|
@@ -0,0 +1,112 @@
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import stumpy
|
|
|
+from scipy import signal
|
|
|
+
|
|
|
+def fpm(Q: np.ndarray, T: np.ndarray, th=3.0):
|
|
|
+ """Fast Pattern Matching"""
|
|
|
+ def threshold(D):
|
|
|
+ return np.nanmax([np.nanmean(D) - th * np.std(D), np.nanmin(D)])
|
|
|
+ matches = stumpy.match(Q, T, max_distance=threshold)
|
|
|
+ # match_indices = matches[:, 1]
|
|
|
+ return matches
|
|
|
+
|
|
|
+def index_matching(indices1: np.ndarray, indices2: np.ndarray, max_distance=50):
|
|
|
+ "Match indices saved in two arrays."
|
|
|
+ matched_pairs = []
|
|
|
+ no_match = []
|
|
|
+ for idx1 in indices1:
|
|
|
+ dists = np.abs(indices2 - idx1)
|
|
|
+ min_dist = np.min(dists)
|
|
|
+ if min_dist < max_distance:
|
|
|
+ matched_pairs.append([idx1, indices2[np.argmin(dists)]]) # when there are two equal-dist matches, always keep the first onr
|
|
|
+ else:
|
|
|
+ no_match.append(idx1)
|
|
|
+ return np.array(matched_pairs), np.array(no_match)
|
|
|
+
|
|
|
+def get_apex(T: np.ndarray, m: int, match_indices: np.ndarray):
|
|
|
+ """Estimated apex in each extracted matches."""
|
|
|
+ apex_indices = []
|
|
|
+ apex_proms = []
|
|
|
+ for idx in match_indices:
|
|
|
+ apex_prom = np.max(T[idx:idx+m]) - np.min(T[idx:idx+m])
|
|
|
+ apex_idx = idx + np.argmin(T[idx:idx+m])
|
|
|
+ apex_indices.append(apex_idx)
|
|
|
+ apex_proms.append(apex_prom)
|
|
|
+ return np.array(apex_indices), np.array(apex_proms)
|
|
|
+
|
|
|
+def get_stats(diff: np.ndarray) -> dict:
|
|
|
+ """Get statistics (avg, std, median) and save them in a dict."""
|
|
|
+ diff_stats = dict()
|
|
|
+ diff_stats["avg"] = np.mean(diff)
|
|
|
+ diff_stats["std"] = np.std(diff)
|
|
|
+ diff_stats["median"] = np.median(diff)
|
|
|
+ return diff_stats
|
|
|
+
|
|
|
+def combined_gaussian(sig1, sig2, avg, prom):
|
|
|
+ """Manual Protype composed of two Gaussians."""
|
|
|
+ y1 = - prom * signal.gaussian(200, std=sig1) + avg
|
|
|
+ y2 = - prom * signal.gaussian(200, std=sig2) + avg
|
|
|
+ y = np.append(y1[:100], y2[100:])
|
|
|
+ return y[60:160]
|
|
|
+
|
|
|
+
|
|
|
+def smooth(data: np.ndarray, window_len=5, window="flat"):
|
|
|
+ "Function for smoothing the data. For now, window type: the moving average (flat)."
|
|
|
+ if data.ndim != 1:
|
|
|
+ raise ValueError("Only accept 1D array as input.")
|
|
|
+
|
|
|
+ if data.size < window_len:
|
|
|
+ raise ValueError("The input data should be larger than the window size.")
|
|
|
+
|
|
|
+ if window == "flat":
|
|
|
+ kernel = np.ones(window_len) / window_len
|
|
|
+ s = np.convolve(data, kernel, mode="same")
|
|
|
+ return s
|
|
|
+
|
|
|
+def cal_results(ear_r, ear_l, prototype, save_path=None):
|
|
|
+ """Caculate and save find peaks and fast pattern matching results."""
|
|
|
+ # find peaks
|
|
|
+ h_th = 0.15 # height threshold
|
|
|
+ p_th = None # prominence threshold
|
|
|
+ t_th = None # threshold
|
|
|
+ d_th = 50 # distance threshold
|
|
|
+
|
|
|
+ peaks_r, properties_r = signal.find_peaks(-ear_r, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
|
|
|
+ heights_r = - properties_r["peak_heights"]
|
|
|
+ peaks_l, properties_l = signal.find_peaks(-ear_l, height=-h_th, threshold=-0.1, prominence=p_th, distance=d_th)
|
|
|
+ heights_l = - properties_l["peak_heights"]
|
|
|
+
|
|
|
+ # fast pattern matching
|
|
|
+ m = len(prototype) # m = 100
|
|
|
+ fpm_th = 3.0
|
|
|
+ matches_r = fpm(Q=prototype, T=ear_r, th=fpm_th)
|
|
|
+ matches_l = fpm(Q=prototype, T=ear_l, th=fpm_th)
|
|
|
+ match_indices_r = matches_r[:, 1]
|
|
|
+ match_indices_l = matches_l[:, 1]
|
|
|
+
|
|
|
+ # index matching
|
|
|
+ sorted_indices_r = np.sort(match_indices_r)
|
|
|
+ sorted_indices_l = np.sort(match_indices_l)
|
|
|
+ matched_pairs, no_match = index_matching(sorted_indices_r, sorted_indices_l, max_distance=50)
|
|
|
+
|
|
|
+ # save results
|
|
|
+ results = {}
|
|
|
+ results["match_indices_r"] = matches_r[:, 1]
|
|
|
+ results["match_values_r"] = matches_r[:, 0]
|
|
|
+ results["match_indices_l"] = matches_l[:, 1]
|
|
|
+ results["match_values_l"] = matches_l[:, 0]
|
|
|
+ results["sorted_indices_r"] = sorted_indices_r
|
|
|
+ results["sorted_indices_l"] = sorted_indices_l
|
|
|
+ results["matched_pairs_r"] = matched_pairs[:, 0]
|
|
|
+ results["matched_pairs_l"] = matched_pairs[:, 1]
|
|
|
+ results["peaks_r"] = peaks_r
|
|
|
+ results["heights_r"] = heights_r
|
|
|
+ results["peaks_l"] = peaks_l
|
|
|
+ results["heights_l"] = heights_l
|
|
|
+
|
|
|
+ if save_path is not None:
|
|
|
+ results_df = pd.DataFrame({key:pd.Series(value) for key, value in results.items()})
|
|
|
+ results_df.to_csv(save_path)
|
|
|
+
|
|
|
+ return results
|