|
@@ -15,6 +15,7 @@
|
|
|
#include <map>
|
|
|
#include <queue>
|
|
|
#include <iostream>
|
|
|
+#include <CGAL/number_utils.h>
|
|
|
//#define IGL_OUTER_HULL_DEBUG
|
|
|
|
|
|
template <
|
|
@@ -112,8 +113,11 @@ IGL_INLINE void igl::outer_hull(
|
|
|
auto eV = (V.row(d)-V.row(s)).normalized();
|
|
|
auto edge_len = (V.row(d) - V.row(s)).norm();
|
|
|
auto edge_valance = uE2E[ui].size();
|
|
|
+ auto eO = V.row(o) - V.row(s);
|
|
|
assert(edge_valance % 2 == 0);
|
|
|
- bool degenerated = !eV.allFinite() || edge_len < 1e-15;
|
|
|
+ const typename DerivedV::Scalar EPS = 1e-12;
|
|
|
+ bool degenerated = !eV.allFinite() || edge_len < EPS;
|
|
|
+ bool all_faces_are_degenerated_and_coplanar = false;
|
|
|
#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
if (degenerated && edge_valance > 2) {
|
|
|
cerr.precision(30);
|
|
@@ -137,15 +141,16 @@ IGL_INLINE void igl::outer_hull(
|
|
|
size_t j = (i+1) % num_adj_faces;
|
|
|
eV = normals.row(i).cross(normals.row(j));
|
|
|
auto length = eV.norm();
|
|
|
- if (length > 1e-15) {
|
|
|
+ if (length > 0) {
|
|
|
eV /= length;
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
- if (!eV.allFinite() || eV.norm() < 1e-15) {
|
|
|
+ if (!eV.allFinite() || eV.norm() < EPS) {
|
|
|
//cerr << "This is bad... all adj face normals are colinear" << std::endl;
|
|
|
eV.setZero();
|
|
|
+ all_faces_are_degenerated_and_coplanar = true;
|
|
|
}
|
|
|
if (degenerated){
|
|
|
// Adjust edge direction.
|
|
@@ -165,6 +170,7 @@ IGL_INLINE void igl::outer_hull(
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
+
|
|
|
vector<bool> cons(uE2E[ui].size());
|
|
|
// Loop over incident face edges
|
|
|
for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
@@ -183,7 +189,16 @@ IGL_INLINE void igl::outer_hull(
|
|
|
if (degenerated)
|
|
|
cerr << "n " << fei << ": " << n << std::endl;
|
|
|
#endif
|
|
|
- di_I(fei, 0) = eVp.cross(n).dot(eV);
|
|
|
+ if (!all_faces_are_degenerated_and_coplanar) {
|
|
|
+ di_I(fei, 0) = eVp.cross(n).dot(eV);
|
|
|
+ } else {
|
|
|
+ auto crossed = eVp.cross(n);
|
|
|
+ di_I(fei, 0) = crossed.norm();
|
|
|
+ int sign = eVp.cross(crossed).dot(eO);
|
|
|
+ if (sign < 0) {
|
|
|
+ di_I(fei, 0) *= -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
di_I(fei, 1) = eVp.dot(n);
|
|
|
assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
|
|
|
assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
|
|
@@ -695,6 +710,487 @@ IGL_INLINE void igl::outer_hull(
|
|
|
return outer_hull(V,F,N,G,J,flip);
|
|
|
}
|
|
|
|
|
|
+template <
|
|
|
+ typename Kernel,
|
|
|
+ typename DerivedV,
|
|
|
+ typename DerivedF,
|
|
|
+ typename DerivedN,
|
|
|
+ typename DerivedG,
|
|
|
+ typename DerivedJ,
|
|
|
+ typename Derivedflip>
|
|
|
+IGL_INLINE void igl::outer_hull_exact(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::PlainObjectBase<DerivedF> & F,
|
|
|
+ const Eigen::PlainObjectBase<DerivedN> & N,
|
|
|
+ Eigen::PlainObjectBase<DerivedG> & G,
|
|
|
+ Eigen::PlainObjectBase<DerivedJ> & J,
|
|
|
+ Eigen::PlainObjectBase<Derivedflip> & flip)
|
|
|
+{
|
|
|
+ std::cout.precision(20);
|
|
|
+ //for (size_t i=0; i<V.rows(); i++) {
|
|
|
+ // std::cout << "v " << V.row(i) << std::endl;
|
|
|
+ //}
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ std::cerr << "Extracting outer hull" << std::endl;
|
|
|
+ writePLY("outer_hull_input.ply", V, F);
|
|
|
+#endif
|
|
|
+ using namespace Eigen;
|
|
|
+ using namespace std;
|
|
|
+ typedef typename DerivedF::Index Index;
