},
  183. address = {Berlin, Heidelberg},
  184. edition = {5th ed.},
  185. isbn = {3-540-63720-6},
  186. note = {Description based on publisher supplied metadata and other sources.},
  187. series = {Universitext Ser.},
  188. pagetotal = {1332},
  189. ppn_gvk = {1763063550},
  190. subtitle = {An Introduction with Applications},
  191. }
  192. @Article{Matsumoto1984,
  193. author = {Matsumoto, T.},
  194. journal = {IEEE Transactions on Circuits and Systems},
  195. title = {A chaotic attractor from Chua’s circuit},
  196. year = {1984},
  197. issn = {0098-4094},
  198. month = dec,
  199. number = {12},
  200. pages = {1055--1058},
  201. volume = {31},
  202. doi = {10.1109/tcs.1984.1085459},
  203. publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
  204. }
  205. @Article{Rumelhart1986,
  206. author = {Rumelhart, David E. and Hinton, Geoffrey E. and Williams, Ronald J.},
  207. journal = {Nature},
  208. title = {Learning representations by back-propagating errors},
  209. year = {1986},
  210. issn = {1476-4687},
  211. month = oct,
  212. number = {6088},
  213. pages = {533--536},
  214. volume = {323},
  215. doi = {10.1038/323533a0},
  216. publisher = {Springer Science and Business Media LLC},
  217. }
  218. @Article{Smirnova2017,
  219. author = {Smirnova, Alexandra and deCamp, Linda and Chowell, Gerardo},
  220. journal = {Bulletin of Mathematical Biology},
  221. title = {Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model},
  222. year = {2017},
  223. issn = {1522-9602},
  224. month = may,
  225. number = {11},
  226. pages = {4343--4365},
  227. volume = {81},
  228. doi = {10.1007/s11538-017-0284-3},
  229. publisher = {Springer Science and Business Media LLC},
  230. }
  231. @Article{Berkhahn2022,
  232. author = {Berkhahn, Sarah and Ehrhardt, Matthias},
  233. journal = {Advances in Continuous and Discrete Models},
  234. title = {A physics-informed neural network to model COVID-19 infection and hospitalization scenarios},
  235. year = {2022},
  236. issn = {2731-4235},
  237. month = oct,
  238. number = {1},
  239. volume = {2022},
  240. doi = {10.1186/s13662-022-03733-5},
  241. publisher = {Springer Science and Business Media LLC},
  242. }
  243. @Article{Long2021,
  244. author = {Long, Jie and Khaliq, A. Q. M. and Furati, K. M.},
  245. journal = {International Journal of Computer Mathematics},
  246. title = {Identification and prediction of time-varying parameters of COVID-19 model: a data-driven deep learning approach},
  247. year = {2021},
  248. issn = {1029-0265},
  249. month = may,
  250. pages = {1--16},
  251. doi = {10.1080/00207160.2021.1929942},
  252. publisher = {Informa UK Limited},
  253. }
  254. @Article{Olumoyin2021,
  255. author = {Olumoyin, K. D. and Khaliq, A. Q. M. and Furati, K. M.},
  256. journal = {Epidemiologia},
  257. title = {Data-Driven Deep-Learning Algorithm for Asymptomatic COVID-19 Model with Varying Mitigation Measures and Transmission Rate},
  258. year = {2021},
  259. issn = {2673-3986},
  260. month = sep,
  261. number = {4},
  262. pages = {471--489},
  263. volume = {2},
  264. doi = {10.3390/epidemiologia2040033},
  265. publisher = {MDPI AG},
  266. }
  267. @Article{Kerr2021,
  268. author = {Kerr, Cliff C. and Stuart, Robyn M. and Mistry, Dina and Abeysuriya, Romesh G. and Rosenfeld, Katherine and Hart, Gregory R. and Núñez, Rafael C. and Cohen, Jamie A. and Selvaraj, Prashanth and Hagedorn, Brittany and George, Lauren and Jastrzębski, Michał and Izzo, Amanda S. and Fowler, Greer and Palmer, Anna and Delport, Dominic and Scott, Nick and Kelly, Sherrie L. and Bennette, Caroline S. and Wagner, Bradley G. and Chang, Stewart T. and Oron, Assaf P. and Wenger, Edward A. and Panovska-Griffiths, Jasmina and Famulare, Michael and Klein, Daniel J.},
  269. journal = {PLOS Computational Biology},
  270. title = {Covasim: An agent-based model of COVID-19 dynamics and interventions},
  271. year = {2021},
  272. issn = {1553-7358},
  273. month = jul,
  274. number = {7},
  275. pages = {e1009149},
  276. volume = {17},
  277. doi = {10.1371/journal.pcbi.1009149},
  278. editor = {Marz, Manja},
  279. publisher = {Public Library of Science (PLoS)},
  280. }
  281. @Article{Doerre2022,
