|
@@ -0,0 +1,931 @@
|
|
|
+#ifndef IGL_SELFINTERSECTMESH_H
|
|
|
+#define IGL_SELFINTERSECTMESH_H
|
|
|
+
|
|
|
+#include "CGAL_includes.hpp"
|
|
|
+#include "selfintersect.h"
|
|
|
+
|
|
|
+#include <Eigen/Dense>
|
|
|
+#include <list>
|
|
|
+#include <map>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+// The easiest way to keep track of everything is to use a class
|
|
|
+
|
|
|
+namespace igl
|
|
|
+{
|
|
|
+ // Kernel is a CGAL kernel like:
|
|
|
+ // CGAL::Exact_predicates_inexact_constructions_kernel
|
|
|
+ // or
|
|
|
+ // CGAL::Exact_predicates_exact_constructions_kernel
|
|
|
+
|
|
|
+ template <typename Kernel>
|
|
|
+ class SelfIntersectMesh
|
|
|
+ {
|
|
|
+ public:
|
|
|
+ // 3D Primitives
|
|
|
+ typedef CGAL::Point_3<Kernel> Point_3;
|
|
|
+ typedef CGAL::Segment_3<Kernel> Segment_3;
|
|
|
+ typedef CGAL::Triangle_3<Kernel> Triangle_3;
|
|
|
+ typedef CGAL::Plane_3<Kernel> Plane_3;
|
|
|
+ typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron_3;
|
|
|
+ typedef CGAL::Polyhedron_3<Kernel> Polyhedron_3;
|
|
|
+ typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;
|
|
|
+ // 2D Primitives
|
|
|
+ typedef CGAL::Point_2<Kernel> Point_2;
|
|
|
+ typedef CGAL::Segment_2<Kernel> Segment_2;
|
|
|
+ typedef CGAL::Triangle_2<Kernel> Triangle_2;
|
|
|
+ // 2D Constrained Delaunay Triangulation types
|
|
|
+ typedef CGAL::Triangulation_vertex_base_2<Kernel> TVB_2;
|
|
|
+ typedef CGAL::Constrained_triangulation_face_base_2<Kernel> CTFB_2;
|
|
|
+ typedef CGAL::Triangulation_data_structure_2<TVB_2,CTFB_2> TDS_2;
|
|
|
+ typedef CGAL::Exact_intersections_tag Itag;
|
|
|
+ typedef CGAL::Constrained_Delaunay_triangulation_2<Kernel,TDS_2,Itag>
|
|
|
+ CDT_2;
|
|
|
+ typedef CGAL::Constrained_triangulation_plus_2<CDT_2> CDT_plus_2;
|
|
|
+ // Axis-align boxes for all-pairs self-intersection detection
|
|
|
+ typedef std::vector<Triangle_3> Triangles;
|
|
|
+ typedef typename Triangles::iterator TrianglesIterator;
|
|
|
+ typedef typename Triangles::const_iterator TrianglesConstIterator;
|
|
|
+ typedef
|
|
|
+ CGAL::Box_intersection_d::Box_with_handle_d<double,3,TrianglesIterator>
|
|
|
+ Box;
|
|
|
+ // Axis-aligned bounding box tree
|
|
|
+ typedef CGAL::AABB_triangle_primitive<Kernel,TrianglesIterator> Primitive;
|
|
|
+ typedef CGAL::AABB_traits<Kernel, Primitive> Traits;
|
|
|
+ typedef CGAL::AABB_tree<Traits> Tree;
|
|
|
+ typedef typename Tree::Object_and_primitive_id Object_and_primitive_id;
|
|
|
+ typedef typename Tree::Primitive_id Primitive_id;
|
|
|
+ // 3D Delaunay Triangulation
|
|
|
+ typedef CGAL::Delaunay_triangulation_3<Kernel> Delaunay_triangulation_3;
|
|
|
+ typedef typename Delaunay_triangulation_3::Finite_cells_iterator
|
|
|
+ Delaunay3CellIterator;
|
|
|
+
|
|
|
+ // Input mesh
|
|
|
+ const Eigen::MatrixXd & V;
|
|
|
+ const Eigen::MatrixXi & F;
|
|
|
+ // Number of self-intersecting triangle pairs
|
|
|
+ int count;
|
|
|
+ std::vector<std::list<CGAL::Object> > F_objects;
|
|
|
+ Triangles T;
|
|
|
+ std::list<int> lIF;
|
|
|
+ std::vector<bool> offensive;
|
|
|
+ std::vector<int> offending_index;
|
|
|
+ std::vector<int> offending;
|
|
|
+ // Make a short name for the edge map's key
|
|
|
+ typedef std::pair<int,int> EMK;
|
|
|
+ // Make a short name for the type stored at each edge, the edge map's
|
|
|
+ // value
|
|
|
+ typedef std::list<int> EMV;
|
|
|
+ // Make a short name for the edge map
|
|
|
+ typedef std::map<EMK,EMV> EdgeMap;
|
|
|
+ EdgeMap edge2faces;
|
|
|
+ public:
|
|
|
+ SelfintersectParam params;
|
|
|
+ public:
|
|
|
+ // Constructs (VV,FF) a new mesh with self-intersections of (V,F)
|
|
|
+ // subdivided
|
|
|
+ inline SelfIntersectMesh(
|
|
|
+ const Eigen::MatrixXd & V,
|
|
|
+ const Eigen::MatrixXi & F,
|
|
|
+ const SelfintersectParam & params,
|
|
|
+ Eigen::MatrixXd & VV,
|
|
|
+ Eigen::MatrixXi & FF,
|
|
|
+ Eigen::MatrixXi & IF);
|
|
|
+ private:
|
|
|
+ // Helper function to mark a face as offensive
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // f index of face in F
|
|
|
+ inline void mark_offensive(const int f);
|
|
|
+ // Helper function to count intersections between faces
|
|
|
+ //
|
|
|
+ // Input:
|
|
|