|
|
|
+ Matrix<Index,DerivedF::RowsAtCompileTime,1> C;
|
|
|
+ typedef Matrix<typename DerivedV::Scalar,Dynamic,DerivedV::ColsAtCompileTime> MatrixXV;
|
|
|
+ typedef Matrix<typename DerivedF::Scalar,Dynamic,DerivedF::ColsAtCompileTime> MatrixXF;
|
|
|
+ typedef Matrix<typename DerivedG::Scalar,Dynamic,DerivedG::ColsAtCompileTime> MatrixXG;
|
|
|
+ typedef Matrix<typename DerivedJ::Scalar,Dynamic,DerivedJ::ColsAtCompileTime> MatrixXJ;
|
|
|
+ typedef Matrix<typename DerivedN::Scalar,1,3> RowVector3N;
|
|
|
+ const Index m = F.rows();
|
|
|
+
|
|
|
+ const auto & duplicate_simplex = [&F](const int f, const int g)->bool
|
|
|
+ {
|
|
|
+ return
|
|
|
+ (F(f,0) == F(g,0) && F(f,1) == F(g,1) && F(f,2) == F(g,2)) ||
|
|
|
+ (F(f,1) == F(g,0) && F(f,2) == F(g,1) && F(f,0) == F(g,2)) ||
|
|
|
+ (F(f,2) == F(g,0) && F(f,0) == F(g,1) && F(f,1) == F(g,2)) ||
|
|
|
+ (F(f,0) == F(g,2) && F(f,1) == F(g,1) && F(f,2) == F(g,0)) ||
|
|
|
+ (F(f,1) == F(g,2) && F(f,2) == F(g,1) && F(f,0) == F(g,0)) ||
|
|
|
+ (F(f,2) == F(g,2) && F(f,0) == F(g,1) && F(f,1) == F(g,0));
|
|
|
+ };
|
|
|
+
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"outer hull..."<<endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"edge map..."<<endl;
|
|
|
+#endif
|
|
|
+ typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixX2I;
|
|
|
+ typedef Matrix<typename DerivedF::Index,Dynamic,1> VectorXI;
|
|
|
+ typedef Matrix<typename DerivedV::Scalar, 3, 1> Vector3F;
|
|
|
+ MatrixX2I E,uE;
|
|
|
+ VectorXI EMAP;
|
|
|
+ vector<vector<typename DerivedF::Index> > uE2E;
|
|
|
+ unique_edge_map(F,E,uE,EMAP,uE2E);
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ for (size_t ui=0; ui<uE.rows(); ui++) {
|
|
|
+ std::cout << ui << ": " << uE2E[ui].size() << " -- (";
|
|
|
+ for (size_t i=0; i<uE2E[ui].size(); i++) {
|
|
|
+ std::cout << uE2E[ui][i] << ", ";
|
|
|
+ }
|
|
|
+ std::cout << ")" << std::endl;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ // TODO:
|
|
|
+ // uE --> face-edge index, sorted CCW around edge according to normal
|
|
|
+ // uE --> sorted order index
|
|
|
+ // uE --> bool, whether needed to flip face to make "consistent" with unique
|
|
|
+ // edge
|
|
|
+ // Place order of each half-edge in its corresponding sorted list around edge
|
|
|
+ VectorXI diIM(3*m);
|
|
|
+ // Whether face's edge used for sorting is consistent with unique edge
|
|
|
+ VectorXI dicons(3*m);
|
|
|
+ // dihedral angles of faces around edge with face of edge in dicons
|
|
|
+ vector<vector<typename Eigen::Vector2d> > di(uE2E.size());
|
|
|
+ // For each list of face-edges incide on a unique edge
|
|
|
+ for(size_t ui = 0;ui<(size_t)uE.rows();ui++)
|
|
|
+ {
|
|
|
+ // Base normal vector to orient against
|
|
|
+ const auto fe0 = uE2E[ui][0];
|
|
|
+ const RowVector3N & eVp = N.row(fe0%m);
|
|
|
+ MatrixXd di_I(uE2E[ui].size(),3);
|
|
|
+
|
|
|
+ const typename DerivedF::Scalar o = F(fe0%m, fe0/m);
|
|
|
+ const typename DerivedF::Scalar d = F(fe0%m,((fe0/m)+2)%3);
|
|
|
+ const typename DerivedF::Scalar s = F(fe0%m,((fe0/m)+1)%3);
|
|
|
+ // Edge vector
|
|
|
+ typename Kernel::Vector_3 exact_eV(
|
|
|
+ V(d, 0) - V(s, 0),
|
|
|
+ V(d, 1) - V(s, 1),
|
|
|
+ V(d, 2) - V(s, 2));
|
|
|
+ auto sq_length = exact_eV.squared_length();
|
|
|
+ if (sq_length > 0.0) {
|
|
|
+ exact_eV = exact_eV / sq_length;
|
|
|
+ }
|
|
|
+ RowVector3N eV(
|
|
|
+ CGAL::to_double(exact_eV[0]),
|
|
|
+ CGAL::to_double(exact_eV[1]),
|
|
|
+ CGAL::to_double(exact_eV[2]));