  282. author = {Doerre, Achim and Doblhammer, Gabriele},
  283. journal = {PLOS ONE},
  284. title = {The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic},
  285. year = {2022},
  286. issn = {1932-6203},
  287. month = may,
  288. number = {5},
  289. pages = {e0268119},
  290. volume = {17},
  291. doi = {10.1371/journal.pone.0268119},
  292. editor = {Cheong, Siew Ann},
  293. publisher = {Public Library of Science (PLoS)},
  294. }
  295. @Article{Cooke1996,
  296. author = {Cooke, K. L. and van den Driessche, P.},
  297. journal = {Journal of Mathematical Biology},
  298. title = {Analysis of an SEIRS epidemic model with two delays},
  299. year = {1996},
  300. issn = {1432-1416},
  301. month = dec,
  302. number = {2},
  303. pages = {240--260},
  304. volume = {35},
  305. doi = {10.1007/s002850050051},
  306. publisher = {Springer Science and Business Media LLC},
  307. }
  308. @Book{Gilbert2010,
  309. author = {Gilbert, G. Nigel},
  310. publisher = {Sage Publ.},
  311. title = {Agent-based models},
  312. year = {2010},
  313. address = {Los Angeles [u.a.]},
  314. edition = {3. pr.},
  315. isbn = {978-1-4129-4964-4},
  316. number = {153},
  317. series = {Quantitative applications in the social sciences},
  318. pagetotal = {98},
  319. ppn_gvk = {1615580204},
  320. }
  321. @Article{Maziarz2020,
  322. author = {Maziarz, Mariusz and Zach, Martin},
  323. journal = {Journal of Evaluation in Clinical Practice},
  324. title = {Agent‐based modelling for SARS‐CoV‐2 epidemic prediction and intervention assessment: A methodological appraisal},
  325. year = {2020},
  326. issn = {1365-2753},
  327. month = aug,
  328. number = {5},
  329. pages = {1352--1360},
  330. volume = {26},
  331. doi = {10.1111/jep.13459},
  332. publisher = {Wiley},
  333. }
  334. @Article{Setianto2023,
  335. author = {Setianto, Setianto and Hidayat, Darmawan},
  336. journal = {Scientific Reports},
  337. title = {Modeling the time-dependent transmission rate using gaussian pulses for analyzing the COVID-19 outbreaks in the world},
  338. year = {2023},
  339. issn = {2045-2322},
  340. month = mar,
  341. number = {1},
  342. volume = {13},
  343. doi = {10.1038/s41598-023-31714-5},
  344. publisher = {Springer Science and Business Media LLC},
  345. }
  346. @Article{Liu2012,
  347. author = {Liu, Xinzhi and Stechlinski, Peter},
  348. journal = {Applied Mathematical Modelling},
  349. title = {Infectious disease models with time-varying parameters and general nonlinear incidence rate},
  350. year = {2012},
  351. issn = {0307-904X},
  352. month = may,
  353. number = {5},
  354. pages = {1974--1994},
  355. volume = {36},
  356. doi = {10.1016/j.apm.2011.08.019},
  357. publisher = {Elsevier BV},
  358. }
  359. @Misc{GHInf,
  360. author = {{Robert Koch Institute}},
  361. howpublished = {\url{https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland}},
  362. note = {{Accessed: 2024-09-05}},
  363. title = {GitHub SARS-CoV-2 Infektionen in Deutschland},
  364. }
  365. @Misc{GHDead,
  366. author = {{Robert Koch Institute}},
  367. howpublished = {\url{https://github.com/robert-koch-institut/COVID-19-Todesfaelle_in_Deutschland}},
  368. note = {{Accessed: 2024-09-05}},
  369. title = {GitHub COVID-19-Todesfälle in Deutschland},
  370. }
  371. @Misc{COVIDChronik,
  372. author = {{German Federal Ministry of Health}},
  373. howpublished = {\url{https://www.bundesgesundheitsministerium.de/coronavirus/chronik-coronavirus.html}},
  374. note = {{Accessed: 2024-09-05}},
  375. title = {Coronavirus-Pandemie: Was geschah wann?},
  376. }
  377. @Misc{COVInfo,
  378. author = {{German Federal Centre for Health Education}},
  379. howpublished = {\url{https://www.infektionsschutz.de/coronavirus/fragen-und-antworten/ansteckung-uebertragung-und-krankheitsverlauf/}},
  380. note = {{Accessed: 2024-09-05}},
  381. title = {Ansteckung, Übertragung und Krankheitsverlauf},
  382. }
  383. @Misc{WHO,
  384. author = {{World Health Organization}},
  385. howpublished = {\url{https://www.who.int/health-topics/coronavirus#tab=tab_1}},
  386. note = {{Accessed: 2024-09-06}},
  387. title = {Coronavirus disease (COVID-19)},
  388. }
  389. @Misc{RKI,
  390. author = {{Robert Koch Institute}},
