123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- import numpy as np
- import pandas as pd
- import stumpy
- from scipy import signal
- import matplotlib.pyplot as plt
- ##########Prototyping##########
- # prototype extraction
- def motif_extraction(ear_ts: np.ndarray, m=100, max_matches=10):
- """Extract top motifs in EAR time series."""
- mp = stumpy.stump(ear_ts, m) # matrix profile
- motif_distances, motif_indices = stumpy.motifs(ear_ts, mp[:, 0], max_matches=max_matches)
- return motif_distances, motif_indices
- def learn_prototypes(ear_ts: np.ndarray, m=100, max_matches=10):
- """Return top motifs."""
- _, motif_indices = motif_extraction(ear_ts, m, max_matches)
- motifs = np.array([ear_ts[idx:idx+m] for idx in (motif_indices[0] + m // 2)])
- return motifs
- # manual definition
- def combined_gaussian(sig1: float, sig2: float, avg: float, prom: float, m=100, mu=40, noise=None):
- """Manual prototype composed of two Gaussians."""
- y1 = - prom * signal.gaussian(2*m, std=sig1) + avg
- y2 = - prom * signal.gaussian(2*m, std=sig2) + avg
- y = np.append(y1[:m], y2[m:])
-
- if noise is not None:
- y = y + noise
-
- return y[m-mu:2*m-mu]
- def nosie(noise_std: float, m=100):
- "Random noise based on learned data."
- np.random.seed(0)
- noise = (np.random.random(2*100) * 2 - 1) * noise_std
- return noise
- ##########Detection##########
- # blink pattern matching
- def fpm(Q: np.ndarray, T: np.ndarray, th=3.0):
- """Fast Pattern Matching"""
- def threshold(D):
- return np.nanmax([np.nanmean(D) - th * np.std(D), np.nanmin(D)])
- matches = stumpy.match(Q, T, max_distance=threshold)
- # match_indices = matches[:, 1]
- return matches
- def index_matching(indices1: np.ndarray, indices2: np.ndarray, max_distance=50):
- "Match indices saved in two arrays."
- matched_pairs = []
- no_match = []
- for idx1 in indices1:
- dists = np.abs(indices2 - idx1)
- min_dist = np.min(dists)
- if min_dist < max_distance:
- matched_pairs.append([idx1, indices2[np.argmin(dists)]]) # when there are two equal-dist matches, always keep the first onr
- else:
- no_match.append(idx1)
- return np.array(matched_pairs), np.array(no_match)
- # find peaks
- def find_peaks_in_ear_ts(ear_ts: np.ndarray, h_th=0.15, p_th=None, t_th=None, d_th=50):
- """
- Find peaks in EAR time series.
- h_th = 0.15 # height threshold
- p_th = None # prominence threshold
- t_th = None # threshold
- d_th = 50 # distance threshold
- """
- peaks, properties = signal.find_peaks(-ear_ts, height=-h_th, threshold=t_th, prominence=p_th, distance=d_th)
- heights = - properties["peak_heights"]
- return peaks, heights
- def cal_bpm_results(ear_r: np.ndarray, ear_l: np.ndarray, prototype, fpm_th=3.0, h_th=0.15, p_th=None, t_th=None, d_th=50, save_path=None):
- """Caculate and save find peaks and fast pattern matching results."""
- # fast pattern matching
- m = len(prototype)
- matches_r = fpm(Q=prototype, T=ear_r, th=fpm_th)
- matches_l = fpm(Q=prototype, T=ear_l, th=fpm_th)
- match_indices_r = matches_r[:, 1]
- match_indices_l = matches_l[:, 1]
- # index matching
- sorted_indices_r = np.sort(match_indices_r)
- sorted_indices_l = np.sort(match_indices_l)
- matched_pairs, no_match = index_matching(sorted_indices_r, sorted_indices_l, max_distance=50)
- # find peaks
- peaks_r, heights_r = find_peaks_in_ear_ts(ear_r, h_th, t_th, p_th, d_th)
- peaks_l, heights_l = find_peaks_in_ear_ts(ear_l, h_th, t_th, p_th, d_th)
- # save results
- results = {}
- results["match_indices_r"] = matches_r[:, 1]
- results["match_values_r"] = matches_r[:, 0]
- results["match_indices_l"] = matches_l[:, 1]
- results["match_values_l"] = matches_l[:, 0]
- results["sorted_indices_r"] = sorted_indices_r
- results["sorted_indices_l"] = sorted_indices_l
- results["matched_pairs_r"] = matched_pairs[:, 0]
- results["matched_pairs_l"] = matched_pairs[:, 1]
- results["peaks_r"] = peaks_r
- results["heights_r"] = heights_r
- results["peaks_l"] = peaks_l
- results["heights_l"] = heights_l
- if save_path is not None:
- results_df = pd.DataFrame({key:pd.Series(value) for key, value in results.items()})
- results_df.to_csv(save_path)
-
- return results
- ##########Analysis##########
- def get_apex(T: np.ndarray, m: int, match_indices: np.ndarray):
- """Estimated apex in each extracted matches."""