|
|
|
+ if (sq_length > 0.0) {
|
|
|
+ eV.normalize();
|
|
|
+ }
|
|
|
+
|
|
|
+ vector<bool> cons(uE2E[ui].size());
|
|
|
+ // Loop over incident face edges
|
|
|
+ for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
+ {
|
|
|
+ const auto & fe = uE2E[ui][fei];
|
|
|
+ const auto f = fe % m;
|
|
|
+ const auto c = fe / m;
|
|
|
+ // source should match destination to be consistent
|
|
|
+ cons[fei] = (d == F(f,(c+1)%3));
|
|
|
+ assert( cons[fei] || (d == F(f,(c+2)%3)));
|
|
|
+ assert(!cons[fei] || (s == F(f,(c+2)%3)));
|
|
|
+ assert(!cons[fei] || (d == F(f,(c+1)%3)));
|
|
|
+ // Angle between n and f
|
|
|
+ const RowVector3N & n = N.row(f);
|
|
|
+ di_I(fei, 0) = eVp.cross(n).dot(eV);
|
|
|
+ di_I(fei, 1) = eVp.dot(n);
|
|
|
+ assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
|
|
|
+ assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
|
|
|
+ if (cons[fei]) {
|
|
|
+ di_I(fei, 0) *= -1;
|
|
|
+ di_I(fei, 1) *= -1;
|
|
|
+ }
|
|
|
+ di_I(fei, 0) *= -1; // Sort clockwise.
|
|
|
+ // This signing is very important to make sure different edges sort
|
|
|
+ // duplicate faces the same way, regardless of their orientations
|
|
|
+ di_I(fei,2) = (cons[fei]?1.:-1.)*(f+1);
|
|
|
+ }
|
|
|
+
|
|
|
+ VectorXi IM;
|
|
|
+ // Sort, but break ties using "signed index" to ensure that duplicates
|
|
|
+ // always show up in same order.
|
|
|
+ igl::sort_angles(di_I, IM);
|
|
|
+ vector<typename DerivedF::Index> temp = uE2E[ui];
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ std::cout.precision(20);
|
|
|
+ //std::cout << "sorted" << std::endl;
|
|
|
+#endif
|
|
|
+ for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
+ {
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ //std::cout << di_I.row(IM(fei)) << std::endl;
|
|
|
+#endif
|
|
|
+ uE2E[ui][fei] = temp[IM(fei)];
|
|
|
+ const auto & fe = uE2E[ui][fei];
|
|
|
+ diIM(fe) = fei;
|
|
|
+ dicons(fe) = cons[IM(fei)];
|
|
|
+ }
|
|
|
+
|
|
|
+ di[ui].resize(uE2E[ui].size());
|
|
|
+ for (size_t i=0; i<di[ui].size(); i++) {
|
|
|
+ di[ui][i] = di_I.row(IM(i)).segment<2>(0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ vector<vector<vector<Index > > > TT,_1;
|
|
|
+ triangle_triangle_adjacency(E,EMAP,uE2E,false,TT,_1);
|
|
|
+ VectorXI counts;
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"facet components..."<<endl;
|
|
|
+#endif
|
|
|
+ facet_components(TT,C,counts);
|
|
|
+ assert(C.maxCoeff()+1 == counts.rows());
|
|
|
+ const size_t ncc = counts.rows();
|
|
|
+ G.resize(0,F.cols());
|
|
|
+ J.resize(0,1);
|
|
|
+ flip.setConstant(m,1,false);
|
|
|
+
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"reindex..."<<endl;
|
|
|
+#endif
|
|
|
+ // H contains list of faces on outer hull;
|
|
|
+ vector<bool> FH(m,false);
|
|
|
+ vector<bool> EH(3*m,false);
|
|
|
+ vector<MatrixXG> vG(ncc);
|
|
|
+ vector<MatrixXJ> vJ(ncc);
|
|
|
+ vector<MatrixXJ> vIM(ncc);
|
|
|
+ size_t face_count = 0;
|
|
|
+ for(size_t id = 0;id<ncc;id++)
|
|
|
+ {
|
|
|
+ vIM[id].resize(counts[id],1);
|
|
|
+ }
|
|
|
+ // current index into each IM
|
|
|
+ vector<size_t> g(ncc,0);
|
|
|
+ // place order of each face in its respective component
|
|
|
+ for(Index f = 0;f<m;f++)
|
|
|
+ {
|
|
|
+ vIM[C(f)](g[C(f)]++) = f;
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"barycenters..."<<endl;
|
|
|
+#endif
|
|
|
+ // assumes that "resolve" has handled any coplanar cases correctly and nearly
|
|
|
+ // coplanar cases can be sorted based on barycenter.
