浏览代码

add more functions

- prototype extraction and manual definition
- separate find peaks
- visualization functions
- comments and small changes
Yuxuan Xie 1 年之前
父节点
当前提交
3d52e8b5d7
共有 1 个文件被更改,包括 90 次插入36 次删除
  1. 90 36
      eye_state_prototype.py

+ 90 - 36
eye_state_prototype.py

@@ -2,7 +2,30 @@ import numpy as np
 import pandas as pd
 import stumpy
 from scipy import signal
+import matplotlib.pyplot as plt
 
+##########Prototype##########
+# prototype extraction
+def motif_extraction(ear_ts: np.ndarray, m=100, max_matches=10):
+    """Extract top motifs in EAR time series."""
+    mp = stumpy.stump(ear_ts, m) # matrix profile
+    motif_distances, motif_indices = stumpy.motifs(ear_ts, mp[:, 0], max_matches=max_matches)
+    return motif_distances, motif_indices
+
+# manual prototype definition
+def combined_gaussian(sig1: float, sig2: float, avg: float, prom: float, m=100, mu=40, noise=None):
+    """Manual protype composed of two Gaussians."""
+    y1 = - prom * signal.gaussian(2*m, std=sig1) + avg
+    y2 = - prom * signal.gaussian(2*m, std=sig2) + avg
+    y = np.append(y1[:m], y2[m:])
+    
+    if noise is not None: 
+        y = y + noise
+    
+    return y[m-mu:2*m-mu]
+
+##########Matching##########
+# pattern matching
 def fpm(Q: np.ndarray, T: np.ndarray, th=3.0):
     """Fast Pattern Matching"""
     def threshold(D):
@@ -11,6 +34,20 @@ def fpm(Q: np.ndarray, T: np.ndarray, th=3.0):
     # match_indices = matches[:, 1]
     return matches
 
+# simple threholding 
+def find_peaks_in_ear_ts(ear_ts: np.ndarray, h_th=0.15, p_th=None, t_th=None, d_th=50):
+    """
+    Find peaks in EAR time series.
+    h_th = 0.15 # height threshold
+    p_th = None # prominence threshold
+    t_th = None # threshold
+    d_th = 50 # distance threshold
+    """
+    peaks, properties = signal.find_peaks(-ear_ts, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
+    heights = - properties["peak_heights"]
+    return peaks, heights
+
+##########Analysis##########
 def index_matching(indices1: np.ndarray, indices2: np.ndarray, max_distance=50):
     "Match indices saved in two arrays."
     matched_pairs = []
@@ -43,43 +80,10 @@ def get_stats(diff: np.ndarray) -> dict:
     diff_stats["median"] = np.median(diff)
     return diff_stats
 
-def combined_gaussian(sig1, sig2, avg, prom):
-    """Manual Protype composed of two Gaussians."""
-    y1 = - prom * signal.gaussian(200, std=sig1) + avg
-    y2 = - prom * signal.gaussian(200, std=sig2) + avg
-    y = np.append(y1[:100], y2[100:])
-    return y[60:160]
-
-
-def smooth(data: np.ndarray, window_len=5, window="flat"):
-    "Function for smoothing the data. For now, window type: the moving average (flat)."
-    if data.ndim != 1:
-        raise ValueError("Only accept 1D array as input.")
-    
-    if data.size < window_len:
-        raise ValueError("The input data should be larger than the window size.")
-    
-    if window == "flat":
-        kernel = np.ones(window_len) / window_len
-        s = np.convolve(data, kernel, mode="same")
-    return s
-
-def cal_results(ear_r, ear_l, prototype, save_path=None):
+def cal_results(ear_r: np.ndarray, ear_l: np.ndarray, prototype, fpm_th=3.0, h_th=0.15, p_th=None, t_th=None, d_th=50, save_path=None):
     """Caculate and save find peaks and fast pattern matching results."""
-    # find peaks
-    h_th = 0.15 # height threshold
-    p_th = None # prominence threshold
-    t_th = None # threshold
-    d_th = 50 # distance threshold
-
-    peaks_r, properties_r = signal.find_peaks(-ear_r, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
-    heights_r = - properties_r["peak_heights"]
-    peaks_l, properties_l = signal.find_peaks(-ear_l, height=-h_th, threshold=-0.1, prominence=p_th, distance=d_th)
-    heights_l = - properties_l["peak_heights"]
-
     # fast pattern matching
-    m = len(prototype) # m = 100
-    fpm_th = 3.0
+    m = len(prototype)
     matches_r = fpm(Q=prototype, T=ear_r, th=fpm_th)
     matches_l = fpm(Q=prototype, T=ear_l, th=fpm_th)
     match_indices_r = matches_r[:, 1]
@@ -90,6 +94,10 @@ def cal_results(ear_r, ear_l, prototype, save_path=None):
     sorted_indices_l = np.sort(match_indices_l)
     matched_pairs, no_match = index_matching(sorted_indices_r, sorted_indices_l, max_distance=50)
 
+    # find peaks
+    peaks_r, heights_r = find_peaks_in_ear_ts(-ear_r, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
+    peaks_l, heights_l = find_peaks_in_ear_ts(-ear_l, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
+
     # save results
     results = {}
     results["match_indices_r"] = matches_r[:, 1]
@@ -109,4 +117,50 @@ def cal_results(ear_r, ear_l, prototype, save_path=None):
         results_df = pd.DataFrame({key:pd.Series(value) for key, value in results.items()})
         results_df.to_csv(save_path)
     
-    return results
+    return results
+
+# visulization
+def plot_ear(ear_r: np.ndarray, ear_l: np.ndarray, xmin=0, xmax=20000):
+    """Plot right and left ear score."""
+    fig, axs = plt.subplots(2, figsize=(20, 6), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
+    axs[0].plot(ear_r, c='r', label='right eye')
+    axs[0].minorticks_on()
+    if len(ear_r) < xmax:
+        xmax = len(ear_r)
+    axs[0].set_xlim([xmin, xmax])
+    axs[0].set_title("EAR Time Series", fontsize="30")
+    axs[0].set_ylabel('right', fontsize="18")
+    axs[1].plot(ear_l, c='b', label='left eye')
+    axs[1].set_ylabel('left', fontsize="18")
+    axs[1].set_xlabel('Frame', fontsize="18")
+    plt.show()
+    return True
+
+def plot_mp(ts: np.ndarray, mp: np.ndarray):
+    """Plot EAR and Matrix Profile."""
+    fig, axs = plt.subplots(2, figsize=(10, 6), sharex=True, gridspec_kw={'hspace': 0})
+    plt.suptitle('EAR Score and Matrix Profile', fontsize='30')
+
+    axs[0].plot(ts)
+    axs[0].set_ylabel('EAR', fontsize='20')
+    axs[0].set(xlim=[0, len(ts)], ylim=[0, 0.4])
+    axs[0].minorticks_on()
+    axs[1].set_xlabel('Frame', fontsize ='20')
+    axs[1].set_ylabel('Matrix Profile', fontsize='20')
+    axs[1].plot(mp[:, 0])
+    plt.show()
+    return True
+
+# other utilities
+def smooth(data: np.ndarray, window_len=5, window="flat"):
+    "Function for smoothing the data. For now, window type: the moving average (flat)."
+    if data.ndim != 1:
+        raise ValueError("Only accept 1D array as input.")
+    
+    if data.size < window_len:
+        raise ValueError("The input data should be larger than the window size.")
+    
+    if window == "flat":
+        kernel = np.ones(window_len) / window_len
+        s = np.convolve(data, kernel, mode="same")
+    return s