123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- from typing import Any
- from flask import make_response, request, abort
- from flask.views import View
- from pycs.database.Database import Database
- from pycs.frontend.notifications.NotificationList import NotificationList
- from pycs.frontend.notifications.NotificationManager import NotificationManager
- from pycs.interfaces.MediaFile import MediaFile
- from pycs.interfaces.MediaStorage import MediaStorage
- from pycs.jobs.JobGroupBusyException import JobGroupBusyException
- from pycs.jobs.JobRunner import JobRunner
- from pycs.util.PipelineUtil import load_from_root_folder as load_pipeline
- class PredictModel(View):
- """
- load a model and create predictions
- """
- # pylint: disable=arguments-differ
- methods = ['POST']
- def __init__(self, db: Database, nm: NotificationManager, jobs: JobRunner):
- # pylint: disable=invalid-name
- self.db = db
- self.nm = nm
- self.jobs = jobs
- def dispatch_request(self, project_id):
- # extract request data
- data = request.get_json(force=True)
- if 'predict' not in data or data['predict'] not in ['all', 'new']:
- return abort(400)
- # find project
- project = self.db.project(project_id)
- if project is None:
- return abort(404)
- # create job
- try:
- notifications = NotificationList(self.nm)
- self.jobs.run(project,
- 'Model Interaction',
- f'{project.name} (create predictions)',
- f'{project.name}/model-interaction',
- self.load_and_predict,
- self.db, project.identifier, data['predict'], notifications,
- progress=self.progress)
- except JobGroupBusyException:
- return abort(400)
- return make_response()
- @staticmethod
- def load_and_predict(database: Database, project_id: int, file_filter: Any,
- notifications: NotificationList):
- db = None
- pipeline = None
- # create new database instance
- try:
- db = database.copy()
- project = db.project(project_id)
- model = project.model()
- storage = MediaStorage(db, project_id, notifications)
- # create a list of MediaFile
- if isinstance(file_filter, str):
- if file_filter == 'new':
- length = project.count_files_without_results()
- files = map(lambda f: MediaFile(f, notifications),
- project.files_without_results())
- else:
- length = project.count_files()
- files = map(lambda f: MediaFile(f, notifications),
- project.files())
- else:
- files = map(lambda f: MediaFile(project.file(f.identifier), notifications),
- file_filter)
- length = len(file_filter)
- # load pipeline
- try:
- pipeline = load_pipeline(model.root_folder)
- # iterate over files
- index = 0
- for file in files:
- # remove old predictions
- file.remove_predictions()
- # create new predictions
- pipeline.execute(storage, file)
- # commit changes and yield progress
- db.commit()
- yield index / length, notifications
- index += 1
- finally:
- if pipeline is not None:
- pipeline.close()
- finally:
- if db is not None:
- db.close()
- @staticmethod
- def progress(progress: float, notifications: NotificationList):
- notifications.fire()
- return progress
|