+ // fa index of face A in F
|
|
|
+ // fb index of face B in F
|
|
|
+ inline void count_intersection(const int fa,const int fb);
|
|
|
+ // Helper function for box_intersect. Intersect two triangles A and B,
|
|
|
+ // append the intersection object (point,segment,triangle) to a running
|
|
|
+ // list for A and B
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // A triangle in 3D
|
|
|
+ // B triangle in 3D
|
|
|
+ // fa index of A in F (and F_objects)
|
|
|
+ // fb index of A in F (and F_objects)
|
|
|
+ // Returns true only if A intersects B
|
|
|
+ //
|
|
|
+ inline bool intersect(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb);
|
|
|
+ // Helper function for box_intersect. In the case where A and B have
|
|
|
+ // already been identified to share a vertex, then we only want to add
|
|
|
+ // possible segment intersections. Assumes truly duplicate triangles are
|
|
|
+ // not given as input
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // A triangle in 3D
|
|
|
+ // B triangle in 3D
|
|
|
+ // fa index of A in F (and F_objects)
|
|
|
+ // fb index of B in F (and F_objects)
|
|
|
+ // va index of shared vertex in A (and F_objects)
|
|
|
+ // vb index of shared vertex in B (and F_objects)
|
|
|
+ //// Returns object of intersection (should be Segment or point)
|
|
|
+ // Returns true if intersection (besides shared point)
|
|
|
+ //
|
|
|
+ inline bool single_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb,
|
|
|
+ const int va,
|
|
|
+ const int vb);
|
|
|
+ // Helper handling one direction
|
|
|
+ inline bool single_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb,
|
|
|
+ const int va);
|
|
|
+ // Helper function for box_intersect. In the case where A and B have
|
|
|
+ // already been identified to share two vertices, then we only want to add
|
|
|
+ // a possible coplanar (Triangle) intersection. Assumes truly degenerate
|
|
|
+ // facets are not givine as input.
|
|
|
+ inline bool double_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb);
|
|
|
+
|
|
|
+ public:
|
|
|
+ // Callback function called during box self intersections test. Means
|
|
|
+ // boxes a and b intersect. This method then checks if the triangles in
|
|
|
+ // each box intersect and if so, then processes the intersections
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // a box containing a triangle
|
|
|
+ // b box containing a triangle
|
|
|
+ inline void box_intersect(const Box& a, const Box& b);
|
|
|
+ private:
|
|
|
+ // Compute 2D delaunay triangulation of a given 3d triangle and a list of
|
|
|
+ // intersection objects (points,segments,triangles). CGAL uses an affine
|
|
|
+ // projection rather than an isometric projection, so we're not
|
|
|
+ // guaranteed that the 2D delaunay triangulation here will be a delaunay
|
|
|
+ // triangulation in 3D.
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // A triangle in 3D
|
|
|
+ // A_objects_3 updated list of intersection objects for A
|
|
|
+ // Outputs:
|
|
|
+ // cdt Contrained delaunay triangulation in projected 2D plane
|
|
|
+ inline void projected_delaunay(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const std::list<CGAL::Object> & A_objects_3,
|
|
|
+ CDT_plus_2 & cdt);
|
|
|
+ // Getters:
|
|
|
+ public:
|
|
|
+ //const std::list<int>& get_lIF() const{ return lIF;}
|
|
|
+ static inline void box_intersect(
|
|
|
+ SelfIntersectMesh * SIM,
|
|
|
+ const SelfIntersectMesh::Box &a,
|
|
|
+ const SelfIntersectMesh::Box &b);
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+// Implementation
|
|
|
+
|
|
|
+#include "mesh_to_cgal_triangle_list.h"
|
|
|
+
|
|
|
+#include <igl/REDRUM.h>
|
|
|
+#include <igl/C_STR.h>
|
|
|
+
|
|
|
+#include <boost/function.hpp>
|
|
|
+#include <boost/bind.hpp>
|
|
|
+
|
|
|
+#include <algorithm>
|
|
|
+#include <exception>
|
|
|
+#include <cassert>
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+// References:
|
|
|
+// http://minregret.googlecode.com/svn/trunk/skyline/src/extern/CGAL-3.3.1/examples/Polyhedron/polyhedron_self_intersection.cpp
|
|
|
+// http://www.cgal.org/Manual/3.9/examples/Boolean_set_operations_2/do_intersect.cpp
|
|
|
+
|
|
|
+// Q: Should we be using CGAL::Polyhedron_3?