- apex_indices = []
- apex_proms = []
- for idx in match_indices:
- apex_prom = np.max(T[idx:idx+m]) - np.min(T[idx:idx+m])
- apex_idx = idx + np.argmin(T[idx:idx+m])
- apex_indices.append(apex_idx)
- apex_proms.append(apex_prom)
- return np.array(apex_indices), np.array(apex_proms)
- def get_stats(diff: np.ndarray) -> dict:
- """Get statistics (avg, std, median) and save them in a dict."""
- diff_stats = dict()
- diff_stats["avg"] = np.mean(diff)
- diff_stats["std"] = np.std(diff)
- diff_stats["median"] = np.median(diff)
- return diff_stats
- # other utilities
- def smooth(data: np.ndarray, window_len=5, window="flat"):
- "Function for smoothing the data. For now, window type: the moving average (flat)."
- if data.ndim != 1:
- raise ValueError("Only accept 1D array as input.")
-
- if data.size < window_len:
- raise ValueError("The input data should be larger than the window size.")
-
- if window == "flat":
- kernel = np.ones(window_len) / window_len
- s = np.convolve(data, kernel, mode="same")
- return s
- ##########Analysis##########
- def plot_ear(ear_r: np.ndarray, ear_l: np.ndarray, xmin=0, xmax=20000):
- """Plot right and left ear score."""
- fig, axs = plt.subplots(2, figsize=(20, 6), sharex=True, sharey=True, gridspec_kw={'hspace': 0})
- axs[0].plot(ear_r, c='r', label='right eye')
- axs[0].minorticks_on()
- if len(ear_r) < xmax:
- xmax = len(ear_r)
- axs[0].set_xlim([xmin, xmax])
- axs[0].set_title("EAR Time Series", fontsize="30")
- axs[0].set_ylabel('right', fontsize="18")
- axs[1].plot(ear_l, c='b', label='left eye')
- axs[1].set_ylabel('left', fontsize="18")
- axs[1].set_xlabel('Frame', fontsize="18")
- plt.show()
- return True
- def plot_mp(ts: np.ndarray, mp: np.ndarray):
- """Plot EAR and Matrix Profile."""
- fig, axs = plt.subplots(2, figsize=(10, 6), sharex=True, gridspec_kw={'hspace': 0})
- plt.suptitle('EAR Score and Matrix Profile', fontsize='30')
- axs[0].plot(ts)
- axs[0].set_ylabel('EAR', fontsize='20')
- axs[0].set(xlim=[0, len(ts)], ylim=[0, 0.4])
- axs[0].minorticks_on()
- axs[1].set_xlabel('Frame', fontsize ='20')
- axs[1].set_ylabel('Matrix Profile', fontsize='20')
- axs[1].plot(mp[:, 0])
- plt.show()
- return True
- def plot_zoom_in(ax, ear, sorted_indices, peaks, heights, subregion, zoom_in_box, m=100):
- """Zoom in subregion on the orginial plot."""
- x1, x2, y1, y2 = subregion
- x_in, y_in, w_in, h_in = zoom_in_box
- axin = ax.inset_axes([x_in, y_in, w_in, h_in],
- xlim=(x1, x2), ylim=(y1, y2),
- xticklabels=[], yticklabels=[])
- for i, match_idx in enumerate(sorted_indices):
- axin.axvspan(match_idx, match_idx + m, 0, 1, facecolor="lightgrey")
- axin.plot(ear, c="r", zorder=1)
- axin.scatter(peaks, heights, marker='x', zorder=2)
- axin.set_xticks([])
- axin.set_yticks([])
- ax.indicate_inset_zoom(axin, edgecolor="black")
- def plot_results(ax, ears, results, side, m=100, h_th=0.15, xmin=0, xmax=10000, ymin=-0.1, ymax=0.5, zoom_in_params=None):
- """Plot fast pattern matching vs simple thresholding results for each EAR time series."""
