|
@@ -0,0 +1,228 @@
|
|
|
+#include "fast_winding_number.h"
|
|
|
+#include <vector>
|
|
|
+#include <iostream>
|
|
|
+#include <igl/parallel_for.h>
|
|
|
+
|
|
|
+void fast_winding_number_precompute(const Eigen::MatrixXd & P,
|
|
|
+ const Eigen::MatrixXd & N,
|
|
|
+ const Eigen::VectorXd & A,
|
|
|
+ const std::vector<std::vector<int> > & point_indices,
|
|
|
+ const std::vector<Eigen::Matrix<int,8,1>, Eigen::aligned_allocator<Eigen::Matrix<int,8,1>>> & children,
|
|
|
+ const int expansion_order,
|
|
|
+ Eigen::MatrixXd & CM,
|
|
|
+ Eigen::VectorXd & R,
|
|
|
+ Eigen::MatrixXd & EC
|
|
|
+ ){
|
|
|
+ int m = children.size();
|
|
|
+ int num_terms;
|
|
|
+ if(expansion_order == 0){
|
|
|
+ num_terms = 3;
|
|
|
+ } else if(expansion_order ==1){
|
|
|
+ num_terms = 3 + 9;
|
|
|
+ } else if(expansion_order == 2){
|
|
|
+ num_terms = 3 + 9 + 27;
|
|
|
+ } else {
|
|
|
+ assert(false);
|
|
|
+ }
|
|
|
+
|
|
|
+ R.resize(m);
|
|
|
+ CM.resize(m,3);
|
|
|
+ EC.resize(m,num_terms);
|
|
|
+ EC = Eigen::MatrixXd::Zero(m,num_terms);
|
|
|
+ std::function< void(const int) > helper;
|
|
|
+ helper = [&helper,
|
|
|
+ &P,&N,&A,&expansion_order,&point_indices,&children,&EC,&R,&CM]
|
|
|
+ (const int index)-> void
|
|
|
+ {
|
|
|
+ double sum_area = 0;
|
|
|
+
|
|
|
+ Eigen::RowVector3d masscenter = Eigen::RowVector3d::Zero();
|
|
|
+ Eigen::RowVector3d zeroth_expansion = Eigen::RowVector3d::Zero();
|
|
|
+ double areatotal = 0.0;
|
|
|
+ for(int j = 0; j < point_indices.at(index).size(); j++){
|
|
|
+ int curr_point_index = point_indices.at(index).at(j);
|
|
|
+
|
|
|
+ areatotal += A(curr_point_index);
|
|
|
+ masscenter += A(curr_point_index)*P.row(curr_point_index);
|
|
|
+ zeroth_expansion += A(curr_point_index)*N.row(curr_point_index);
|
|
|
+ }
|
|
|
+
|
|
|
+ masscenter = masscenter/areatotal;
|
|
|
+ CM.row(index) = masscenter;
|
|
|
+ EC.block<1,3>(index,0) = zeroth_expansion;
|
|
|
+
|
|
|
+ double max_norm = 0;
|
|
|
+ double curr_norm;
|
|
|
+
|
|
|
+ for(int i = 0; i < point_indices.at(index).size(); i++){
|
|
|
+ //Get max distance from center of mass:
|
|
|
+ int curr_point_index = point_indices.at(index).at(i);
|
|
|
+ Eigen::RowVector3d point = P.row(curr_point_index)-masscenter;
|
|
|
+ curr_norm = point.norm();
|
|
|
+ if(curr_norm > max_norm){
|
|
|
+ max_norm = curr_norm;
|
|
|
+ }
|
|
|
+
|
|
|
+ //Calculate higher order terms if necessary
|
|
|
+ Eigen::Matrix3d TempCoeffs;
|
|
|
+ if(EC.cols() >= (3+9)){
|
|
|
+ TempCoeffs = A(curr_point_index) * point.transpose() * N.row(curr_point_index);
|
|
|
+ EC.block<1,9>(index,3) += Eigen::Map<Eigen::RowVectorXd>(TempCoeffs.data(), TempCoeffs.size());
|
|
|
+ }
|
|
|
+
|
|
|
+ if(EC.cols() == (3+9+27)){
|
|
|
+ for(int k = 0; k < 3; k++){
|
|
|
+ TempCoeffs = 0.5 * point(k) * (A(curr_point_index) * point.transpose() * N.row(curr_point_index)) ;
|
|
|
+ EC.block<1,9>(index,12+9*k) += Eigen::Map<Eigen::RowVectorXd>(TempCoeffs.data(), TempCoeffs.size());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ R(index) = max_norm;
|
|
|
+ if(children.at(index)(0) != -1)
|
|
|
+ {
|
|
|
+ for(int i = 0; i < 8; i++){
|
|
|
+ int child = children.at(index)(i);
|
|
|
+ helper(child);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+ helper(0);
|
|
|
+}
|
|
|
+
|
|
|
+double direct_eval(const Eigen::RowVector3d & loc, const Eigen::RowVector3d & anorm){
|
|
|
+ double wn = (loc(0)*anorm(0) + loc(1)*anorm(1) + loc(2)*anorm(2))/(4.0*M_PI*std::pow(loc.norm(),3));
|
|
|
+ if(std::isnan(wn)){
|
|
|
+ return 0.5;
|
|
|
+ }else{
|
|
|
+ return wn;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+double expansion_eval(const Eigen::RowVector3d & loc, const Eigen::RowVectorXd & EC){
|
|
|
+ double wn = direct_eval(loc,EC.head<3>());
|
|
|
+ double r = loc.norm();
|
|
|
+ if(EC.size()>3){
|
|
|