|
|
|
+// A: No! Input is just a list of unoriented triangles. Polyhedron_3 requires
|
|
|
+// a 2-manifold.
|
|
|
+// A: But! It seems we could use CGAL::Triangulation_3. Though it won't be easy
|
|
|
+// to take advantage of functions like insert_in_facet because we want to
|
|
|
+// constrain segments. Hmmm. Actualy Triangulation_3 doesn't look right...
|
|
|
+
|
|
|
+//static void box_intersect(SelfIntersectMesh * SIM,const Box & A, const Box & B)
|
|
|
+//{
|
|
|
+// return SIM->box_intersect(A,B);
|
|
|
+//}
|
|
|
+
|
|
|
+
|
|
|
+// CGAL's box_self_intersection_d uses C-style function callbacks without
|
|
|
+// userdata. This is a leapfrog method for calling a member function. It should
|
|
|
+// be bound as if the prototype was:
|
|
|
+// static void box_intersect(const Box &a, const Box &b)
|
|
|
+// using boost:
|
|
|
+// boost::function<void(const Box &a,const Box &b)> cb
|
|
|
+// = boost::bind(&::box_intersect, this, _1,_2);
|
|
|
+//
|
|
|
+template <typename Kernel>
|
|
|
+inline void igl::SelfIntersectMesh<Kernel>::box_intersect(
|
|
|
+ igl::SelfIntersectMesh<Kernel> * SIM,
|
|
|
+ const typename igl::SelfIntersectMesh<Kernel>::Box &a,
|
|
|
+ const typename igl::SelfIntersectMesh<Kernel>::Box &b)
|
|
|
+{
|
|
|
+ SIM->box_intersect(a,b);
|
|
|
+}
|
|
|
+
|
|
|
+#define FIRST_HIT_EXCEPTION 10
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline igl::SelfIntersectMesh<Kernel>::SelfIntersectMesh(
|
|
|
+ const Eigen::MatrixXd & V,
|
|
|
+ const Eigen::MatrixXi & F,
|
|
|
+ const SelfintersectParam & params,
|
|
|
+ Eigen::MatrixXd & VV,
|
|
|
+ Eigen::MatrixXi & FF,
|
|
|
+ Eigen::MatrixXi & IF):
|
|
|
+ V(V),
|
|
|
+ F(F),
|
|
|
+ count(0),
|
|
|
+ F_objects(F.rows()),
|
|
|
+ T(),
|
|
|
+ lIF(),
|
|
|
+ offensive(F.rows(),false),
|
|
|
+ offending_index(F.rows(),-1),
|
|
|
+ offending(),
|
|
|
+ edge2faces(),
|
|
|
+ params(params)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ using namespace Eigen;
|
|
|
+ // Compute and process self intersections
|
|
|
+ mesh_to_cgal_triangle_list(V,F,T);
|
|
|
+ // http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html#Section_63.5
|
|
|
+ // Create the corresponding vector of bounding boxes
|
|
|
+ std::vector<Box> boxes;
|
|
|
+ boxes.reserve(T.size());
|
|
|
+ for (
|
|
|
+ TrianglesIterator tit = T.begin();
|
|
|
+ tit != T.end();
|
|
|
+ ++tit)
|
|
|
+ {
|
|
|
+ boxes.push_back(Box(tit->bbox(), tit));
|
|
|
+ }
|
|
|
+ // Leapfrog callback
|
|
|
+ boost::function<void(const Box &a,const Box &b)> cb
|
|
|
+ = boost::bind(&box_intersect, this, _1,_2);
|
|
|
+ // Run the self intersection algorithm with all defaults
|
|
|
+ try{
|
|
|
+ CGAL::box_self_intersection_d(boxes.begin(), boxes.end(),cb);
|
|
|
+ }catch(int e)
|
|
|
+ {
|
|
|
+ // Rethrow if not FIRST_HIT_EXCEPTION
|
|
|
+ if(e != FIRST_HIT_EXCEPTION)
|
|
|
+ {
|
|
|
+ throw e;
|
|
|
+ }
|
|
|
+ // Otherwise just fall through
|
|
|
+ }
|
|
|
+
|
|
|
+ // Convert lIF to Eigen matrix
|
|
|
+ assert(lIF.size()%2 == 0);
|
|
|
+ IF.resize(lIF.size()/2,2);
|
|
|
+ {
|
|
|
+ int i=0;
|
|
|
+ for(
|
|
|
+ typename list<int>::const_iterator ifit = lIF.begin();
|
|
|
+ ifit!=lIF.end();
|
|
|
+ )
|
|
|
+ {
|
|
|
+ IF(i,0) = (*ifit);
|
|
|
+ ifit++;
|
|
|
+ IF(i,1) = (*ifit);
|
|
|
+ ifit++;
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(params.detect_only)
|
|
|
+ {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ int NF_count = 0;
|
|
|
+ // list of new faces, we'll fix F later
|
|
|
+ vector<MatrixXi> NF(offending.size());
|
|
|
+ // list of new vertices
|
|
|
+ list<Point_3> NV;
|
|
|
+ int NV_count = 0;
|
|
|
+ vector<CDT_plus_2> cdt(offending.size());
|
|
|
+ vector<Plane_3> P(offending.size());
|
|
|
+ // Use map for *all* faces
|
|
|
+ map<typename CDT_plus_2::Vertex_handle,int> v2i;
|
|
|
+ // Loop over offending triangles
|
|
|
+ for(int o = 0;o<(int)offending.size();o++)
|
|
|
+ {
|
|
|
+ // index in F
|
|
|
+ const int f = offending[o];
|
|
|
+ projected_delaunay(T[f],F_objects[f],cdt[o]);
|
|
|
+ // Q: Is this also delaunay in 3D?