|
|
|
+ MatrixXV BC;
|
|
|
+ barycenter(V,F,BC);
|
|
|
+
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"loop over CCs (="<<ncc<<")..."<<endl;
|
|
|
+#endif
|
|
|
+ for(Index id = 0;id<(Index)ncc;id++)
|
|
|
+ {
|
|
|
+ auto & IM = vIM[id];
|
|
|
+ // starting face that's guaranteed to be on the outer hull and in this
|
|
|
+ // component
|
|
|
+ int f;
|
|
|
+ bool f_flip;
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"outer facet..."<<endl;
|
|
|
+#endif
|
|
|
+ outer_facet(V,F,N,IM,f,f_flip);
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"outer facet: "<<f<<endl;
|
|
|
+ cout << V.row(F(f, 0)) << std::endl;
|
|
|
+ cout << V.row(F(f, 1)) << std::endl;
|
|
|
+ cout << V.row(F(f, 2)) << std::endl;
|
|
|
+#endif
|
|
|
+ int FHcount = 1;
|
|
|
+ FH[f] = true;
|
|
|
+ // Q contains list of face edges to continue traversing upong
|
|
|
+ queue<int> Q;
|
|
|
+ Q.push(f+0*m);
|
|
|
+ Q.push(f+1*m);
|
|
|
+ Q.push(f+2*m);
|
|
|
+ flip(f) = f_flip;
|
|
|
+ //std::cout << "face " << face_count++ << ": " << f << std::endl;
|
|
|
+ //std::cout << "f " << F.row(f).array()+1 << std::endl;
|
|
|
+ //cout<<"flip("<<f<<") = "<<(flip(f)?"true":"false")<<endl;
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<"BFS..."<<endl;
|
|
|
+#endif
|
|
|
+ while(!Q.empty())
|
|
|
+ {
|
|
|
+ // face-edge
|
|
|
+ const int e = Q.front();
|
|
|
+ Q.pop();
|
|
|
+ // face
|
|
|
+ const int f = e%m;
|
|
|
+ // corner
|
|
|
+ const int c = e/m;
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ std::cout << "edge: " << e << ", ue: " << EMAP(e) << std::endl;
|
|
|
+ std::cout << "face: " << f << std::endl;
|
|
|
+ std::cout << "corner: " << c << std::endl;
|
|
|
+ std::cout << "consistent: " << dicons(e) << std::endl;
|
|
|
+#endif
|
|
|
+ // Should never see edge again...