+ Eigen::Matrix3d SecondDerivative = Eigen::Matrix3d::Identity()/(4.0*M_PI*std::pow(r,3));
|
|
|
+ SecondDerivative += -3.0*loc.transpose()*loc/(4.0*M_PI*std::pow(r,5));
|
|
|
+ Eigen::RowVectorXd derivative_vector = Eigen::Map<Eigen::RowVectorXd>(SecondDerivative.data(), SecondDerivative.size());
|
|
|
+ wn += derivative_vector.cwiseProduct(EC.segment<9>(3)).sum();
|
|
|
+ }
|
|
|
+ if(EC.size()>3+9){
|
|
|
+ Eigen::Matrix3d ThirdDerivative;
|
|
|
+ for(int i = 0; i < 3; i++){
|
|
|
+ ThirdDerivative = 15.0*loc(i)*loc.transpose()*loc/(4.0*M_PI*std::pow(r,7));
|
|
|
+ Eigen::Matrix3d Diagonal;
|
|
|
+ Diagonal << loc(i), 0, 0,
|
|
|
+ 0, loc(i), 0,
|
|
|
+ 0, 0, loc(i);
|
|
|
+ Eigen::Matrix3d RowCol = Eigen::Matrix3d::Zero();
|
|
|
+ RowCol.row(i) = loc;
|
|
|
+ RowCol = RowCol + RowCol.transpose();
|
|
|
+ ThirdDerivative += -3.0/(4.0*M_PI*std::pow(r,5)) * (RowCol + Diagonal);
|
|
|
+ Eigen::RowVectorXd derivative_vector = Eigen::Map<Eigen::RowVectorXd>(ThirdDerivative.data(), ThirdDerivative.size());
|
|
|
+ wn += derivative_vector.cwiseProduct(EC.segment<9>(12 + i*9)).sum();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return wn;
|
|
|
+}
|
|
|
+
|
|
|
+void fast_winding_number(const Eigen::MatrixXd & P,
|
|
|
+ const Eigen::MatrixXd & N,
|
|
|
+ const Eigen::VectorXd & A,
|
|
|
+ const std::vector<std::vector<int> > & point_indices,
|
|
|
+ const std::vector<Eigen::Matrix<int,8,1>, Eigen::aligned_allocator<Eigen::Matrix<int,8,1>>> & children,
|
|
|
+ const Eigen::MatrixXd & CM,
|
|
|
+ const Eigen::VectorXd & R,
|
|
|
+ const Eigen::MatrixXd & EC,
|
|
|
+ const Eigen::MatrixXd & Q,
|
|
|
+ const double & beta,
|
|
|
+ Eigen::VectorXd & WN
|
|
|
+ ){
|
|
|
+ int m = Q.rows();
|
|
|
+ WN.resize(m);
|
|
|
+
|
|
|
+ std::function< double(const Eigen::RowVector3d, const std::vector<int>) > helper;
|
|
|
+ helper = [&helper,
|
|
|
+ &P,&N,&A,
|
|
|
+ &point_indices,&children,
|
|
|
+ &CM,&R,&EC,&beta]
|
|
|
+ (const Eigen::RowVector3d query, const std::vector<int> near_indices)-> double
|
|
|
+ {
|
|
|
+ std::vector<int> new_near_indices;
|
|
|
+ double wn = 0;
|
|
|
+ for(int i = 0; i < near_indices.size(); i++){
|
|
|
+ int index = near_indices.at(i);
|
|
|
+ //Leaf Case, Brute force
|
|
|
+ if(children.at(index)(0) == -1){
|
|
|
+ for(int j = 0; j < point_indices.at(index).size(); j++){
|
|
|
+ int curr_row = point_indices.at(index).at(j);
|
|
|
+ wn += direct_eval(P.row(curr_row)-query,N.row(curr_row)*A(curr_row));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //Non-Leaf Case
|
|
|
+ else {
|
|
|
+ for(int child = 0; child < 8; child++){
|
|
|
+ int child_index = children.at(index)(child);
|
|
|
+ if(point_indices.at(child_index).size() > 0){
|
|
|
+ if((CM.row(child_index)-query).norm() > beta*R(child_index)){
|
|
|
+ if(children.at(child_index)(0) == -1){
|
|
|
+ for(int j = 0; j < point_indices.at(child_index).size(); j++){
|
|
|
+ int curr_row = point_indices.at(child_index).at(j);
|
|
|
+ wn += direct_eval(P.row(curr_row)-query,N.row(curr_row)*A(curr_row));
|
|
|
+ }
|
|
|
+ }else{
|
|
|
+ wn += expansion_eval(CM.row(child_index)-query,EC.row(child_index));
|
|
|
+ }
|
|
|
+ }else {
|
|
|
+ new_near_indices.emplace_back(child_index);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(new_near_indices.size() > 0){
|
|
|
+ wn += helper(query,new_near_indices);
|
|
|
+ }
|
|
|
+ return wn;
|
|
|
+ };
|
|
|
+
|
|
|
+
|
|
|
+ if(beta >= 0){
|
|
|
+ std::vector<int> near_indices_start = {0};
|
|
|
+ igl::parallel_for(m,[&](int iter){
|
|
|
+ WN(iter) = helper(Q.row(iter),near_indices_start);
|
|
|
+ },1000);
|
|
|
+ } else {
|
|
|
+ igl::parallel_for(m,[&](int iter){
|
|
|
+ double wn = 0;
|
|
|
+ for(int j = 0; j <P.rows(); j++){
|
|
|
+ wn += direct_eval(P.row(j)-Q.row(iter),N.row(j)*A(j));
|
|
|
+ }
|
|
|
+ WN(iter) = wn;
|
|
|
+ },1000);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|