- # set values
- if side == 'right':
- c = 'r'
- ear = ears[0]
- sorted_indices = results["sorted_indices_r"]
- peaks = results["peaks_r"]
- heights = results["heights_r"]
- else:
- c = 'b'
- ear = ears[1]
- sorted_indices = results["sorted_indices_l"]
- peaks = results["peaks_l"]
- heights = results["heights_l"]
-
- # EAR time series
- ax.plot(ear, c=c, zorder=1)
-
- # find peaks
- ax.hlines(h_th, xmin, xmax, linestyles='dashed', zorder=0) # showing threshold
- ax.scatter(peaks, heights, marker='x', zorder=2)
- # fpm detected regions
- for i, match_idx in enumerate(sorted_indices):
- ax.axvspan(match_idx, match_idx + m, 0, 1, facecolor="lightgrey", zorder=-1)
-
- # show numbering
- plot_indices = sorted_indices [(sorted_indices > xmin) & (sorted_indices < xmax)]
- for j in range(len(plot_indices)):
- if np.diff(plot_indices)[j-1] <= 200:
- ax.text(plot_indices[j]+50, 0.38, str(j+1), fontsize=10)
- else:
- ax.text(plot_indices[j]-100, 0.38, str(j+1), fontsize=10)
-
- if zoom_in_params != None:
- subregion, zoom_in_box = zoom_in_params
- plot_zoom_in(ax, ear, sorted_indices, peaks, heights, subregion, zoom_in_box)
- ax.set(xlim=[xmin, xmax], ylim=[ymin, ymax])
- if side == 'right':
- ax.set_xticks([])
- else:
- ax.set_xlabel("Frame", fontsize=10)
- # other plotting functions for visualization
- def plot_fpm(T: np.ndarray, match_indices: np.ndarray, m: int, th: float, xmin=0, xmax=20000, save_path=None, show=False):
- """Plot fast pattern matching, one graph."""
- fig, ax = plt.subplots(figsize=(20, 6), sharex=True, gridspec_kw={'hspace': 0})
- plt.suptitle('Fast Pattern Matching', fontsize='20')
- ax.plot(T)
- ax.set_ylabel('EAR', fontsize='14')
- for i, match_idx in enumerate(match_indices):
- ax.axvspan(match_indices[i], match_indices[i] + m, 0, 1, facecolor="lightgrey")
- #ax.text(match_indices[i], 0, str(i+1), color="black", fontsize=20)
- ax.set(xlim=[xmin, xmax])
- ax.minorticks_on()
- ax.set_ylabel('EAR')
- ax.set_xlabel('Frame', fontsize ='14')
- if save_path != None:
- plt.savefig(save_path)
- if show == False:
- plt.close()
- else:
- plt.show()
- def plot_fpm2(ear_r: np.ndarray, ear_l: np.ndarray, match_indices_r: np.ndarray, match_indices_l: np.ndarray, m: int, th: float, xmin=0, xmax=20000, save_path=None, show=False):
- """Plot fast pattern matching, right and left."""
- fig, axs = plt.subplots(2, figsize=(20, 6), sharex=True, gridspec_kw={'hspace': 0.1})
- plt.suptitle('Fast Pattern Matching', fontsize='20')
- axs[0].plot(ear_r, c='r')
- axs[1].plot(ear_l, c='b')
- for i, match_idx in enumerate(match_indices_r):
- axs[0].axvspan(match_idx, match_idx + m, 0, 1, facecolor="lightgrey")
- #axs[0].text(match_idx, 0.3, str(i+1), color="black", fontsize=20)
- for i, match_idx in enumerate(match_indices_l):
- axs[1].axvspan(match_idx, match_idx + m, 0, 1, facecolor="lightgrey")
- #axs[1].text(match_indices_l[i], 0, str(i+1), color="black", fontsize=20)
- axs[0].set(xlim=[xmin, xmax])
- axs[0].minorticks_on()
- axs[0].set_ylabel('EAR right')
- axs[1].set_ylabel('EAR left')
- axs[1].set_xlabel('Frame')
-
- if save_path != None:
- plt.savefig(save_path)
- if show == False:
- plt.close()
- else:
- plt.show()
- # histogram
- def plot_prom_hist(proms, eye="right", rel_freq=True, xmin=0, xmax=0.5, ymin=0, ymax=0.3, save_path=None):
- """Plot histogram for EAR promineces (both eyes)."""
- if eye == "right":
- color = "r"
- else:
- color = "b"
-
- n_bins = int(np.sqrt(len(proms)))
- fig, ax = plt.subplots()
- ax.set_title(f"Histogram for EAR prominence ({eye} eye)")
- ax.set_xlabel("EAR Prominence")
- ax.set(xlim=[xmin, xmax], ylim=[ymin, ymax])
- if rel_freq == True:
- ax.hist(proms, bins=n_bins, edgecolor="white", weights=np.ones_like(proms) / len(proms), color=color)
- ax.set_ylabel("Relative Frequency")
- else:
- ax.hist(proms, bins=n_bins, edgecolor="white", color=color)
- ax.set_ylabel("Frequency")
-
- if save_path != None:
- # plt.savefig(f"./outputs/histogram/histogram_m{m}_th{th}_bin{n_bins}_r.png")
- plt.savefig(save_path)
|