|
|
|
+ if(EH[e] == true)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ EH[e] = true;
|
|
|
+ // source of edge according to f
|
|
|
+ const int fs = flip(f)?F(f,(c+2)%3):F(f,(c+1)%3);
|
|
|
+ // destination of edge according to f
|
|
|
+ const int fd = flip(f)?F(f,(c+1)%3):F(f,(c+2)%3);
|
|
|
+ // edge valence
|
|
|
+ const size_t val = uE2E[EMAP(e)].size();
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ std::cout << "vd: " << V.row(fd) << std::endl;
|
|
|
+ std::cout << "vs: " << V.row(fs) << std::endl;
|
|
|
+ std::cout << "edge: " << V.row(fd) - V.row(fs) << std::endl;
|
|
|
+ for (size_t i=0; i<val; i++) {
|
|
|
+ if (i == diIM(e)) {
|
|
|
+ std::cout << "* ";
|
|
|
+ } else {
|
|
|
+ std::cout << " ";
|
|
|
+ }
|
|
|
+ std::cout << i << ": " << di[EMAP(e)][i].transpose()
|
|
|
+ << " (e: " << uE2E[EMAP(e)][i] << ", f: "
|
|
|
+ << uE2E[EMAP(e)][i] % m * (dicons(uE2E[EMAP(e)][i]) ? 1:-1) << ")" << std::endl;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ // is edge consistent with edge of face used for sorting
|
|
|
+ const int e_cons = (dicons(e) ? 1: -1);
|
|
|
+ int nfei = -1;
|
|
|
+ // Loop once around trying to find suitable next face
|
|
|
+ for(size_t step = 1; step<val+2;step++)
|
|
|
+ {
|
|
|
+ const int nfei_new = (diIM(e) + 2*val + e_cons*step*(flip(f)?-1:1))%val;
|
|
|
+ const int nf = uE2E[EMAP(e)][nfei_new] % m;
|
|
|
+ {
|
|
|
+ // Only use this face if not already seen
|
|
|
+ if(!FH[nf])
|
|
|
+ {
|
|
|
+ nfei = nfei_new;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int max_ne = -1;
|
|
|
+ if(nfei >= 0)
|
|
|
+ {
|
|
|
+ max_ne = uE2E[EMAP(e)][nfei];
|
|
|
+ }
|
|
|
+
|
|
|
+ if(max_ne>=0)
|
|
|
+ {
|
|
|
+ // face of neighbor
|
|
|
+ const int nf = max_ne%m;
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ if(!FH[nf])
|
|
|
+ {
|
|
|
+ // first time seeing face
|
|
|
+ cout<<(f+1)<<" --> "<<(nf+1)<<endl;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ FH[nf] = true;
|
|
|
+ //std::cout << "face " << face_count++ << ": " << nf << std::endl;
|
|
|
+ //std::cout << "f " << F.row(nf).array()+1 << std::endl;
|
|
|
+ FHcount++;
|
|
|
+ // corner of neighbor
|
|
|
+ const int nc = max_ne/m;
|
|
|
+ const int nd = F(nf,(nc+2)%3);
|
|
|
+ const bool cons = (flip(f)?fd:fs) == nd;
|
|
|
+ flip(nf) = (cons ? flip(f) : !flip(f));
|
|
|
+ //cout<<"flip("<<nf<<") = "<<(flip(nf)?"true":"false")<<endl;
|
|
|
+ const int ne1 = nf+((nc+1)%3)*m;
|
|
|
+ const int ne2 = nf+((nc+2)%3)*m;
|
|
|
+ if(!EH[ne1])
|
|
|
+ {
|
|
|
+ Q.push(ne1);
|
|
|
+ }
|
|
|
+ if(!EH[ne2])
|
|
|
+ {
|
|
|
+ Q.push(ne2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ vG[id].resize(FHcount,3);
|
|
|
+ vJ[id].resize(FHcount,1);
|
|
|
+ //nG += FHcount;
|
|
|
+ size_t h = 0;
|
|
|
+ assert(counts(id) == IM.rows());
|
|
|
+ for(int i = 0;i<counts(id);i++)
|
|
|
+ {
|
|
|
+ const size_t f = IM(i);
|
|
|
+ //if(f_flip)
|
|
|
+ //{
|
|
|
+ // flip(f) = !flip(f);
|
|
|
+ //}
|
|
|
+ if(FH[f])
|
|
|
+ {
|
|
|
+ vG[id].row(h) = (flip(f)?F.row(f).reverse().eval():F.row(f));
|
|
|
+ vJ[id](h,0) = f;
|
|
|
+ h++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert((int)h == FHcount);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Is A inside B? Assuming A and B are consistently oriented but closed and
|
|
|
+ // non-intersecting.