|
|
|
+ // A: No, because the projection is affine and delaunay is not affine
|
|
|
+ // invariant.
|
|
|
+ // Q: Then, can't we first get the 2D delaunay triangulation, then lift it
|
|
|
+ // to 3D and flip any offending edges?
|
|
|
+ // Plane of projection (also used by projected_delaunay)
|
|
|
+ P[o] = Plane_3(T[f].vertex(0),T[f].vertex(1),T[f].vertex(2));
|
|
|
+ // Build index map
|
|
|
+ {
|
|
|
+ int i=0;
|
|
|
+ for(
|
|
|
+ typename CDT_plus_2::Finite_vertices_iterator vit = cdt[o].finite_vertices_begin();
|
|
|
+ vit != cdt[o].finite_vertices_end();
|
|
|
+ ++vit)
|
|
|
+ {
|
|
|
+ if(i<3)
|
|
|
+ {
|
|
|
+ //cout<<T[f].vertex(i)<<
|
|
|
+ // (T[f].vertex(i) == P[o].to_3d(vit->point())?" == ":" != ")<<
|
|
|
+ // P[o].to_3d(vit->point())<<endl;
|
|
|
+#ifndef NDEBUG
|
|
|
+ // I want to be sure that the original corners really show up as the
|
|
|
+ // original corners of the CDT. I.e. I don't trust CGAL to maintain the
|
|
|
+ // order
|
|
|
+ assert(T[f].vertex(i) == P[o].to_3d(vit->point()));
|
|
|
+#endif
|
|
|
+ // For first three, use original index in F
|
|
|
+ v2i[vit] = F(f,i);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ const Point_3 vit_point_3 = P[o].to_3d(vit->point());
|
|
|
+ // First look up each edge's neighbors to see if exact point has
|
|
|
+ // already been added (This makes everything a bit quadratic)
|
|
|
+ bool found = false;
|
|
|
+ for(int e = 0; e<3 && !found;e++)
|
|
|
+ {
|
|
|
+ // Index of F's eth edge in V
|
|
|
+ int i = F(f,(e+1)%3);
|
|
|
+ int j = F(f,(e+2)%3);
|
|
|
+ // Be sure that i<j
|
|
|
+ if(i>j)
|
|
|
+ {
|
|
|
+ swap(i,j);
|
|
|
+ }
|
|
|
+ assert(edge2faces.count(EMK(i,j))==1);
|
|
|
+ // loop over neighbors
|
|
|
+ for(
|
|
|
+ list<int>::const_iterator nit = edge2faces[EMK(i,j)].begin();
|
|
|
+ nit != edge2faces[EMK(i,j)].end() && !found;
|
|
|
+ nit++)
|
|
|
+ {
|
|
|
+ // don't consider self
|
|
|
+ if(*nit == f)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ // index of neighbor in offending (to find its cdt)
|
|
|
+ int no = offending_index[*nit];
|
|
|
+ // Loop over vertices of that neighbor's cdt (might not have been
|
|
|
+ // processed yet, but then it's OK because it'll just be empty)
|
|
|
+ for(
|
|
|
+ typename CDT_plus_2::Finite_vertices_iterator uit = cdt[no].finite_vertices_begin();
|
|
|
+ uit != cdt[no].finite_vertices_end() && !found;
|
|
|
+ ++uit)
|
|
|
+ {
|
|
|
+ if(vit_point_3 == P[no].to_3d(uit->point()))
|
|
|
+ {
|
|
|
+ assert(v2i.count(uit) == 1);
|
|
|
+ v2i[vit] = v2i[uit];
|
|
|
+ found = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(!found)
|
|
|
+ {
|
|
|
+ v2i[vit] = V.rows()+NV_count;
|
|
|
+ NV.push_back(vit_point_3);
|
|
|
+ NV_count++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ {
|
|
|
+ int i = 0;
|
|
|
+ // Resize to fit new number of triangles
|
|
|
+ NF[o].resize(cdt[o].number_of_faces(),3);
|
|
|
+ NF_count+=NF[o].rows();
|
|
|
+ // Append new faces to NF
|
|
|
+ for(
|
|
|
+ typename CDT_plus_2::Finite_faces_iterator fit = cdt[o].finite_faces_begin();
|
|
|
+ fit != cdt[o].finite_faces_end();
|
|
|
+ ++fit)
|
|
|
+ {
|
|
|
+ NF[o](i,0) = v2i[fit->vertex(0)];
|
|
|
+ NF[o](i,1) = v2i[fit->vertex(1)];
|
|
|
+ NF[o](i,2) = v2i[fit->vertex(2)];
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert(NV_count == (int)NV.size());
|
|
|
+ // Build output
|
|
|
+#ifndef NDEBUG
|
|
|
+ {
|
|
|
+ int off_count = 0;
|
|
|
+ for(int f = 0;f<F.rows();f++)
|
|
|
+ {
|
|
|
+ off_count+= (offensive[f]?1:0);
|
|
|
+ }
|
|
|
+ assert(off_count==(int)offending.size());
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ // Append faces
|
|
|
+ FF.resize(F.rows()-offending.size()+NF_count,3);
|
|
|
+ // First append non-offending original faces
|
|
|
+ // There's an Eigen way to do this in one line but I forget