  391. howpublished = {\url{https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ZS/Pandemieplan_Strategien.html}},
  392. note = {{Accessed: 2024-09-06}},
  393. title = {COVID-19-Strategiepapiere und Nationaler Pandemieplan},
  394. }
  395. @Misc{RKIa,
  396. author = {{Robert Koch Institute}},
  397. howpublished = {\url{https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Virologische_Basisdaten.html?nn=13490888#doc14716546bodyText10}},
  398. note = {{Accessed: 2024-09-05}},
  399. title = {SARS-CoV-2: Virologische Basisdaten sowie Virusvarianten im Zeitraum von 2020 - 2022},
  400. }
  401. @Misc{SRD,
  402. author = {{Statista Research Department}},
  403. howpublished = {https://de.statista.com/statistik/daten/studie/1102667/umfrage/erkrankungs-und-todesfaelle-aufgrund-des-coronavirus-in-deutschland/},
  404. note = {{Accessed: 2024-09-06}},
  405. title = {Anzahl Infektionen und Todesfälle in Zusammenhang mit dem Coronavirus (COVID-19) in Deutschland seit Februar 2020},
  406. }
  407. @Article{Kirchhoff1845,
  408. author = {Kirchhoff, Studiosus},
  409. journal = {Annalen der Physik},
  410. title = {Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige},
  411. year = {1845},
  412. issn = {1521-3889},
  413. month = jan,
  414. number = {4},
  415. pages = {497--514},
  416. volume = {140},
  417. doi = {10.1002/andp.18451400402},
  418. publisher = {Wiley},
  419. }
  420. @Article{Raissi2019,
  421. author = {Raissi, M. and Perdikaris, P. and Karniadakis, G.E.},
  422. journal = {Journal of Computational Physics},
  423. title = {Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations},
  424. year = {2019},
  425. issn = {0021-9991},
  426. month = feb,
  427. pages = {686--707},
  428. volume = {378},
  429. doi = {10.1016/j.jcp.2018.10.045},
  430. publisher = {Elsevier BV},
  431. }
  432. @Misc{Moseley,
  433. author = {Ben Moseley},
  434. howpublished = {\url{https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/}},
  435. note = {{Accessed: 2024-09-08}},
  436. title = {So, what is a physics-informed neural network?},
  437. }
  438. @Misc{FMH,
  439. author = {{German Federal Ministry of Health}},
  440. howpublished = {\url{https://impfdashboard.de/}},
  441. note = {{Accessed: 2024-09-08}},
  442. title = {Übersicht zum Impfstatus - COVID-19-Impfung in Deutschland bis zum 8. April 2023},
  443. }
  444. @Article{Desson2022,
  445. author = {Desson, Zachary and Kauer, Lukas and Otten, Thomas and Peters, Jan Willem and Paolucci, Francesco},
  446. journal = {Health Policy and Technology},
  447. title = {Finding the way forward: COVID-19 vaccination progress in Germany, Austria and Switzerland},
  448. year = {2022},
  449. issn = {2211-8837},
  450. month = jun,
  451. number = {2},
  452. pages = {100584},
  453. volume = {11},
  454. doi = {10.1016/j.hlpt.2021.100584},
  455. publisher = {Elsevier BV},
  456. }
  457. @Article{Korolev2021,
  458. author = {Korolev, Ivan},
  459. journal = {Journal of Econometrics},
  460. title = {Identification and estimation of the SEIRD epidemic model for COVID-19},
  461. year = {2021},
  462. issn = {0304-4076},
  463. month = jan,
  464. number = {1},
  465. pages = {63--85},
  466. volume = {220},
  467. doi = {10.1016/j.jeconom.2020.07.038},
  468. publisher = {Elsevier BV},
  469. }
  470. @Article{Jaschke2023,
  471. author = {Jaschke, Philipp and Keita, Sekou and Vallizadeh, Ehsan and Kühne, Simon},
  472. journal = {PLOS ONE},
  473. title = {Satisfaction with pandemic management and compliance with public health measures: Evidence from a German household survey on the COVID-19 crisis},
  474. year = {2023},
  475. issn = {1932-6203},
  476. month = feb,
  477. number = {2},
  478. pages = {e0281893},
  479. volume = {18},
  480. doi = {10.1371/journal.pone.0281893},
  481. editor = {Strumann, Christoph},
  482. publisher = {Public Library of Science (PLoS)},
  483. }
  484. @InBook{Paszke2019,
  485. author = {Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and K\"{o}pf, Andreas and Yang, Edward and DeVito, Zach and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith},
  486. publisher = {Curran Associates Inc.},