|
|
|
+ const auto & is_component_inside_other = [](
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const MatrixXV & BC,
|
|
|
+ const MatrixXG & A,
|
|
|
+ const MatrixXJ & AJ,
|
|
|
+ const MatrixXG & B)->bool
|
|
|
+ {
|
|
|
+ const auto & bounding_box = [](
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const MatrixXG & F)->
|
|
|
+ MatrixXV
|
|
|
+ {
|
|
|
+ MatrixXV BB(2,3);
|
|
|
+ BB<<
|
|
|
+ 1e26,1e26,1e26,
|
|
|
+ -1e26,-1e26,-1e26;
|
|
|
+ const size_t m = F.rows();
|
|
|
+ for(size_t f = 0;f<m;f++)
|
|
|
+ {
|
|
|
+ for(size_t c = 0;c<3;c++)
|
|
|
+ {
|
|
|
+ const auto & vfc = V.row(F(f,c));
|
|
|
+ BB.row(0) = BB.row(0).array().min(vfc.array()).eval();
|
|
|
+ BB.row(1) = BB.row(1).array().max(vfc.array()).eval();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return BB;
|
|
|
+ };
|
|
|
+ // A lot of the time we're dealing with unrelated, distant components: cull
|
|
|
+ // them.
|
|
|
+ MatrixXV ABB = bounding_box(V,A);
|
|
|
+ MatrixXV BBB = bounding_box(V,B);
|
|
|
+ if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
|
|
|
+ (ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
|
|
|
+ {
|
|
|
+ // bounding boxes do not overlap
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ ////////////////////////////////////////////////////////////////////////
|
|
|
+ // POTENTIAL ROBUSTNESS WEAK AREA
|
|
|
+ ////////////////////////////////////////////////////////////////////////
|
|
|
+ //
|
|
|
+ // q could be so close (<~1e-15) to B that the winding number is not a robust way to
|
|
|
+ // determine inside/outsideness. We could try to find a _better_ q which is
|
|
|
+ // farther away, but couldn't they all be bad?
|
|
|
+ Matrix<double, 1, 3> q(
|
|
|
+ CGAL::to_double(BC(AJ(0), 0)),
|
|
|
+ CGAL::to_double(BC(AJ(0), 1)),
|
|
|
+ CGAL::to_double(BC(AJ(0), 2)));
|
|
|
+ // In a perfect world, it's enough to test a single point.
|
|
|
+ double w;
|
|
|
+
|
|
|
+ // winding_number_3 expects colmajor
|
|
|
+ double* Vdata;
|
|
|
+ Matrix<double,
|
|
|
+ DerivedV::RowsAtCompileTime,
|
|
|
+ DerivedV::ColsAtCompileTime,
|
|
|
+ ColMajor> Vcol(V.rows(), V.cols());
|
|
|
+ for (size_t i=0; i<V.rows(); i++) {
|
|
|
+ for (size_t j=0; j<V.cols(); j++) {
|
|
|
+ Vcol(i,j) = CGAL::to_double(V(i,j));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Vdata = Vcol.data();
|
|
|
+ winding_number_3(
|
|
|
+ Vdata,V.rows(),
|
|
|
+ B.data(),B.rows(),
|
|
|
+ q.data(),1,&w);
|
|
|
+ return fabs(w)>0.5;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Reject components which are completely inside other components
|
|
|
+ vector<bool> keep(ncc,true);
|
|
|
+ size_t nG = 0;
|
|
|
+ // This is O( ncc * ncc * m)
|
|
|
+ for(size_t id = 0;id<ncc;id++)
|
|
|
+ {
|
|
|
+ for(size_t oid = 0;oid<ncc;oid++)
|
|
|
+ {
|
|
|
+ if(id == oid)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ const bool inside = is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
|
|
|
+#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
+ cout<<id<<" is inside "<<oid<<" ? "<<inside<<endl;
|
|
|
+#endif
|
|
|
+ keep[id] = keep[id] && !inside;
|
|
|
+ }
|
|
|
+ if(keep[id])
|
|
|
+ {
|
|
|
+ nG += vJ[id].rows();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // collect G and J across components
|
|
|
+ G.resize(nG,3);
|
|
|
+ J.resize(nG,1);
|
|
|
+ {
|
|
|
+ size_t off = 0;
|
|
|
+ for(Index id = 0;id<(Index)ncc;id++)
|
|
|
+ {
|
|
|
+ if(keep[id])
|
|
|
+ {
|
|
|
+ assert(vG[id].rows() == vJ[id].rows());
|
|
|
+ G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
|
|
|
+ J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
|
|
|
+ off += vG[id].rows();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
|
// Explicit template specialization
|
|
|
template void igl::outer_hull<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<long, -1, 1, 0, -1, 1>, Eigen::Matrix<bool, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<long, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<bool, -1, 1, 0, -1, 1> >&);
|