|
|
|
+ int off = 0;
|
|
|
+ for(int f = 0;f<F.rows();f++)
|
|
|
+ {
|
|
|
+ if(!offensive[f])
|
|
|
+ {
|
|
|
+ FF.row(off++) = F.row(f);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert(off == (int)(F.rows()-offending.size()));
|
|
|
+ // Now append replacement faces for offending faces
|
|
|
+ for(int o = 0;o<(int)offending.size();o++)
|
|
|
+ {
|
|
|
+ FF.block(off,0,NF[o].rows(),3) = NF[o];
|
|
|
+ off += NF[o].rows();
|
|
|
+ }
|
|
|
+ // Append vertices
|
|
|
+ VV.resize(V.rows()+NV_count,3);
|
|
|
+ VV.block(0,0,V.rows(),3) = V;
|
|
|
+ {
|
|
|
+ int i = 0;
|
|
|
+ for(
|
|
|
+ typename list<Point_3>::const_iterator nvit = NV.begin();
|
|
|
+ nvit != NV.end();
|
|
|
+ nvit++)
|
|
|
+ {
|
|
|
+ for(int d = 0;d<3;d++)
|
|
|
+ {
|
|
|
+ const Point_3 & p = *nvit;
|
|
|
+ VV(V.rows()+i,d) = CGAL::to_double(p[d]);
|
|
|
+ // This distinction does not seem necessary:
|
|
|
+//#ifdef INEXACT_CONSTRUCTION
|
|
|
+// VV(V.rows()+i,d) = CGAL::to_double(p[d]);
|
|
|
+//#else
|
|
|
+// VV(V.rows()+i,d) = CGAL::to_double(p[d].exact());
|
|
|
+//#endif
|
|
|
+ }
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Q: Does this give the same result as TETGEN?
|
|
|
+ // A: For the cow and beast, yes.
|
|
|
+
|
|
|
+ // Q: Is tetgen faster than this CGAL implementation?
|
|
|
+ // A: Well, yes. But Tetgen is only solving the detection (predicates)
|
|
|
+ // problem. This is also appending the intersection objects (construction).
|
|
|
+ // But maybe tetgen is still faster for the detection part. For example, this
|
|
|
+ // CGAL implementation on the beast takes 98 seconds but tetgen detection
|
|
|
+ // takes 14 seconds
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline void igl::SelfIntersectMesh<Kernel>::mark_offensive(const int f)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ lIF.push_back(f);
|
|
|
+ if(!offensive[f])
|
|
|
+ {
|
|
|
+ offensive[f]=true;
|
|
|
+ offending_index[f]=offending.size();
|
|
|
+ offending.push_back(f);
|
|
|
+ // Add to edge map
|
|
|
+ for(int e = 0; e<3;e++)
|
|
|
+ {
|
|
|
+ // Index of F's eth edge in V
|
|
|
+ int i = F(f,(e+1)%3);
|
|
|
+ int j = F(f,(e+2)%3);
|
|
|
+ // Be sure that i<j
|
|
|
+ if(i>j)
|
|
|
+ {
|
|
|
+ swap(i,j);
|
|
|
+ }
|
|
|
+ // Create new list if there is no entry
|
|
|
+ if(edge2faces.count(EMK(i,j))==0)
|
|
|
+ {
|
|
|
+ edge2faces[EMK(i,j)] = list<int>();
|
|
|
+ }
|
|
|
+ // append to list
|
|
|
+ edge2faces[EMK(i,j)].push_back(f);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline void igl::SelfIntersectMesh<Kernel>::count_intersection(
|
|
|
+ const int fa,
|
|
|
+ const int fb)
|
|
|
+{
|
|
|
+ mark_offensive(fa);
|
|
|
+ mark_offensive(fb);
|
|
|
+ this->count++;
|
|
|
+ // We found the first intersection
|
|
|
+ if(params.first_only && this->count >= 1)
|
|
|
+ {
|
|
|
+ throw FIRST_HIT_EXCEPTION;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline bool igl::SelfIntersectMesh<Kernel>::intersect(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb)
|
|
|
+{
|
|
|
+ // Determine whether there is an intersection
|
|
|
+ if(!CGAL::do_intersect(A,B))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(!params.detect_only)
|
|
|
+ {
|
|
|
+ // Construct intersection
|
|
|
+ CGAL::Object result = CGAL::intersection(A,B);
|
|
|
+ F_objects[fa].push_back(result);
|
|
|
+ F_objects[fb].push_back(result);
|
|
|
+ }
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline bool igl::SelfIntersectMesh<Kernel>::single_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb,
|
|
|
+ const int va,
|
|
|
+ const int vb)
|
|
|
+{
|
|
|
+ ////using namespace std;
|
|
|
+ //CGAL::Object result = CGAL::intersection(A,B);
|
|
|
+ //if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
+ //{
|
|
|