  487. title = {PyTorch: an imperative style, high-performance deep learning library},
  488. year = {2019},
  489. address = {Red Hook, NY, USA},
  490. abstract = {Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs.In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.},
  491. articleno = {721},
  492. booktitle = {Proceedings of the 33rd International Conference on Neural Information Processing Systems},
  493. numpages = {12},
  494. }
  495. @Article{Kingma2014,
  496. author = {Kingma, Diederik and Ba, Jimmy},
  497. journal = {International Conference on Learning Representations},
  498. title = {Adam: A Method for Stochastic Optimization},
  499. year = {2014},
  500. month = {12},
  501. }
  502. @Article{Foerster2024.04.09.24305557,
  503. author = {Foerster, Dietrich and Bhatkar, Sayali and Bhanot, Gyan},
  504. journal = {medRxiv},
  505. title = {Parametrization of Worldwide Covid-19 data for multiple variants: How is the SAR-Cov2 virus evolving?},
  506. year = {2024},
  507. abstract = {We mapped the 2020-2023 daily Covid-19 case data from the World Health Organization (WHO) to the original SIR model of Karmack and McKendrick for multiple pandemic recurrences due to the evolution of the virus to different variants in forty countries worldwide. The aim of the study was to determine how the SIR parameters are changing as the virus evolved into variants. Each peak in cases was analyzed separately for each country and the parameters: reff (pandemic R-parameter), Leff (average number of days an individual is infective) and α (the rate of infection for contacts between the set of susceptible persons and the set of infected persons) were computed. Each peak was mapped to circulating variants for each country and the SIR parameters (reff, Leff, α) were averaged over each variant using their values in peaks where 70\% of the variant sequences identified belonged to a single variant. This analysis showed that on average, compared to the original Wuhan variant (α = 0.2), the parameter α has increased to α = 0.5 for the Omicron variants. The value of reff has decreased from around 3.8 to 2.0 and Leff has decreased from 15 days to 10 days. This is as would be expected of a virus that is coming to equilibrium by evolving to increase its infectivity while reducing the effects of infections on the host.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:https://covid19.who.int/WHO-COVID-19-global-data.csv https://ourworldindata.org/grapher/covid-variants-areaI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.YesAll data used is included in the supplementary material},
  508. doi = {10.1101/2024.04.09.24305557},
  509. elocation-id = {2024.04.09.24305557},
  510. eprint = {https://www.medrxiv.org/content/early/2024/04/12/2024.04.09.24305557.full.pdf},
  511. publisher = {Cold Spring Harbor Laboratory Press},
  512. url = {https://www.medrxiv.org/content/early/2024/04/12/2024.04.09.24305557},
  513. }
  514. @Article{Fukushima1969,
  515. author = {Fukushima, Kunihiko},
  516. journal = {IEEE Transactions on Systems Science and Cybernetics},
  517. title = {Visual Feature Extraction by a Multilayered Network of Analog Threshold Elements},
  518. year = {1969},
  519. issn = {0536-1567},
  520. number = {4},
  521. pages = {322--333},
  522. volume = {5},
  523. doi = {10.1109/tssc.1969.300225},
  524. publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
  525. }
  526. @Misc{GFSO,
  527. author = {{German Federal Statistical Office}},
  528. howpublished = {\url{https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/_inhalt.html}},
  529. note = {{Accessed: 2024-09-05}},
  530. title = {Gemeindeverzeichnis-Informationssystem GV-ISys},
  531. }
  532. @Article{Bodine2020,
  533. author = {Bodine, Erin N. and Panoff, Robert M. and Voit, Eberhard O. and Weisstein, Anton E.},
  534. journal = {Bulletin of Mathematical Biology},
  535. title = {Agent-Based Modeling and Simulation in Mathematics and Biology Education},
  536. year = {2020},
  537. issn = {1522-9602},
  538. month = jul,
  539. number = {8},
  540. volume = {82},
  541. doi = {10.1007/s11538-020-00778-z},
  542. publisher = {Springer Science and Business Media LLC},
  543. }
  544. @Comment{jabref-meta: databaseType:bibtex;}