+ // // Append to each triangle's running list
|
|
|
+ // F_objects[fa].push_back(result);
|
|
|
+ // F_objects[fb].push_back(result);
|
|
|
+ // count_intersection(fa,fb);
|
|
|
+ //}else
|
|
|
+ //{
|
|
|
+ // // Then intersection must be at point
|
|
|
+ // // And point must be at shared vertex
|
|
|
+ // assert(CGAL::object_cast<Point_3>(&result));
|
|
|
+ //}
|
|
|
+ if(single_shared_vertex(A,B,fa,fb,va))
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return single_shared_vertex(B,A,fb,fa,vb);
|
|
|
+}
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline bool igl::SelfIntersectMesh<Kernel>::single_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb,
|
|
|
+ const int va)
|
|
|
+{
|
|
|
+ // This was not a good idea. It will not handle coplanar triangles well.
|
|
|
+ using namespace std;
|
|
|
+ Segment_3 sa(
|
|
|
+ A.vertex((va+1)%3),
|
|
|
+ A.vertex((va+2)%3));
|
|
|
+
|
|
|
+ if(CGAL::do_intersect(sa,B))
|
|
|
+ {
|
|
|
+ CGAL::Object result = CGAL::intersection(sa,B);
|
|
|
+ if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
|
|
|
+ {
|
|
|
+ if(!params.detect_only)
|
|
|
+ {
|
|
|
+ // Single intersection --> segment from shared point to intersection
|
|
|
+ CGAL::Object seg = CGAL::make_object(Segment_3(
|
|
|
+ A.vertex(va),
|
|
|
+ *p));
|
|
|
+ F_objects[fa].push_back(seg);
|
|
|
+ F_objects[fb].push_back(seg);
|
|
|
+ }
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ return true;
|
|
|
+ }else if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
+ {
|
|
|
+ //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (single shared).")<<endl;
|
|
|
+ // Must be coplanar
|
|
|
+ if(params.detect_only)
|
|
|
+ {
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ // WRONG:
|
|
|
+ //// Segment intersection --> triangle from shared point to intersection
|
|
|
+ //CGAL::Object tri = CGAL::make_object(Triangle_3(
|
|
|
+ // A.vertex(va),
|
|
|
+ // s->vertex(0),
|
|
|
+ // s->vertex(1)));
|
|
|
+ //F_objects[fa].push_back(tri);
|
|
|
+ //F_objects[fb].push_back(tri);
|
|
|
+ //count_intersection(fa,fb);
|
|
|
+ // Need to do full test. Intersection could be a general poly.
|
|
|
+ bool test = intersect(A,B,fa,fb);
|
|
|
+ ((void)test);
|
|
|
+ assert(test);
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ cerr<<REDRUM("Segment ∩ triangle neither point nor segment?")<<endl;
|
|
|
+ assert(false);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline bool igl::SelfIntersectMesh<Kernel>::double_shared_vertex(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const Triangle_3 & B,
|
|
|
+ const int fa,
|
|
|
+ const int fb)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ // Cheaper way to do this than calling do_intersect?
|
|
|
+ if(
|
|
|
+ // Can only have an intersection if co-planar
|
|
|
+ (A.supporting_plane() == B.supporting_plane() ||
|
|
|
+ A.supporting_plane() == B.supporting_plane().opposite()) &&
|
|
|
+ CGAL::do_intersect(A,B))
|
|
|
+ {
|
|
|
+ // Construct intersection
|
|
|
+ try
|
|
|
+ {
|
|
|
+ CGAL::Object result = CGAL::intersection(A,B);
|
|
|
+ if(result)
|
|
|
+ {
|
|
|
+ if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
+ {
|
|
|
+ // not coplanar
|
|
|
+ return false;
|
|
|
+ } else if(CGAL::object_cast<Point_3 >(&result))
|
|
|
+ {
|
|
|
+ // this "shouldn't" happen but does for inexact
|
|
|
+ return false;
|
|
|
+ } else
|
|
|
+ {
|
|
|
+ if(!params.detect_only)
|
|
|
+ {
|
|
|
+ // Triangle object
|
|
|
+ F_objects[fa].push_back(result);
|
|
|
+ F_objects[fb].push_back(result);
|
|
|
+ }
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (double shared).")<<endl;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ // CGAL::intersection is disagreeing with do_intersect
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }catch(...)
|
|
|
+ {
|
|
|
+ // This catches some cgal assertion:
|
|
|
+ // CGAL error: assertion violation!
|
|
|
+ // Expression : is_finite(d)
|
|
|
+ // File : /opt/local/include/CGAL/GMP/Gmpq_type.h
|
|
|
+ // Line : 132
|
|
|
+ // Explanation:
|
|
|
+ // But only if NDEBUG is not defined, otherwise there's an uncaught
|
|
|
+ // "Floating point exception: 8" SIGFPE
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Shouldn't get here either
|
|
|
+ assert(false);
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename Kernel>
|
|
|
+inline void igl::SelfIntersectMesh<Kernel>::box_intersect(
|
|
|
+ const Box& a,
|
|
|
+ const Box& b)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ // index in F and T
|
|
|
+ int fa = a.handle()-T.begin();
|
|
|
+ int fb = b.handle()-T.begin();
|
|
|
+ const Triangle_3 & A = *a.handle();
|
|
|
+ const Triangle_3 & B = *b.handle();
|
|
|
+ // I'm not going to deal with degenerate triangles, though at some point we
|
|
|
+ // should
|
|
|
+ assert(!a.handle()->is_degenerate());
|
|
|
+ assert(!b.handle()->is_degenerate());
|
|
|
+ // Number of combinatorially shared vertices
|
|
|
+ int comb_shared_vertices = 0;
|
|
|
+ // Number of geometrically shared vertices (*not* including combinatorially
|
|
|
+ // shared)
|
|
|
+ int geo_shared_vertices = 0;
|
|
|
+ // Keep track of shared vertex indices (we only handles single shared
|
|
|
+ // vertices as a special case, so just need last/first/only ones)
|
|
|
+ int va=-1,vb=-1;
|
|
|
+ int ea,eb;
|
|
|
+ for(ea=0;ea<3;ea++)
|
|
|
+ {
|
|
|
+ for(eb=0;eb<3;eb++)
|
|
|
+ {
|
|
|
+ if(F(fa,ea) == F(fb,eb))
|
|
|
+ {
|
|
|
+ comb_shared_vertices++;
|
|
|
+ va = ea;
|
|
|
+ vb = eb;
|
|
|
+ }else if(A.vertex(ea) == B.vertex(eb))
|
|
|
+ {
|
|
|
+ geo_shared_vertices++;
|
|
|
+ va = ea;
|
|
|
+ vb = eb;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ const int total_shared_vertices = comb_shared_vertices + geo_shared_vertices;
|
|
|
+ if(comb_shared_vertices== 3)
|
|
|
+ {
|
|
|
+ // Combinatorially duplicate face, these should be removed by preprocessing
|
|
|
+ cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are combinatorial duplicates")<<endl;
|
|
|
+ goto done;
|
|
|
+ }
|
|
|
+ if(total_shared_vertices== 3)
|
|
|
+ {
|
|
|
+ // Geometrically duplicate face, these should be removed by preprocessing
|
|
|
+ cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are geometrical duplicates")<<endl;
|
|
|
+ goto done;
|
|
|
+ }
|
|
|
+ //// SPECIAL CASES ARE BROKEN FOR COPLANAR TRIANGLES
|
|
|
+ //if(total_shared_vertices > 0)
|
|
|
+ //{
|
|
|
+ // bool coplanar =
|
|
|
+ // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(0)) &&
|
|
|
+ // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(1)) &&
|
|
|
+ // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(2));
|
|
|
+ // if(coplanar)
|
|
|
+ // {
|
|
|
+ // cerr<<MAGENTAGIN("Facets "<<fa<<" and "<<fb<<
|
|
|
+ // " are coplanar and share vertices")<<endl;
|
|
|
+ // goto full;
|
|
|
+ // }
|
|
|
+ //}
|
|
|
+
|
|
|
+ if(total_shared_vertices == 2)
|
|
|
+ {
|
|
|
+ // Q: What about coplanar?
|
|
|
+ //
|
|
|
+ // o o
|
|
|
+ // |\ /|
|
|
|
+ // | \/ |
|
|
|
+ // | /\ |
|
|
|
+ // |/ \|
|
|
|
+ // o----o
|
|
|
+ double_shared_vertex(A,B,fa,fb);
|
|
|
+
|
|
|
+ goto done;
|
|
|
+ }
|
|
|
+ assert(total_shared_vertices<=1);
|
|
|
+ if(total_shared_vertices==1)
|
|
|
+ {
|
|
|
+ assert(va>=0 && va<3);
|
|
|
+ assert(vb>=0 && vb<3);
|
|
|
+//#ifndef NDEBUG
|
|
|
+// CGAL::Object result =
|
|
|
+//#endif
|
|
|
+ single_shared_vertex(A,B,fa,fb,va,vb);
|
|
|
+//#ifndef NDEBUG
|
|
|
+// if(!CGAL::object_cast<Segment_3 >(&result))
|
|
|
+// {
|
|
|
+// const Point_3 * p = CGAL::object_cast<Point_3 >(&result);
|
|
|
+// assert(p);
|
|
|
+// for(int ea=0;ea<3;ea++)
|
|
|
+// {
|
|
|
+// for(int eb=0;eb<3;eb++)
|
|
|
+// {
|
|
|
+// if(F(fa,ea) == F(fb,eb))
|
|
|
+// {
|
|
|
+// assert(*p==A.vertex(ea));
|
|
|
+// assert(*p==B.vertex(eb));
|
|
|
+// }
|
|
|
+// }
|
|
|
+// }
|
|
|
+// }
|
|
|
+//#endif
|
|
|
+ }else
|
|
|
+ {
|
|
|
+//full:
|
|
|
+ // No geometrically shared vertices, do general intersect
|
|
|
+ intersect(*a.handle(),*b.handle(),fa,fb);
|
|
|
+ }
|
|
|
+done:
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+// Compute 2D delaunay triangulation of a given 3d triangle and a list of
|
|
|
+// intersection objects (points,segments,triangles). CGAL uses an affine
|
|
|
+// projection rather than an isometric projection, so we're not guaranteed
|
|
|
+// that the 2D delaunay triangulation here will be a delaunay triangulation
|
|
|
+// in 3D.
|
|
|
+//
|
|
|
+// Inputs:
|
|
|
+// A triangle in 3D
|
|
|
+// A_objects_3 updated list of intersection objects for A
|
|
|
+// Outputs:
|
|
|
+// cdt Contrained delaunay triangulation in projected 2D plane
|
|
|
+template <typename Kernel>
|
|
|
+inline void igl::SelfIntersectMesh<Kernel>::projected_delaunay(
|
|
|
+ const Triangle_3 & A,
|
|
|
+ const std::list<CGAL::Object> & A_objects_3,
|
|
|
+ CDT_plus_2 & cdt)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ // http://www.cgal.org/Manual/3.2/doc_html/cgal_manual/Triangulation_2/Chapter_main.html#Section_2D_Triangulations_Constrained_Plus
|
|
|
+ // Plane of triangle A
|
|
|
+ Plane_3 P(A.vertex(0),A.vertex(1),A.vertex(2));
|
|
|
+ // Insert triangle into vertices
|
|
|
+ typename CDT_plus_2::Vertex_handle corners[3];
|
|
|
+ for(int i = 0;i<3;i++)
|
|
|
+ {
|
|
|
+ corners[i] = cdt.insert(P.to_2d(A.vertex(i)));
|
|
|
+ }
|
|
|
+ // Insert triangle edges as constraints
|
|
|
+ for(int i = 0;i<3;i++)
|
|
|
+ {
|
|
|
+ cdt.insert_constraint( corners[(i+1)%3], corners[(i+2)%3]);
|
|
|
+ }
|
|
|
+ // Insert constraints for intersection objects
|
|
|
+ for(
|
|
|
+ typename list<CGAL::Object>::const_iterator lit = A_objects_3.begin();
|
|
|
+ lit != A_objects_3.end();
|
|
|
+ lit++)
|
|
|
+ {
|
|
|
+ CGAL::Object obj = *lit;
|
|
|
+ if(const Point_3 *ipoint = CGAL::object_cast<Point_3 >(&obj))
|
|
|
+ {
|
|
|
+ // Add point
|
|
|
+ cdt.insert(P.to_2d(*ipoint));
|
|
|
+ } else if(const Segment_3 *iseg = CGAL::object_cast<Segment_3 >(&obj))
|
|
|
+ {
|
|
|
+ // Add segment constraint
|
|
|
+ cdt.insert_constraint(P.to_2d(iseg->vertex(0)),P.to_2d(iseg->vertex(1)));
|
|
|
+ } else if(const Triangle_3 *itri = CGAL::object_cast<Triangle_3 >(&obj))
|
|
|
+ {
|
|
|
+ // Add 3 segment constraints
|
|
|
+ cdt.insert_constraint(P.to_2d(itri->vertex(0)),P.to_2d(itri->vertex(1)));
|
|
|
+ cdt.insert_constraint(P.to_2d(itri->vertex(1)),P.to_2d(itri->vertex(2)));
|
|
|
+ cdt.insert_constraint(P.to_2d(itri->vertex(2)),P.to_2d(itri->vertex(0)));
|
|
|
+ } else if(const std::vector<Point_3 > *polyp =
|
|
|
+ CGAL::object_cast< std::vector<Point_3 > >(&obj))
|
|
|
+ {
|
|
|
+ //cerr<<REDRUM("Poly...")<<endl;
|
|
|
+ const std::vector<Point_3 > & poly = *polyp;
|
|
|
+ const int m = poly.size();
|
|
|
+ assert(m>=2);
|
|
|
+ for(int p = 0;p<m;p++)
|
|
|
+ {
|
|
|
+ const int np = (p+1)%m;
|
|
|
+ cdt.insert_constraint(P.to_2d(poly[p]),P.to_2d(poly[np]));
|
|
|
+ }
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ cerr<<REDRUM("What is this object?!")<<endl;
|
|
|
+ assert(false);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+
|